首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Mitsukawa  X. Lu  T. Bartfai 《Neuroscience》2009,160(4):837-846
The neuropeptide galanin has been shown to play a role in psychiatric disorders as well as in other biological processes including regulation of pain threshold through interactions with three G-protein coupled receptors, galanin receptor subtypes 1–3 (GalR1−3). While most of the pharmacological studies on galanin in stress-related disorders have been done with rats, the continuous development of genetically engineered mice involving galanin or its receptor subtype(s) validates the importance of mouse pharmacological studies. The present study on mice examined the homeostatic, endocrinological and neuroanatomical effects of the galanin, injected intracerebroventricularly (i.c.v.), in regulation of stress responses after restraint stress. Furthermore, the roles of GalR1 on these effects were studied using GalR1 knockout (KO) mice. The core body temperature and the locomotor activity were monitored with radio telemetry devices. Galanin (i.c.v.) decreased locomotor activity and exerted a bidirectional effect on the restraint stress–induced hyperthermia; a high dose of galanin significantly attenuated the stress-induced hyperthermic response, while a low dose of galanin moderately enhanced this response. The bidirectional effect of galanin was correlated with changes in stress hormone levels (adrenocorticotropic hormone and corticosterone). To neuroanatomically localize the effects of galanin on stress response, cFos immunoreactivity was assessed in galanin receptor rich areas; paraventricular nucleus (PVN) of the hypothalamus and the locus coeruleus (LC), respectively. A high dose of galanin significantly induced cFos activity in the LC but not in the PVN. In GalR1KO mice, a high dose of galanin failed to induce any of the above effects, suggesting the pivotal role of GalR1 in decreased locomotor activity and stress-resistant effects caused by galanin i.c.v. injection studied here.  相似文献   

2.
Although intrathecally administrated galanin modulates nociceptive transmission in a biphasic manner, this has not been fully examined previously. In the present study, the action of galanin on synaptic transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices was examined, using the whole cell patch-clamp technique. Galanin concentration-dependently increased the frequency of spontaneous excitatory postsynaptic current (EPSC; EC(50) = 2.0 nM) without changing the amplitude, indicating a presynaptic effect. This effect was reduced in a Ca(2+)-free, or voltage-gated Ca(2+) channel blocker La(3+)-containing Krebs solution and was produced by a galanin type-2/3 receptor (GalR2/R3) agonist, galanin 2-11, but not by a galanin type-1 receptor (GalR1) agonist, M617. Galanin also concentration-dependently produced an outward current at -70 mV (EC(50) = 44 nM), although this appeared to be contaminated by a small inward current. This outward current was mimicked by M617, but not by galanin 2-11. Moreover, galanin reduced monosynaptic Aδ-fiber- and C-fiber-evoked EPSC amplitude; the former reduction was larger than the latter. A similar action was produced by galanin 2-11, but not by M617. Spontaneous and focally evoked inhibitory (GABAergic and glycinergic) transmission was unaffected by galanin. These findings indicate that galanin at lower concentrations enhances the spontaneous release of l-glutamate from nerve terminals by Ca(2+) entry from the external solution following GalR2/R3 activation, whereas galanin at higher concentrations also produces a membrane hyperpolarization by activating GalR1. Moreover, galanin reduces l-glutamate release onto SG neurons from primary afferent fibers by activating GalR2/R3. These effects could partially contribute to the behavioral effect of galanin.  相似文献   

3.
4.
5.
Low-frequency stimulation (LFS) has antiepileptogenic effects on kindled seizures. In the present study, the role of galanin receptors in the inhibitory effect of LFS on perforant path kindling acquisition was investigated in rats. Animals were kindled by perforant path stimulation in a rapid kindling manner (six stimulations per day). LFS (0.1 ms pulses at 1 Hz, 600 pulses, and 80-150 microA) was applied immediately after termination of each kindling stimulation. M35 (0.5 and 1.0 nM per site), a nonselective galanin receptor antagonist and M871 (1.0 microM per site), a selective galanin receptor type 2 (GalR2) antagonist, were daily microinjected into the dentate gyrus before starting the stimulation protocol. The expression of GalR2 in the dentate gyrus was also investigated using semi-quantitative RT-PCR. Application of LFS significantly retarded the kindling acquisition and delayed the expression of different kindled seizure stages. In addition, LFS significantly reduced the increment of daily afterdischarge duration during kindling development. Intra-dentate gyrus microinjection of both M35 and M871 significantly prevented the inhibitory effects of LFS on kindling parameters. During the focal kindled seizure stages (1-3) M871 had no significant effect. However, during generalized seizure stages (4 and 5), M871 had the same effect as M35. Semi-quantitative RT-PCR also showed that after kindling acquisition, the GalR2 mRNA level decreased in the dentate gyrus but application of LFS prevented this decrease. Obtained results show that activation of galanin receptors by endogenous galanin has a role in mediating the inhibitory effect of LFS on perforant path-kindled seizures. This role is exerted through GalR1 during focal- and through GalR2 during generalized-kindled seizures.  相似文献   

6.
The neuropeptide galanin is widely expressed in limbic nuclei in the brain, and plays an important role in the regulation of homeostatic and affective behaviors, in part through its modulation of central monoamine pathways. Recent evidence suggests that galanin and its receptors may be involved in the efficacy of various modalities of antidepressant treatments. We have previously demonstrated that systemically active, non-peptide galanin receptor type-1/2 agonists exhibit antidepressant-like effects in the rat forced swim test. Here we evaluate a novel galanin receptor type-3 (GalR3) antagonist in preclinical tests of anxiety and depression. At multiple doses, the compound displayed no effects in the elevated plus maze in mice. By contrast, the compound decreased time spent immobile in the tail suspension test by mice. Additionally, the GalR3 drug decreased time spent immobile in the forced swim test in rats, similarly to the effects of desipramine, yet did not increase locomotor activity in an open field test. These combined data from two species indicate that GalR3 receptor antagonists may exhibit antidepressant-like effects.  相似文献   

7.
Fu LB  Wang XB  Jiao S  Wu X  Yu LC 《Neuroscience letters》2011,491(3):174-176
Previous studies in our laboratory demonstrated that galanin and its receptors play important roles in nociceptive modulation in the central nervous system. The present study was performed to explore the antinociceptive effects of the galanin receptor 1 agonist M 617 in the central nervous system of rats. Intracerebroventricular injection of 0.1nmol, 0.5nmol, 1nmol or 2nmol of M 617 induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations in rats. Furthermore, both intracerebroventricular injection of M 617 and galanin induced significant increases in HWLs in rats. Interestingly, there were no significant differences between the antinociceptive effects induced by M 617 and galanin, indicating that galanin receptor 1 plays main roles in galanin-induced antinociceptive effects in the brain of rats.  相似文献   

8.
Synaptic plasticity in inhibitory interneurons is essential to maintain a proper equilibrium between excitation and inhibition in hippocampal network. Recent studies showed that theta-burst-induced long-term potentiation (LTP) at excitatory synapses of oriens/alveus (O/A) interneurons in CA1 hippocampal region required the activation of metabotropic glutamate receptor (mGluR) 1. However these interneurons also express mGluR5 and the contribution of this receptor subtype in interneuron synaptic plasticity remains unexplored. We combined pharmacological and transgenic approaches to examine the relative contribution of mGluR1/5 in LTP at excitatory synapses on O/A interneurons. Bath-application of the selective mGluR1/5 agonist (s)-3,5-dihydroxyphenylglycine (DHPG) induced LTP of compound excitatory postsynaptic potentials. DHPG-induced LTP was not prevented by application of either mGluR1 or mGluR5 antagonists, was still present in mGluR1 knockout mice, but was blocked by co-application of both antagonists. These results indicate that LTP can be induced at O/A interneuron synapses by either mGluR1 or mGluR5 activation. As previously reported for mGluR1-dependent LTP, the mGluR5-dependent LTP was independent of N-methyl-d-aspartate receptors. Pairing DHPG application with postsynaptic depolarization induced mGluR1- and mGluR5-dependent LTP of minimally-evoked excitatory postsynaptic currents, which were composed of calcium-permeable AMPA receptor and presynaptically modulated by group II mGluRs, hence confirming that both forms of LTP occurred directly at interneuron excitatory synapses. These findings uncover a new mGluR5-dependent form of LTP at O/A interneuron synapses and indicate that activation of mGluR1 or mGluR5 is sufficient to induce LTP at these synapses. Thus, a rich repertoire of adaptive changes may take place at these interneuron synapses to regulate hippocampal feedback inhibition.  相似文献   

9.
We have previously found that the induction of hippocampal long-term potentiation (LTP) is modulated by neuron activities in the basolateral amygdala (BLA). However, little is known about what neurotransmitter system in the BLA contributes to modulation of hippocampal LTP. In the present study, we investigated possible involvement of BLA serotonergic system in the induction of LTP at the perforant path (PP)-dentate gyrus (DG) granule cell synapses of anesthetized rats. The induction of PP-DG LTP was significantly inhibited by intra-BLA injection of the 5-HT2 receptor antagonist cinanserin (25–50 nmol), but not by intra-BLA injection of the 5-HT1,7 receptor antagonist methiothepin (50 nmol), the 5-HT3 receptor antagonist ondansetron (50 nmol) or the 5-HT4 receptor antagonist RS23597-190 (100 nmol). In addition, intra-BLA injection of the 5-HT2C receptor agonist MK212 (50 nmol) facilitated the induction of PP-DG LTP. These results suggest that the induction of PP-DG LTP is promoted by activation of 5-HT2C receptors in the BLA.  相似文献   

10.
11.
Galanin effects are mediated by distinct receptors, galanin receptor 1 (GAL-R1), GAL-R2 and GAL-R3. Here, we analyzed 1) the role of GAL-R1 in cholinergic transmission and peristalsis in the guinea-pig ileum using longitudinal muscle-myenteric plexus preparations and intact segments of the ileum in organ bath, and 2) the distribution of GAL-R1 immunoreactivity in the myenteric plexus with immunohistochemistry and confocal microscopy. Galanin inhibited electrically stimulated contractions of longitudinal muscle-myenteric plexus preparations with a biphasic curve. Desensitization with 1 microM galanin suppressed the high potency phase of the curve, whereas the GAL-R1 antagonist, RWJ-57408 (1 microM), inhibited the low potency phase. Galanin (3 microM) reduced the longitudinal muscle contraction and the peak pressure, and decreased the compliance of the circular muscle. All these effects were antagonized by RWJ-57408 (1 or 10 microM). RWJ-57408 (10 microM) per se did not affect peristalsis parameters in normal conditions, nor when peristalsis efficiency was reduced by partial nicotinic transmission blockade with hexamethonium. In the myenteric plexus, GAL-R1 immunoreactivity was localized to neurons and to fibers projecting within the plexus and to the muscle. GAL-R1 was expressed mostly by cholinergic neurons and by some neurons containing vasoactive intestinal polypeptide or nitric oxide synthase. This study indicates that galanin inhibits cholinergic transmission to the longitudinal muscle via two separate receptors; GAL-R1 mediates the low potency phase. The reduced peristalsis efficiency could be explained by inhibition of the cholinergic drive, whereas the decreased compliance is probably due to inhibition of descending neurons and/or to the activation of an excitatory muscular receptor. Endogenous galanin does not appear to affect neuronal pathways subserving peristalsis in physiologic conditions via GAL-R1.  相似文献   

12.
甘丙肽抑制大鼠垂体腺瘤细胞体外侵袭性   总被引:1,自引:0,他引:1  
目的 探讨甘丙肽对大鼠垂体腺瘤细胞侵袭性的作用及其受体机制.方法 提取大鼠垂体腺瘤GH3细胞RNA,反转录后测定甘丙肽及其3个受体亚型的表达情况;将大鼠垂体腺瘤GH3细胞分为对照组、甘丙肽药物处理组和选择性甘丙肽2型受体激动剂AR-M1896组,利用MTT方法检测对照组和实验组在给药后12、24和36 h各分组细胞活力...  相似文献   

13.
目的:探究GalR1在雌性CUMS C57小鼠海马表达及GalR1激动剂M617对干细胞增殖的影响。方法:(1)将小鼠分为实验组及对照组,对照组不给予任何刺激,实验组给予慢性温和不可预知应激(CUMS)。通过糖水偏好、悬尾实验及血清皮质酮比较两组的抑郁水平;部分小鼠行免疫荧光染色比较两组海马DG的增殖情况;另一部分小鼠行qPCR检测,比较两组海马甘丙肽及其受体的表达。(2)行细胞培养,传代细胞给予不同浓度的M617处理3 d,取每组细胞铺板并加入10μmol/L的Brd U,继续孵育4 h后PFA固定,行Brdu免疫荧光染色并比较各组的阳性细胞数。结果:(1)第2、3周的糖水偏好实验显示两组糖水的消耗量未见差异,第4周CUMS组糖水消耗量少于对照组(P0.05);悬尾实验中,CUMS组静止不动时间延长(P0.05);CUMS组血清皮质酮水平明显高于对照组(P0.01)。(2)CUMS组海马DG区的Brd U+及Ki67+细胞数明显少于对照组(P0.05)。(3)q PCR结果显示CUMS组甘丙肽及GalR1基因表达水平明显增加(P0.01)。(4)不同浓度M617对干细胞增殖无明显组间差异。结论:(1)GalR1在雌性CUMS C57小鼠海马表达增高,可能参与调节抑郁症的发生过程。(2)不同浓度M617对干细胞增殖无明显影响,提示GalR1可能不参与神经干细胞增殖的调节。  相似文献   

14.
Recent molecular cloning studies have established the existence of a third rat galanin receptor subtype, GalR3, however its precise distribution in the mammalian central nervous system (CNS) is not well established. In the present study, we examined the regional and cellular distribution of GalR3 mRNA in the CNS of the rat by in situ hybridization. Our findings indicate that GALR3 mRNA expression in the rat brain is discrete and highly restricted, concentrated mainly in the preoptic/hypothalamic area. Within the hypothalamus, GalR3 expression was confined to the paraventricular, ventromedial and dorsomedial hypothalamic nuclei. In addition to these hypothalamic nuclei, GalR3 mRNA-expressing cells were observed in the medial septum/diagonal band of Broca complex, the bed nucleus of the stria terminalis, the medial amygdaloid nucleus, the periaqueductal gray, the lateral parabrachial nucleus, the dorsal raphe nucleus, the locus coeruleus, the medial medullary reticular formation and in one of the circumventricular organs, the subfornical organ. In the spinal cord, a faint but specific ISH signal was observed over the laminae I–II with a few moderately labeled cells distributed in laminae V and X. The neuroanatomical distribution of GalR3 suggests it might be involved in mediating documented effects of galanin on food intake, fluid homeostasis, cardiovascular function and nociception.  相似文献   

15.
In keeping with previous observations in the CA1 and the somatosensory neocortex of the brain of rat, 20-min applications of 2-deoxy-D-glucose (2DG; 10 mM, replacing glucose) induced a long-term potentiation (LTP)-like enhancement of field excitatory synaptic potentials (fEPSPs) in the dentate region of hippocampal slices. The effects of 2DG were not identical at synapses of medial and lateral perforant paths (MPP and LPP). At MPP synapses, there was no post-2DG early depression of fEPSPs and the potentiation reached +78.6 +/- 5.7 % (+/- standard error of the mean) 40 min after the return to glucose. In the presence of 50 microM D-amino-phosphono valerate (APV; an N-methyl-D-aspartate [NMDA] receptor antagonist), a marked post-2DG depression appeared and the subsequent LTP was reduced to +34.7 +/- 2.8 % (for both 2DG- and APV-treatment P<0.001 by ANOVA-2W). At LPP synapses, even under control conditions, there was a sharp post-2DG depression followed by LTP (+62.2 +/- 5.7 %) and APV had little effect on either the post-2DG depression or LTP, reducing the latter by only 24 % [the 2DG treatment was very significant (P<0.001) but not the APV treatment]. Thus, 2DG evokes both NMDAR-dependent and -independent components of LTP in the perforant pathways. In view of these findings, the consumption of 2DG could have significant effects on synaptic plasticity and cognitive function.  相似文献   

16.
Galanin (3 nmol/rat), 2 h after its intracerebroventricular (i.c.v.) administration to male rats, attenuated the passive avoidance (PA) retention deficit induced by the 5-hydroxytryptamine (HT)(1A) receptor agonist 8-hydroxy-2-(di-N-propylamino)tetraline (8-OH-DPAT) (0.2 mg/kg) The reduction in the postjunctional 5-HT(1A) receptor-mediated response after i.c.v. galanin was not associated with changes in the mRNA levels and agonist binding properties of cortical limbic 5-HT(1A) receptors, believed to be the target receptors mediating the PA deficit caused by 8-OH-DPAT. These results suggest that acute increases of galanin transmission in vivo even after 2 h can counteract limbic 5-HT(1A) receptor-mediated responses of relevance for affective disorders without significantly affecting gene expression and binding characteristics of cortical limbic 5-HT(1A) receptors.  相似文献   

17.
Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta-burst stimulation (TBS) with postsynaptic depolarization, we induced long-term potentiation (LTP) of putative single-fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired-pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long-term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells.  相似文献   

18.
The functional interactions of the neuropeptide galanin (GAL) occur through its binding to three G protein-coupled receptor subtypes: galanin receptor (GALR) 1, GALR2 and GALR3. Previously, we demonstrated that GALR1 mRNA expression was increased in the CA1 region of the hippocampus and discrete hypothalamic nuclei in galanin transgenic (GAL-tg) mice. This observation suggested a compensatory adjustment in cognate receptors in the face of chronic GAL exposure. To evaluate the molecular alterations to GALR2 and GALR3 in the forebrain of GAL overexpressing mice, we performed complementary quantitative, real-time PCR (qPCR), in situ hybridization, and immunohistochemistry in select forebrain regions of GAL-tg mice to characterize the neuronal distribution and magnitude of GAL mRNA and peptide expression and the consequences of genetically manipulating the neuropeptide GAL on the expression of GALR2 and GALR3 receptors. We found that GAL-tg mice displayed dramatic increases in GAL mRNA and peptide in the frontal cortex, posterior cortex, hippocampus, septal diagonal band complex, amygdala, piriform cortex, and olfactory bulb. Moreover, there was evidence for ectopic neuronal GAL expression in forebrain limbic regions that mediate cognitive and affective behaviors, including the piriform and entorhinal cortex and amygdala. Interestingly, regional qPCR analysis failed to reveal any changes in GALR2 or GALR3 expression in the GAL-tg mice, suggesting that, contrary to GALR1, these receptor genes are not under ligand-mediated regulatory control. The GAL-tg mouse model may provide a useful tool for the investigation of GAL ligand-receptor relationships and their role in normal cognitive and affective functions as well as in the onset of neurological disease.  相似文献   

19.
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain glutamate receptor type 2 (GluR2) subunits, recent findings suggest that LTP in hippocampal slices obtained from 2- to 3-wk-old rodents is dependent on the transient postsynaptic insertion and activation of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Here we examined whether LTP in slices prepared from adult animals exhibits similar properties. In contrast to previously reported findings, pausing synaptic stimulation for as long as 30 min post LTP induction had no effect on LTP maintenance in slices from 2- to 3-mo-old mice. LTP was also not disrupted by postinduction application of a selective blocker of GluR2-lacking AMPA receptors or the broad-spectrum glutamate receptor antagonist kynurenate. Although these results suggest that the role of GluR2-lacking AMPA receptors in LTP might be regulated during postnatal development, LTP in slices obtained from 15- to 21-day-old mice also did not require postinduction synaptic stimulation or activation of GluR2-lacking AMPA receptors. Thus the insertion and activation of GluR2-lacking AMPA receptors do not appear to be fundamental processes involved in LTP at excitatory synapses in the hippocampal CA1 region.  相似文献   

20.
To learn more about molecular alterations in the brain that occur as a consequence of either the chronic excess or absence of peptide neurotransmitters, we examined the impact of genetically manipulating the neuropeptide galanin on the expression of one of its cognate receptors, galanin receptor 1. First, we examined the distribution of galanin receptor 1 messenger RNA in the mouse forebrain, and found it to be abundantly expressed in many brain regions, including in numerous hypothalamic and other forebrain regions associated with neuroendocrine function. The distribution of galanin receptor 1 messenger RNA in the mouse was similar to previous reports in the rat, with additional expression noted in the caudate putamen and in several midbrain regions. Next, using quantitative in situ hybridization, we measured cellular levels of galanin receptor 1 messenger RNA in the brains of mice that either overexpress galanin (galanin transgenic) or lack a functional galanin gene (galanin knockout). We report that relative to wild-type controls, the expression of galanin receptor 1 messenger RNA was increased in discrete areas of the brain in galanin-transgenic mice, but that depletion of galanin/noradrenergic innervation to the hypothalamus with the neurotoxin 6-hydroxydopamine did not alter levels of galanin receptor 1 messenger RNA. We also report that levels of galanin receptor 1 messenger RNA were not different between galanin-knockout and wild-type mice. These results suggest that compensatory adjustments in the expression of cognate receptors represent one mechanism by which the developing nervous system attempts to maintain homeostasis in response to overexpression of a peptidergic transmitter. However, the lack of significant changes in galanin receptor 1 messenger RNA in galanin-knockout mice suggests that developmentally programmed levels of receptor expression are maintained even in the complete absence of ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号