共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotavirus is a major cause of severe gastroenteritis in children <5 years of age worldwide, and two, live attenuated rotavirus vaccines are globally available. As rotavirus vaccines are introduced into national immunization programs, there is an increasing need to monitor circulating wild-type strains. However, few studies have systematically examined their full genotype constellation. This study was therefore undertaken to characterize the whole genotype constellation of circulating rotavirus strains in three widely-separated locations in Japan during the 2012 rotavirus season when rotavirus vaccines became available in the country for the first time. Of 107 rotavirus-positive specimens, 50 (46.7%) strains collected from all three locations possessed an unusual G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 constellation in which a typical G2P[4] strain appeared to have acquired its two surface protein genes from the most common G1P[8] strain. These G1P[8] double-reassortant strains were shown to possess the 11 genome segments virtually indistinguishable from each other in their nucleotide sequences and phylogenetic lineages except for two strains that underwent further intra-genotype reassortment. Successful spread to and predominance in broad locations across Japan of novel rotavirus strains possessing a genotype constellation that was previously thought not to be preferred suggests unexpected genomic flexibility of the genotype constellation. 相似文献
2.
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis.We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012.Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed.These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines. 相似文献
3.
A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012–2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored. 相似文献
4.
During the 2008–2009 rotavirus season, 10 G3P[6] rotavirus strains were isolated for the first time in Belgium, while an outbreak of G2P[6] strains occurred in the USA in 2005–2006. Partial sequencing of the 11 genome segments of the 10 Belgian G3P[6] strains revealed a clonal origin. Two of these strains, and a G2P[6] strain representative of the American outbreak, were selected and sequenced completely to analyze their evolutionary relationships. Genetic analysis revealed that all strains possessed a DS-1-like genotype constellation. The 2 Belgian G3P[6] strains showed >99% sequence identity at the nucleotide level and the American G2P[6] strain was phylogenetically closely related to the Belgian P[6] strains. These data suggest that reassortment(s) involving VP7 occurred recently, and that the prevalence of DS-1-like P[6] rotavirus strains need to be closely monitored because the currently licensed RVA vaccines contain neither the P[6] genotype nor strains with a complete human DS-1 genotype constellation. 相似文献
5.
Rotavirus A (RVA) causes acute diarrhoea in children and less frequently in adults. However, the knowledge about the genotype distribution of RVA strains circulating in adults is limited particularly in developing countries. This study aimed to characterise the RVA strains detected from adult patients with diarrhoea in Nepal. A total of 47 RVA positive stool samples from adult patients with diarrhoea in Kathmandu, Nepal during 2007–2008 were examined for the G and P genotypes by sequencing. Nearly half (49%) of the samples were genotyped as G9P[8] (n = 23), G1P[8], G2P[4] (n = 5 each), G12P[8] (n = 4), G12P[6] (n = 3), G1P[6] (n = 2), G3P[8] and G9P[6] (n = 1 each). Interestingly, two G11P[25] and one G9P[19] strains detected were further subjected to Illumina MiSeq next generation sequencing to determine their whole genome sequences. The genotype constellations of RVA/Human-wt/NPL/TK2615/2008/G11P[25] and RVA/Human-wt/NPL/TK2620/2008/G11P[25] were I12-R1-C1-M1-A1-N1-T1-E1-H1, whereas that of RVA/Human-wt/NPL/TK1797/2007/G9P[19] was I5-R1-C1-M1-A8-N1-T1-E1-H1. The 11 genes of TK2615 and TK2620 were virtually identical, and they were either porcine-like or unique except the VP2 and NSP1 genes which were of human RVA origin. The two G11P[25] strains were also very similar to KTM368, another G11P[25] isolated from a child in Nepal in 2004. On the other hand, no gene of TK1797 was likely to be of human RVA origin. The observation that porcine-like RVAs were detected from adult patients justifies further studies to explore the role of adults in the interspecies transmission of animal RVA to humans. 相似文献
6.
Although P[6] group A rotaviruses (RVA) cause diarrhoea in humans, they have been also associated with endemics of predominantly asymptomatic neonatal infections. Interestingly, strains representing the endemic and asymptomatic P[6] RVAs were found to possess one of the four common human VP7 serotypes (G1–G4), and exhibited little antigenic/genetic differences with the VP4 proteins/VP4 encoding genome segments of P[6] RVAs recovered from diarrhoeic children, raising interest on their complete genetic constellations. In the present study, we report the overall genetic makeup and possible origin of three such asymptomatic human P[6] RVA strains, RVA/Human-tc/VEN/M37/1982/G1P2A[6], RVA/Human-tc/SWE/1076/1983/G2P2A[6] and RVA/Human-tc/AUS/McN13/1980/G3P2A[6]. G1P[6] strain M37 exhibited an unusual genotype constellation (G1-P[6]-R1-C1-M1-A1-N1-T2-E1-H1), not reported previously, and was found to originate from possible intergenogroup reassortment events involving acquisition of a DS-1-like NSP3 encoding genome segment by a human Wa-like RVA strain. On the other hand, G2P[6] strain 1076 exhibited a DS-1-like genotype constellation, and was found to possess several genome segments (those encoding VP1, VP3, VP6 and NSP4) of possible artiodactyl (ruminants) origin on a human RVA genetic backbone. The whole genome of G3P[6] strain McN13 was closely related to that of asymptomatic human Wa-like G3P[6] strain RV3, and both strains shared unique amino acid changes, which might have contributed to their attenuation. Taken together, the present study provided insights into the origin and complex genetic diversity of P[6] RVAs possessing the common human VP7 genotypes. This is the first report on the whole genomic analysis of a G1P[6] RVA strain. 相似文献
7.
Zornitsa Mladenova Hajnalka Papp György Lengyel Péter Kisfali Andrej Steyer Adela F. Steyer Mathew D. Esona Miren Iturriza-Gómara Krisztián Bányai 《Infection, genetics and evolution》2012,12(8):1676-1684
During the ongoing rotavirus strain surveillance program conducted in Bulgaria, an unusual human rotavirus A (RVA) strain, RVA/Human/BG/BG620/2008/G5P[6], was identified among 2200 genotyped Bulgarian RVAs. This strain showed the following genomic configuration: G5–P[6]–I1–R1–C1–M1–A8–N1–T1–E1–H1. Phylogenetic analysis of the genes encoding the neutralization proteins and backbone genes identified a probable mixture of RVA genes of human and porcine origin. The VP1, VP6 and NSP2 genes were more closely related to typical human rotavirus strains. The remaining eight genes were either closely related to typical porcine and unusual human–porcine reassortant rotavirus strains or were equally distant from reference human and porcine strains. This study is the first to report an unusual rotavirus isolate with G5P[6] genotype in Europe which has most likely emerged from zoonotic transmission. The absence of porcine rotavirus sequence data from this area did not permit to assess if the suspected ancestral zoonotic porcine strain already had human rotavirus genes in its genome when transmitted from pig to human, or, the transmission was coupled or followed by gene reassortment event(s). Because our strain shared no neutralization antigens with rotavirus vaccines used for routine immunization in children, attention is needed to monitor if this G–P combination will be able to emerge in human populations. A better understanding of the ecology of rotavirus zoonoses requires simultaneous monitoring of rotavirus strains in humans and animals. 相似文献
8.
Krisztián Bányai Hajnalka Papp Eszter Dandár Péter Molnár Ilona Mihály Marc Van Ranst Vito Martella Jelle Matthijnssens 《Infection, genetics and evolution》2010,10(7):1140-1144
The full-length genome of a rare human G8P[14] rotavirus strain, BP1062/04, identified during a surveillance study in Hungary was determined and analyzed. This strain showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation. Phylogenetic analysis of each genome segment revealed common origins with selected animal and zoonotic human strains. The closest relatedness was seen with suspect zoonotic Hungarian G6P[14] strains in the NSP1 and NSP3 gene phylogeny, with ovine strains in the VP1, VP2, NSP4 gene phylogeny, and with bovine strains in the NSP5 gene phylogeny. The outer capsid VP7 and VP4 genes could not be derived from cognate genes of any known human or animal G8P[14] strains. The remaining genes, NSP2, VP3 and VP6, gave no definite clues to the host origin, although each was clearly different from true human strains. Altogether, our findings suggest that strain BP1062/04 represents an example of a direct zoonotic transmission event. 相似文献
9.
We report the first whole genome constellations of Mozambican rotavirus A strains detected between 2012 and 2013 in the Mavalane General Hospital in Maputo city and Manhiça District Hospital in the Manhiça district. Consensus sequences for ten DS-1-like strains (G2P[4] and G8P[4]) were identified with an Illumina Miseq platform using cDNA prepared from dsRNA extracted from stool samples, without genome amplification or prior adaptation to cell culture. Comparison of previously reported genotyping results and the consensus sequences described in this study, indicated that the genotype primers specific for G12 and P[4] might require revision. Phylogenetic analyses indicated diversity among the G2P[4] Mozambican strains and suggested reassortment between G2P[4] and G8P[4] Mozambican strains, as well as the intragenogroup reassortment of all the genome segments encoding VP1, 2, 3 and 6 for strain RVA/Human-wt/MOZ/0045/2012G8P[4]. These results highlight the necessity to determine whole genome constellations to confirm surveillance data in Africa and to monitor the growing diversity in DS-1-like strains. 相似文献
10.
G12 rotaviruses are globally emerging rotavirus strains causing severe childhood diarrhea. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed, of which only one G12P[4] and one G12P[6] are from Africa. In this study, we sequenced and characterized the complete genomes of three G12 strains (RVA/Human-tc/KEN/KDH633/2010/G12P[6], RVA/Human-tc/KEN/KDH651/2010/G12P[8], and RVA/Human-tc/KEN/KDH684/2010/G12P[6]) identified in three stool specimens from children with acute diarrhea in Kenya, Africa. On whole genomic analysis, all three Kenyan G12 strains were found to have a Wa-like genetic backbone: G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strains KDH633 and KDH684) and G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strain KDH651). Phylogenetic analysis showed that most genes of the three strains examined in this study were genetically related to globally circulating human G1, G9, and G12 strains. Of note is that the NSP4 genes of strains KDH633 and KDH684 appeared to be of porcine origin, suggesting the occurrence of reassortment between human and porcine strains. Furthermore, strains KDH633 and KDH684 were very closely related to each other in all the 11 gene segments, indicating derivation of the two strains from a common origin. On the other hand, strain KDH651 consistently formed distinct clusters of 10 of the 11 gene segments (VP1-2, VP4, VP6-7, and NSP1-5), indicating a distinct origin of strain KDH651 from that of strains KDH633 and KDH684. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Kenya. Our observations will provide important insights into the evolutionary dynamics of emerging G12 rotaviruses in Africa. 相似文献
11.
Group A rotavirus is a major cause of severe gastroenteritis in children and young animals. During a retrospective analysis of samples collected from Paraguayan children under 5 years old with diarrhea, and previously negative for rotavirus and norovirus, we detected the presence of bovine rotavirus sequences by viral metagenomics. Nucleic acid was extracted direct from stool sample and determined to be G8P[1]. The genomic analyzes revealed that the strain presents an Artiodactyl-like genome (G8-P[1]-I2-R2-C2-M1-Ax-N2-T6-E12-H3) suggesting a direct animal-to-human transmission. 相似文献
12.
Distinct evolutionary origins of G12P[8] and G12P[9] group A rotavirus strains circulating in Brazil
G12 group A rotavirus (RVA) are currently recognized as a globally emerging genotype and have been described in combination with several P-types. In Brazil, G12 RVA strains have been described in the Southern (2003) and Northern (2008–2010) regions, in combination with the P[9] and P[6] genotype, respectively. To date, few complete genomes of G12 RVA strains have been described (none from Brazilian strains), considering G12P[9] genotype just one strain, RVA/Human-tc/THA/T152/1998/G12P[9], has their 11 gene segments characterized. This study aims to determine the genomic constellation of G12P[9] and G12P[8] RVA strains detected in Brazil between 2006 and 2011. Therefore, the eleven gene segments of five Brazilian G12 RVA strains were amplified and sequenced, and the genotype of each gene segment was assigned using phylogenetic analysis. Complete genome analyses of G12 RVA strain circulating between 2006 and 2011 in Brazil revealed a conserved Wa-like genomic constellation for three G12P[8] RVA strains; whereas the two G12P[9] strains possessed distinct reassorted AU-1-like genomic constellations, closely related to the reference strain RVA/Human-tc/THA/T152/1998/G12P[9] in most genes. The results obtained in the current study suggest that G12P[9] (AU-1-like) and G12P[8] (Wa-like) strains detected in different regions of Brazil do not share a common origin. Moreover, while Brazilian G12P[8] RVA strains showed a complete Wa-like human constellation, both G12P[9] strains possessed an NSP1 gene of bovine origin (NSP1), and RVA/Human-wt/BRA/PE18974/2010/G12P[9] also possessed a VP3 gene of canine/feline origin. 相似文献
13.
A rare G26 Rotavirus A strain RVA/Human-wt/NPL/07N1760/2007/G26P[19] was detected in a child hospitalised for acute diarrhoea in Kathmandu, Nepal. The complete genome of 07N1760 was determined in order to explore its evolutionary history as well as examine its relationship to a Vietnamese strain RVA/Human-wt/VNM/30378/2009/G26P[19], the only G26 strain whose complete genotype constellation is known. The genotype constellation of 07N1760 was G26-P[19]-I12-R1-C1-M1-A8-N1-T1-E1-H1, a unique constellation identical to that of the Vietnamese 30378 except the VP6 gene. Phylogenetic analysis revealed that both strains were unrelated at the lineage level despite their similar genotype constellation. The I12 VP6 gene of 07N1760 was highly divergent from the six currently deposited I12 sequences in the GenBank. Except for its NSP2 gene, the remaining genes of 07N1760 shared lineages with porcine and porcine-like human RVA genes. The NSP2 gene belonged to a human RVA N1 lineage which was distinct from typical porcine and porcine-like human lineages. In conclusion, the Nepali G26P[19] strain 07N1760 was a porcine RVA strain which derived an NSP2 gene from a human Wa-like RVA strain by intra-genotype reassortment probably after transmission to the human host. 相似文献
14.
After a sporadic detection in 1990s, G3P[8] rotaviruses emerged as a predominant genotype during recent years in many areas worldwide, including parts of Italy. The present study describes the molecular epidemiology and evolution of G3P[8] rotaviruses detected in Italian children with gastroenteritis during two survey periods (2004–2005 and 2008–2013). Whole genome of selected G3P[8] strains was determined and antigenic differences between these strains and rotavirus vaccine strains were analyzed. Among 819 (271 in 2004–2005 and 548 in 2008–2013) rotaviruses genotyped during the survey periods, the number of G3P[8] rotavirus markedly varied over the years (0/83 in 2004, 30/188 in 2005 and 0/96 in 2008, 6/88 in 2009, 4/97 in 2010, 0/83 in 2011, 9/82 in 2012, 56/102 cases in 2013). The genotypes of the 11 gene segments of 15 selected strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1; thus all strains belonged to the Wa genogroup. Phylogenetic analysis of the Italian G3P[8] strains showed a peculiar picture of segregation with a 2012 lineage for VP1-VP3, NSP1, NSP2, NSP4 and NSP5 genes and a 2013 lineage for VP6, NSP1 and NSP3 genes, with a 1.3–20.2% nucleotide difference from the oldest Italian G3P[8] strains. The genetic variability of the Italian G3P[8] observed in comparison with sequences of rotaviruses available in GenBank suggested a process of selection acting on a global scale, rather than the emergence of local strains, as several lineages were already circulating globally. Compared with the vaccine strains, the Italian G3P[8] rotaviruses segregated in different lineages (5–5.3% and 7.2–11.4% nucleotide differences in the VP7 and VP4, respectively) with some mismatches in the putative neutralizing epitopes of VP7 and VP4 antigens. The accumulation of point mutations and amino acid differences between vaccine strains and currently circulating rotaviruses might generate, over the years, vaccine-resistant variants. 相似文献
15.
In March 2015, an atypical G3P[8] rotavirus with an equine-like VP7 gene was detected in Gipuzkoa (Basque Country, Spain) and spread contributing significantly to the seasonal epidemic. The strain was identified in fecal samples collected from 68 patients, mainly children from rural and urban settings with acute gastroenteritis, representing 14.9% of the 455 rotavirus strains genotyped between July 2014 and June 2015. Seven patients (10.3%) were hospitalized. Full genome analysis of six of these strains revealed a DS-1-like genotype constellation, G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and showed that most genome segments shared the highest nucleotide sequence identity with strains isolated in Japan, Thailand, Australia and the Philippines. The strains of Gipuzkoa were similar to novel G3P[8] reassortant rotaviruses with an equine-like VP7 gene and a DS-1-like genetic backbone that emerged in the Asia-Pacific Region in 2013. The study highlights the circulation of these atypical rotaviruses outside the Asia-Pacific Region of origin, and their emergence in a European Region. Due to their unusual genotype constellation, these strains pose a challenge for the rotavirus strain surveillance, since G-/P-typing, the most commonly used classification system, cannot identify this type of intergenogroup reassortants. 相似文献
16.
One of the leading causes of severe childhood gastroenteritis are group A rotaviruses, and they have been found to be associated with ∼40% of the annual gastroenteritis-associated hospitalizations in young Danish children <5 years of age (Fischer et al., 2011). In this study, we investigated the diversity of rotavirus strains circulating among young children <5 years of age, presenting with gastroenteritis disease either at the general practitioner or in the hospital, during the period 2009–2013. A total of 831 rotavirus positive stool samples were genotyped in the study period, and the majority of samples (74%) were from hospitalized children. G and P genotypes were successfully determined for 826 of samples, with G1P[8] being the most commonly detected genotype. Detection of G1 showed a decreasing trend over time, and an inverse trend was seen for the emerging G9P. The common human genotypes (G1/G3/G4/G9P[8] and G2P[4]) were detected in the majority of samples (n = 733, 88.2%). Rare genotype combinations such as G6P[14] were detected in <1% of samples. Rare genotype strains and strains which failed to amplify in genotyping RT-PCR were subjected to genetic characterization by sequencing one or all of the following genes; VP7, VP4, VP6 and NSP4. Sequences of sufficient length and quality were available for all 4 genes for 28 strains. Phylogenetic analysis revealed that reassortant G9P[4] strains circulated with 3 different genotype combinations. As rotavirus vaccines are not widely used in Denmark or its neighboring countries, the diversity of rotavirus strains identified in this study most likely reflects naturally occurring selection pressures and viral evolution. 相似文献
17.
Here we report the genome of a novel rotavirus A (RVA) strain detected in a stool sample collected during routine surveillance by the Centers for Disease Control and Prevention's New Vaccine Surveillance Network. The strain, RVA/human-wt/USA/2012741499/2012/G24P[14], has a genomic constellation of G24-P[14]-I2-R2-C2-M2-A3-N2-T9-E2-H3. The VP2, VP3, VP7 and NSP3 genes cluster phylogenetically with bovine strains. The other genes occupy mixed clades containing animal and human strains. Strain RVA/human-wt/USA/2012741499/2012/G24P[14] most likely is the product of interspecies transmission and reassortment events. This is the second report of the G24 genotype and the first report of the G24P[14] genotype combination in humans. 相似文献
18.
《Vaccine》2018,36(45):6844-6849
Human rotavirus vaccine Rotarix® (G1P[8]) has shown broad cross protection against homotypic and heterotypic Wa-like human rotavirus strains among children worldwide. This vaccine, however, appears to induce slightly less or non-consistent protection against DS-1 like rotavirus P[4] strains in some settings. In addition, children who are secretor or Lewis-negative and are vaccinated with Rotarix® often experience breakthrough infection with P[6] strains. By contrast, P[6] strains infect all children, irrespective of their secretor or Lewis status. In the present study, we report successful adaptation of a DS-1 like human rotavirus G9P[6] strain (CDC-6) to high growth in Vero cells and identify sequence changes that may be critical for enhanced growth in vitro and attenuation in vivo. This human G9P[6] strain could serve as a promising new and potential low-cost vaccine candidate for global use, particularly in targeted population with secretor or Lewis-negative status and high prevalent DS-1 like P[6] strains. 相似文献
19.
Bovine group A rotavirus (RVA) G8P[1] strains have been rarely detected in humans. Two Nigerian G8P[1] strains, HMG035 (RVA/Human-tc/NGA/HMG035/1999/G8P[1]) and NGRBg8 (RVA/Cow-tc/NGA/NGRBg8/1998/G8P[1]), were previously suggested to have the VP7, VP4, and NSP1 genes of bovine origin. In order to obtain precise information on the origin and evolution of these G8P[1] strains, the complete nucleotide sequences of the whole genomes of strains HMG035 and NGRBg8 were determined and analyzed in the present study. On whole genomic analysis, strains HMG035 and NGRBg8 were found to be very closely related to each other in all the 11 segments, and were found to have a bovine RVA-like genotype constellation (G8-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3). Furthermore, on phylogenetic analysis, each of the 11 genes of strains HMG035 and NGRBg8 appeared to be of bovine origin. Thus, strains HMG035 and NGRBg8 were suggested to be derived from a common origin, and strain NGRBg8 was assumed to represent an example of bovine RVA strains that were transmitted to humans. Our findings provide clear evidence for direct bovine-to-human interspecies transmission of RVA strains. 相似文献
20.
During the rotavirus strain surveillance in Slovenia, G6P[11] bovine rotavirus strain was detected in a 5 months old boy with gastroenteritis. The strain was enrolled in a whole genome sequence analysis to determine its genome segment composition and genetic characteristics. Genotype composition for the whole genome was G6-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, reflecting similarities with bovine rotavirus strains. The bovine origin of the strain was confirmed in all genome segments, showing the highest nucleotide identity with bovine rotavirus strains and clustering of the RVA/Human-wt/SVN/SI-R56/07/2007/G6P[11] together with bovine rotavirus strains in phylogenetic analysis. This is the first bovine G6P[11] rotavirus strain with the whole genome analysis and the first report on rotavirus G6P[11] genotype detected in humans. 相似文献