首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Non-invasive assessment of inflammatory activity in the course of various diseases is a largely unmet clinical challenge. An early feature of inflammation is local secretion of the alarmin S100A8/A9 by activated phagocytes. We here evaluate a novel S100A9-targeted small molecule tracer Cy5.5-CES271 for in vivo optical imaging of inflammatory activity in exemplary disease models.

Procedures

Dynamics of Cy5.5-CES271 was characterized in a model of irritant contact dermatitis by sequential fluorescence reflectance imaging (FRI) up to 24 h postinjection (p.i.). Specificity of Cy5.5-CES271 binding to S100A9 in vivo was examined by blocking studies and by employing S100A9?/? mice. Finally, S100A9 secretion in acute lung inflammation was assessed by Cy5.5-CES271 and FRI of explanted lungs.

Results

In ear inflammation, we were able to non-invasively follow the time course of S100A9 expression using Cy5.5-CES271 and FRI over 24 h p.i. (peak activity at 3 h p.i.). Specificity of imaging could be shown by a significant signal reduction after predosing and using S100A9?/? mice. In acute lung injury, local and systemic S100A8/A9 levels increased over time and correlated significantly with FRI signal levels in explanted lungs.

Conclusions

Cy5.5-CES271 shows significant accumulation in models of inflammatory diseases and specific binding to S100A9 in vivo. This study, for the first time, demonstrates the potential of a small molecule non-peptidic tracer enabling imaging of S100A9 as a marker of local phagocyte activity in inflammatory scenarios suggesting this compound class for translational attempts.
  相似文献   

2.

Purpose

Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system.

Procedure

Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution.

Results

Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R?>?0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution.

Conclusion

The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.
  相似文献   

3.

Purpose

Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy.

Procedures

A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system.

Results

For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells.

Conclusions

We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.
  相似文献   

4.

Purpose

We evaluated the small molecule coelenterazine as a potential reporter of cancer-associated superoxide anion in cell culture and in mice.

Procedures

The superoxide anion concentrations of various cancer cell lines were quantified by coelenterazine chemiluminescence in vitro. Coelenteramide fluorescence was detected via flow cytometry and fluorescent microscopy. Coelenterazine was used for the in vivo detection of cancer-associated superoxide anion using the 4T1 breast adenocarcinoma mouse model.

Results

Various cell lines in culture demonstrated different superoxide anion concentrations, with a signal range of 3.15?±?0.06 to 11.80?±?0.24 times that of background. In addition to chemiluminescent detection of coelenterazine, we demonstrated fluorescent detection of coelenteramide within the cytoplasm of cells. 4T1 murine mammary adenocarcinoma tumors in mice demonstrated significantly higher 2.13?±?0.19-fold coelenterazine-based chemiluminescence than that of surrounding normal tissues.

Conclusions

Collectively, our results indicate that coelenterazine can be used to assay superoxide anion concentrations in cultured cancer cells and in tumors growing in mice.
  相似文献   

5.

Purpose

Evaluation of [18F]fluoromisonidazole ([18F]FMISO)-positron emission tomography (PET) imaging as a metric for evaluating early response to trastuzumab therapy with histological validation in a murine model of HER2+ breast cancer.

Procedures

Mice with BT474, HER2+ tumors, were imaged with [18F]FMISO-PET during trastuzumab therapy. Pimonidazole staining was used to confirm hypoxia from imaging.

Results

[18F]FMISO-PET indicated significant decreases in hypoxia beginning on day 3 (P?<?0.01) prior to changes in tumor size. These results were confirmed with pimonidazole staining on day 7 (P?<?0.01); additionally, there was a significant positive linear correlation between histology and PET imaging (r 2 ?=?0.85).

Conclusions

[18F]FMISO-PET is a clinically relevant modality which provides the opportunity to (1) predict response to HER2+ therapy before changes in tumor size and (2) identify decreases in hypoxia which has the potential to guide subsequent therapy.
  相似文献   

6.

Purpose

Reactive oxygen species (ROS) are important contributors to inflammatory bowel disease (IBD); however, there are insufficient tools for their in vivo evaluation.

Procedures

To determine if a chemiluminescent ROS reporter, coelenterazine, would be a useful tool for the detection of immune cell activation, the macrophage cell line (RAW 264.7) was treated with phorbol myristate acetate (PMA). Additionally, coelenterazine was used to monitor the changes in ROS production over time in a mouse model of IBD.

Results

In vitro, coelenterazine enabled the dynamic monitoring of the RAW 264.7 cell oxidative burst. In vivo, there were early, preclinical, changes in the localization and magnitude of coelenterazine chemiluminescent foci.

Conclusions

Coelenterazine offers a high-throughput method for assessing immune cell activation in culture and provides a means for the in vivo detection and localization of ROS during IBD disease progression.
  相似文献   

7.

Purpose

Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA).

Procedures

The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo.

Results

Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis.

Conclusions

The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy.
  相似文献   

8.

Purpose

Overexpression of the epidermal growth factor receptor (EGFR) occurs with high incidence in various carcinomas. The oncogenic expression of the receptor has been exploited for immunoglobulin-based diagnostics and therapeutics. We describe the use of a llama single-domain antibody fragment, termed Nanobody®, for the in vivo radioimmunodetection of EGFR overexpressing tumors using single photon emission computed tomography (SPECT) in mice.

Methods

Fluorescence-activated cell sorting (FACS) analysis was performed to evaluate the specificity and selectivity of 8B6 Nanobody to bind EGFR on EGFR overexpressing cells. The Nanobody was then labeled with 99mTc via its C-terminal histidine tail. Uptake in normal organs and tissues was assessed by ex vivo analysis. In vivo tumor targeting of 99mTc-8B6 Nanobody was evaluated via pinhole SPECT in mice bearing xenografts of tumor cells with either high (A431) or moderate (DU145) overexpression of EGFR.

Results

FACS analysis indicated that the 8B6 Nanobody only recognizes cells overexpressing EGFR. In vivo blood clearance of 99mTc-8B6 Nanobody is relatively fast (half-life, 1.5 h) and mainly via the kidneys. At 3 h postinjection, total kidney accumulation is high (46.6?±?0.9%IA) compared to total liver uptake (18.9?±?0.6%IA). Pinhole SPECT imaging of mice bearing A431 xenografts showed higher average tumor uptake (5.2?±?0.5%IA/cm3) of 99mTc-8B6 Nanobody compared to DU145 xenografts (1.8?±?0.3%IA/cm3, p?

Conclusion

The EGFR-binding Nanobody investigated in this study shows high specificity and selectivity towards EGFR overexpressing cells. Pinhole SPECT analysis with 99mTc-8B6 Nanobody enabled in vivo discrimination between tumors with high and moderate EGFR overexpression. The favorable biodistribution further corroborates the suitability of Nanobodies for in vivo tumor imaging.
  相似文献   

9.

Purpose

Optical surgical navigation (OSN) will be a potent tool to help surgeons more accurately and efficiently remove tumors. The purpose of this study was to evaluate a novel humanized 3E8 antibody (3E8 MAb) fragment site-specifically conjugated with IR800, 3E8.scFv.Cys-IR800, as a potential OSN agent to target colorectal adenocarcinoma.

Procedures

An engineered single-chain variable fragment of 3E8 MAb (targeted to TAG-72), appending a C-terminal cysteine residue (3E8.scFv.Cys), was created and reacted with IRDye800-maleimide. 3E8.scFv.Cys-IR800 identity and purity were verified by MALDI-TOF mass spectra and 800 nm detected size exclusion column HPLC. In vitro human colon adenocarcinoma LS-174 T cells binding and competition assay validated biological functionality. We further evaluated the imaging ability and receptor-specific binding of 3E8.scFv.Cys-IR800 in an orthotopic LS-174 T mouse model.

Results

A 1:1 dye to protein conjugate was achieved at greater than 90 % HPLC purity. A 1 nmol dose of 3E8.scFv.Cys-IR800 via intraperitoneal injection administration was sufficient to produce high tumor to background fluorescence contrast. Blocking competition studies both in vitro and in vivo using a different blocking protein, 3E8ΔCH2, demonstrated 3E8.scFv.Cys-IR800 binding specificity for TAG-72 antigen.

Conclusions

3E8.scFv.Cys-IR800 shows properties useful in a clinically viable OSN agent for colorectal cancer.
  相似文献   

10.

Purpose

Noninvasive imaging of tau and amyloid-β pathologies would facilitate diagnosis of Alzheimer’s disease (AD). Recently, we have developed [18F]THK-5105 for selective detection of tau pathology by positron emission tomography (PET). The purpose of this study was to clarify biological properties of optically pure [18F]THK-5105 enantiomers.

Procedures

Binding for tau aggregates in AD brain section was evaluated by autoradiography (ARG). In vitro binding assays were performed to evaluate the binding properties of enantiomers for AD brain homogenates. The pharmacokinetics in the normal mouse brains was assessed by ex vivo biodistribution assay

Results

The ARG of enantiomers showed the high accumulation of radioactivity corresponding to the distribution of tau deposits. In vitro binding assays revealed that (S)-[18F]THK-5105 has slower dissociation from tau than (R)-[18F]THK-5105. Biodistribution assays indicated that (S)-[18F]THK-5105 eliminated faster from the mouse brains and blood compared with (R)-[18F]THK-5105.

Conclusion

(S)-[18F]THK-5105 could be more suitable than (R)-enantiomer for a tau imaging agent.
  相似文献   

11.

Purpose

In this study, we evaluated a genetic approach for in vivo multimodal molecular imaging of vasculature in a mouse model of melanoma.

Procedures

We used a novel transgenic mouse, Ts-Biotag, that genetically biotinylates vascular endothelial cells. After inoculating these mice with B16 melanoma cells, we selectively targeted endothelial cells with (strept)avidinated contrast agents to achieve multimodal contrast enhancement of Tie2-expressing blood vessels during tumor progression.

Results

This genetic targeting system provided selective labeling of tumor vasculature and showed in vivo binding of avidinated probes with high specificity and sensitivity using microscopy, near infrared, ultrasound, and magnetic resonance imaging. We further demonstrated the feasibility of conducting longitudinal three-dimensional (3D) targeted imaging studies to dynamically assess changes in vascular Tie2 from early to advanced tumor stages.

Conclusions

Our results validated the Ts-Biotag mouse as a multimodal targeted imaging system with the potential to provide spatio-temporal information about dynamic changes in vasculature during tumor progression.
  相似文献   

12.

Purpose

Tumor-specific molecular imaging is an important tool for assessing disease burden and treatment response. CA19.9 is an important tumor-specific marker in several malignancies, including urothelial carcinoma. [89Zr]DFO-HuMab-5B1 (MVT-2163) is a CA19.9-specific antibody-based construct that has been validated in preclinical animal models of lung, colorectal, and pancreatic malignancies for positron emission tomography (PET) imaging and is currently in a phase I trial for pancreatic cancer (NCT02687230). Here, we examine whether [89Zr]DFO-HuMab-5B1 may be useful in defining urothelial malignancies.

Procedures

Surface expression of CA19.9 was confirmed in the human bladder cancer line HT 1197. The radioimmunoconjugate [89Zr]DFO-HuMab-5B1 was injected into mice bearing HT 1197 xenografts, and followed by PET imaging, ex vivo experiments including biodistribution, histology and autoradiography, and analysis of blood samples for shed antigen levels were performed.

Results

[89Zr]DFO-HuMab-5B1 specifically accumulates in HT 1197 engrafted tumors when imaged with PET. Ex vivo biodistribution of organs and autoradiography of engrafted tumors confirm our construct’s specific tumor binding. The target antigen CA19.9 was not found to be shed in vitro or in vivo.

Conclusions

[89Zr]DFO-HuMab-5B1 can be used to delineate urothelial carcinomas by PET imaging and may provide tumor-specific information prior to, during, and after systemic therapies.
  相似文献   

13.

Purpose

The goal of this study was to develop a plasmid-based lux bio-reporter for use to obtain in vivo images of Brucella suis vaccine strain 2 (B.suis S2) infection with high resolution and good definition.

Procedures

The pBBR-lux (pBBR1MCS-2-lxCDABE) plasmid that carries the luxCDABE operon was introduced into B. suis S2 by electroporation yielding B. suis S2-lux. The spatial and temporal transit of B. suis S2 in mice and guinea pigs was monitored by bioluminescence imaging.

Results

The plasmid pBBR-lux is stable in vivo and does not appear to impact the virulence or growth of bacteria. This sensitive luciferase reporter could represent B. suis S2 survival in real time. B. suis S2 mainly colonized the lungs, liver, spleen, and uterus in mice and guinea pigs as demonstrated by bioluminescence imaging.

Conclusion

The plasmid-based lux bioreporter strategy can be used to obtain high resolution in vivo images of B. suis S2 infection in mice and guinea pigs.
  相似文献   

14.

Purpose

Transplantation of pancreatic islets (PIs) is a promising therapeutic approach for type 1 diabetes. The main obstacle for this strategy is that the outcome of islet engraftment depends on the engraftment site. It was our aim to develop a strategy for using non-invasive imaging techniques to assess the location and fate of transplanted PIs longitudinally in vivo.

Procedures

In order to overcome the limitations of individual imaging techniques and cross-validate findings by different modalities, we have combined fluorine magnetic resonance imaging (F-19 MRI), fluorescence imaging (FLI), and bioluminescent imaging (BLI) for studying subcutaneously transplanted PIs and beta cell-like cells (INS-1E cell line) in vivo. We optimized the transduction (using lentiviral vectors) and labeling procedures (using perfluoro crown ether nanoparticles with a fluorescence dye) for PIs and INS-1E cell imaging.

Results

The feasibility of using the proposed imaging methods for PI assessment was demonstrated both in vitro and in vivo. Our data suggested that F-19 MRI is suitable for high-resolution localization of transplanted cells and PIs; FLI is essential for confirmation of contrast localization by histology; and BLI is a reliable method to assess cell viability and survival after transplantation. No significant side effects on cell viability and function have been observed.

Conclusions

The proposed tri-modal imaging platform is a valuable approach for the assessment of engrafted PIs in vivo. It is potentially suitable for comparing different transplantation sites and evaluating novel strategies for improving PI transplantation technique in the future.
  相似文献   

15.

Purpose

Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[18F]Fluoroglutamine (4-[18F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression.

Procedures

In vivo microPET studies of 4-[18F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting.

Result

4-[18F]Fluoro-Gln uptake, but not 2-deoxy-2-[18F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[18F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues.

Conclusions

4-[18F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.
  相似文献   

16.

Purpose

Previously, we demonstrated specific accumulation into bacteria of a 12-mer phosphorodiamidate morpholino (MORF) oligomer complementary to a ribosomal RNA (rRNA) segment found in all bacteria using the universal probe called Eub338 (Eub). Here, two MORF oligomers Eco and Kpn with sequences specific to the rRNA of Escherichia coli (Eco) and Klebsiella pneumoniae (Kpn) were investigated along with Eub and control (nonEub).

Procedures

To determine bacterial rRNA binding, oligomers were tagged with Alexa Fluor 633 (AF633) for fluorescence in situ hybridization (FISH) and fluorescence microscopy, and radiolabeled with technetium-99m (Tc-99m) for biodistribution and SPECT imaging in infected mice.

Results

By both FISH and fluorescence microscopy, Eub showed a positive signal in both E. coli and K. pneumoniae as expected, and Kpn showed significantly higher accumulation in K. pneumoniae with near background in E. coli (p?<?0.01). Conversely, Eco was positive in both E. coli and K. pneumoniae, hence nonspecific. As determined by biodistribution, the accumulation of [99mTc]Kpn was higher in the thigh infected with live K. pneumoniae than with live E. coli (p?=?0.05), and significantly higher than with heat-killed K. pneumoniae (p?=?0.02) in the target thigh. By SPECT imaging, the accumulation of [99mTc]Kpn was obviously higher in its specific target of K. pneumoniae compared to an E. coli infected thigh.

Conclusions

Kpn complementary to the rRNA of K. pneumoniae, labeled with Tc-99m or AF633, demonstrated specific binding to fixed and live K. pneumoniae in culture and in infected mice such that Tc-99m-labeled Kpn as the MORF oligomer may be useful for K. pneumoniae infection detection through imaging.
  相似文献   

17.

Purpose

Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2).

Procedures

Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system’s sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed.

Results

In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5–251 μg/l versus System 2 0.99–503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26.

Conclusion

Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.
  相似文献   

18.

Purpose

Bioluminescence imaging (BLI) is a technique with a low background noise and high sensitivity which is widely used in mice models in oncology. We aimed to assess BLI efficiency of the new luciferase NanoLuc (Nluc) for glioblastoma cell lines and tumors, including for dual reporter applications of deep brain tumors and systemic metastasis when combined with firefly luciferase (Fluc).

Procedures

U87 cells were genetically modified for constitutive production of either Nluc, Fluc, or both and assayed for luciferase activity and BLI on cell lysates, living cells, subcutaneous tumors, brain tumors, and systemic metastases.

Results

In vitro, light production by Nluc activity is higher than Fluc. In vivo, Nluc allows for tumor detection including for deep brain tumors and systemic metastases.

Conclusions

Nluc appears to be a useful tool to combine with Fluc for dual imaging in vivo using bioluminescence, allowing for the detection of distinct events in deep tissues within the same organism.
  相似文献   

19.

Objective

The modified algorithm for the non-invasive determination of cardiac output (CO) by electrical bioimpedance—electrical velocimetry (EV®)—has been reported to give reliable results in comparison with echocardiography and pulmonary arterial thermodilution (PA-TD) in patients either before or after cardiac surgery. The present study was designed to determine whether EV®-CO measurements reflect intraindividual changes in CO during cardiac surgery.

Design

Prospective, observational study.

Setting

Operating room (OR) and intensive care unit (ICU) of a university hospital.

Patients

Twenty-nine patients undergoing elective cardiac surgery.

Interventions

None.

Measurements

CO was determined simultaneously by PA-TD and EV® after induction of anesthesia (t1) and 4.9?±?3.5?h after ICU admission (t2).

Results

TD-CO was 3.9?±?1.4 and 5.4?±?1.1 l/min at t1 and t2 (?p?®-CO was 4.3?±?1.1 and 4.9?±?1.5 l/min at t1 and t2 (?p?=?0.013). Bland–Altman analysis showed a bias of ?0.4 l/min and 0.4 l/min and a precision of 3.2 and 3.6 l/min (34.3% and 67.4%) at t1 and t2, respectively. Analysis of the individual pre- to postoperative changes in CO with both methods revealed bidirectional changes in n?=?12 patients and unidirectional changes with a difference greater than 50% and less than 50% in n?=?9 and n?=?8 patients, respectively.

Conclusions

The disagreement between PA-TD and EV®-CO measurements after anesthesia induction and after ICU admission, as well as the fact that thoracic bioimpedance did not adequately reflect pre- to postoperative changes in CO, questions the reliability of EV®-CO measurements in cardiac surgery patients and contrasts sharply with previous studies.
  相似文献   

20.

Purpose

We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells.

Procedures

We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19+ artificial antigen-presenting cells.

Results

After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19+ targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-β-d-arabinofuranosyl-uracil ([18F]FEAU).

Conclusion

This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号