首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kirkwood  Carl D.  Gentsch  Jon R.  Glass  Roger I. 《Virus genes》1999,19(2):113-122
Two major and one minor genotype of the rotavirus NSP4 gene have been described. The sequences of 29 NSP4 genes from rotavirus isolates obtained in the United States during the 1996–1997 rotavirus season (types P[8]G1, P[8]G9, P[4]G2 and P[6]G9) and 10 strains isolated during previous rotavirus seasons (types P[8]G1 and P[4]G2) were determined. All NSP4 genes from strains with short E types (6 P[4]G2, 4 P[6]G9) belonged to genotype NSP4A, whereas all 19 strains with long E types (16 P[8]G1, 3 P[8]G9) had NSP4 genes of genotype NSP4B. Genetic variation within genotypes was low (2.3% for both NSP4A and NSP4B), confirming that the NSP4 genes are highly conserved. Nonetheless, at least two distinct sub-lineages could be detected within each genotype: strains isolated in the same year, regardless of geographic location, were more closely related or even identical at the deduced amino acid level; strains isolated in different years were more distinct. Thus, geographic distance did not affect genetic distance. Northern hybridization analysis with NSP4A and NSP4B total gene probes failed to detect any unusual combinations of the VP6 and NSP4 genes in 31 additional isolates from the 1996–1997 rotavirus season.  相似文献   

2.
3.
Hoshino Y  Jones RW  Kapikian AZ 《Virology》2002,299(1):64-71
Neutralization specificities of outer capsid spike protein VP4 of murine rotavirus strains EW (P?[16],G3) and EHP (P?[20],G3) and lapine rotavirus strains Ala (P?[14],G3), C11 (P?[14],G3), and R2 (P?[14],G3) as well as human rotavirus strains PA169 (P?[14],G6) and HAL1166 (P?[14],G8) were determined by two-way cross-neutralization. This was done by generating and characterizing (i) three murine x human, three lapine x human, and two human x human single gene substitution reassortant rotaviruses, each of which bore identical human rotavirus DS-1 strain VP7 (G2), and (ii) guinea pig hyperimmune antiserum raised against each reassortant. Reference rotavirus strains employed in the study represented 10 established VP4 (P) serotypes, including 1A[8], 1B[4], 2A[6], 3[9], 4[10], 5A[2], 5B[2], 5B[3], 6[1], 7[5], 8[11], 9[7], and 10[16] as well as a P serotype unknown P[18]. Murine rotavirus strains EW and EB were demonstrated to share the same P serotype (P10[16]) distinct from (i) 9 established P serotypes, (ii) lapine and human rotavirus strains bearing the P[14] genotype, and (iii) an equine rotavirus strain bearing the P[18] genotype. Both lapine (Ala, C11, and R2) and human (PA169 and HAL1166) rotaviruses were shown to belong to the same VP4 serotype, which represented a distinct new P serotype (P11[14]). P serotype 13[20] was assigned to murine rotavirus EHP strain VP4, which was shown to be distinct from all the P serotypes/genotypes examined in the present study.  相似文献   

4.
5.
A total of 1,385 stool specimens were collected from children with diarrhea at two hospitals in Wuhan, Hubei Province, China, in 1994 and 1995, and screened for rotavirus by polyacrylamide gel electrophoresis of viral RNA. Group A rotavirus was detected with high frequency; 56.5% (87/154) and 40.8% (502/1,231) of the specimens collected in 1994 and 1995, respectively, were positive for rotavirus. Assignment of G serotype and P type (VP4 genotype) of group A rotavirus by ELISA with monoclonal antibodies and/or PCR, respectively, showed that strains of G2-P[4] and G1-P[8] specificity were predominant in 1994 and in 1995, respectively. In contrast, a single strain was found to have a P[9] type specificity, and no G4 strain was detected. Unusual combinations of RNA pattern-subgroup-G serotype-P type, such as long pattern-subgroup I-G1-P[8], short pattern-subgroup II-G3-P[4] and short pattern-subgroup I-G1-P[4], were detected in four specimens. Nucleotide sequences of the VP8* and/or NSP5 genes from two Chinese P[8] strains 470 and 582 and one Chinese P[9] strain 512 as well as five Japanese P[9] strains (K8, AU1, M318, O264, and O265) were determined and compared with the published sequences of the corresponding gene. In the phylogenetic tree of VP8* sequences of P[9] strains, which formed two clusters each having strain K8 or AU-1 as the representative strain, the Chinese P[9] strain was found in the cluster represented by AU-1, although it was most distantly related to other strains. While NSP5 sequences of human strains with P[9] specificity were related to simian and bovine strains, that of Chinese P[8] strains was most closely related to those of porcine strains. A single group C rotavirus (No. 208) was detected. Nucleotide sequences of its VP4, VP6, VP7, and NSP4 genes were very similar to those of group C human rotaviruses detected worldwide. J. Med. Virol. 55:168–176, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
This investigation describes the molecular characterization of P[6]G2 rotavirus strains from hospitalized neonates with community-acquired diarrhea (CAD), nosocomial diarrhea (ND), and asymptomatic nosocomial infection (ANI) in Belém, Brazil. Twenty-six rotavirus strains with P[6]G2 genotype were sequenced to genes coding for VP4, VP7, and NSP4 proteins. Phylogenetic analysis of the VP4 gene, including prototype strains RV3, ST3, M37, and U1205, showed that local P[6]G2 strains clustered forming a distinct lineage (bootstrap of 99%). Brazilian P[6]G2 strains had the highest homology (ranging from 96.0%-98.3%) with the African strain GR1107, G4P[6]. Phylogenetic tree for VP7 gene was constructed including old and new G2 African strains SA3958GR/97, SA356PT/96, SA514GR/87, SA4476PT/97, BF3676/99, GH1803/99, and representative strains of G1, G3, G4, G5, G8, and G9 genotypes. The Brazilian P[6]G2 samples fell into a distinct group (bootstrap value of 97%) and showed homology rates ranging from 92.1% to 93.5% with P[6]G2 African strains BF3676/99, GH1803/99, and SA3958GR/97. Nucleotide sequence analysis of the NSP4 gene, including human prototype strains S2, KUN, DS-1, RV5, RV3 and ST3, and animal prototype OSU, showed that all neonatal isolates fell into genotype A and clustered with a bootstrap value of 100%, with in-group similarities ranging from 99.3% to 100%. In this study no significant differences in nucleotide sequences of the VP4, VP7, and NSP4 genes could be observed when comparing diarrheic (CAD and ND) and non-diarrheic (ANI) babies. Monitoring of rotavirus strains in hospital environments is of particular importance, since it is claimed currently that an efficacious rotavirus vaccine, when available for routine use, will determine an impact on hospital-acquired rotavirus disease.  相似文献   

7.
Summary. Molecular characterization of two porcine group A rotavirus strains (HP113 and HP140), detected from eastern India, revealed a VP7 closely related to those of human G6P[14] strains, VP4 with a borderline P[13] genotype, and VP6 related to bovine and human SGI strains rather than porcine SGI and/or SGII group A rotaviruses. Both strains had NSP4 and NSP5 of porcine origin. Therefore, to our knowledge, the present study is the first report of detection of group A rotavirus strains with G6P[13] genotype specificities and provides evidence for independent segregation of the VP6- and NSP4-encoding genes in porcine group A rotaviruses.  相似文献   

8.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. Two unusual rotavirus strains not previously reported in India, G11P[25] (CRI 10795) and G3P[3] (CRI 33594) were isolated from faecal samples of asymptomatic children in India. The strains were characterized by sequence analysis of the genes encoding the VP7, VP4, VP6, and NSP4. The G11P[25] strain was closely related to the human G11P[25] strains from Bangladesh (with 98% identity at the nucleotide [nt] level and the amino acid [aa] level for the VP7 gene and 96% identity at the nt and 98% at the aa level for the VP4 gene). The G3P[3] strain was found to be related to a G3P[3] strain isolated in Thailand (CMH222; 88% identity at the nt level and 97% at aa level for the VP7 gene and 84% identity at the nt level and 90% at the aa level for the VP4 gene). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G11P[25] strain was of VP6 subgroup II and NSP4 genotype B. The G3P[3] strain was identified as NSP4 genotype C and the VP6 gene showed 97% identity at the deduced amino acid level with strain CMH222 (Thailand) strain but did not cluster with sequences of SGI, SGII, SGI+II or SG-nonI/nonII. Both strains had gene segments of animal rotavirus origin suggesting inter-species transmission of rotavirus, and in the case of G11P[25] possibly underwent reassortment subsequently with human strains resulting in an animal-human hybrid strain.  相似文献   

9.
An ovine rotavirus (OVR) strain, 762, was isolated from a 30-day-old lamb affected with severe gastroenteritis, in Zaragoza, Spain, and the VP4, VP7, VP6, NSP4, and NSP5/NSP6 genes were subsequently characterized molecularly. Strain OVR762 was classified as a P[14] rotavirus, as the VP4 and VP8* trypsin-cleavage product of the VP4 protein revealed the highest amino acid (aa) identity (94% and 97%, respectively) with that of the P11[14] human rotavirus (HRV) strain PA169, isolated in Italy. Analysis of the VP7 gene product revealed that OVR762 possessed G8 serotype specificity, a type common in ruminants, with the highest degree of aa identity (95-98%) shared with serotype G8 HRV, bovine rotavirus, and guanaco (Lama guanicoe) rotavirus strains. Moreover, strain OVR762 displayed a bovine-like NSP4 (genotype E2) and NSP5/NSP6 (genotype H3), and a VP6 genotype I2, as well as a long electropherotype pattern. This is the first report of a lamb rotavirus with P[14] and G8 specificities, providing additional evidence for the wide genetic and antigenic diversity of group A rotaviruses.  相似文献   

10.
Porcine rotavirus strains (PoRVs) bearing human-like VP4 P[6] gene alleles were identified. Genetic characterization with either PCR genotyping or sequence analysis allowed to determine the VP7 specificity of the PoRVs as G3, G4, G5 and G9, and the VP6 as genogroup I, that is predictive of a subgroup I specificity. Sequence analysis of the VP8* trypsin-cleavage product of VP4 allowed PoRVs to be characterized further into genetic lineages within the P[6] genotype. Unexpectedly, the strains displayed significantly higher similarity (up to 94.6% and 92.5% at aa and nt level, respectively) to human M37-like P[6] strains (lineage I), serologically classifiable as P2A, or to the atypical Hungarian P[6] human strains (HRVs), designated as lineage V (up to 97.0% aa and 96.1% nt), than to the porcine P[6] strain Gottfried, lineage II (<85.1% aa and 82.2 nt), which is serologically classified as P2B. Interestingly, no P[6] PoRV resembling the original prototype porcine strain, Gottfried, was detected, while Japanase P[6] PoRV clustered with the atypical Japanase G1 human strain AU19. By analysis of the 10th and 11th genome segments, all the strains revealed a NSP4B genogroup (Wa-like) and a NSP5/6 gene of porcine origin. These findings strongly suggest interspecies transmission of rotavirus strains and/or genes, and may indicate the occurrence of at least 3 separate rotavirus transmission events between pigs and humans, providing convincing evidence that evolution of human rotaviruses is tightly intermingled with the evolution of animal rotaviruses.  相似文献   

11.
A rare genotype G6P[9] was identified in two human group A rotavirus strains designated as KF14 and KF17, that were detected in stool specimens from children with diarrhea in Japan. VP7 gene sequences of these two strains were identical and genetically closely related to G6 human rotavirus strains reported in European countries and the United States. To our knowledge, this is the first report of detection of a G6 human rotavirus in Japan. For further genetic analysis to elucidate the origin of the G6 rotavirus, nearly full-length sequences of all 11 RNA segments were determined for the KF17 strain. The complete genomic constellation of KF17 was determined as G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, a novel genotype constellation for human rotavirus. Phylogenetic analysis indicated that VP6, VP1-3, and NSP2 genes of KF17 clustered with bovine-like G6 human strains and some animal strains into sub-lineages distinct from those of common DS-1-like G2 human rotaviruses. On the other hand, KF17 genes encoding VP4, NSP1, and NSP3-5 showed high sequence identities to the human G3P[9] strain AU-1, and clustered with AU-1 and some feline strains within the same lineage. These findings suggested that the G6P[9] human rotavirus detected in Japan may have occurred through reassortment among uncommon bovine-like human rotaviruses and human/feline AU-1-like rotaviruses.  相似文献   

12.
A distinct rotavirus strain (PTRV) was isolated in cell cultures from a stool sample obtained from a diarrheic 3-year-old female pig-tailed macaque (Macaca nemestrina) that was born at the breeding colony of the University of Washington in Seattle. Unlike other known simian rotavirus strains including vervet monkey rotavirus SA11 which bears P5B[2]:G3 or P6[1]:G3 specificity, rhesus monkey rotavirus MMU18006 with P5B[3]:G3 specificity, pig-tailed macaque rotavirus YK-1 with P[3]:G3 specificity and rhesus monkey rotavirus TUCH with P[24]:G3 specificity, the cell-culture-grown PTRV strain was shown to bear P6[1]:G8 specificity as determined by VP4 (P)- and VP7 (G)-specific neutralization assays as well as gene sequence analyses. The virus in the original diarrhea stool was also shown to bear genotypes P[1] and G8. In addition, the PTRV strain exhibited a "long" electropherotype, subgroup I specificity and NSP4 genotype A specificity. The PTRV probe formed (i) 8-9 hybrid bands with genomic RNAs of various bovine rotavirus strains and (ii) only 2-3 hybrid bands with simian rotavirus RNAs as demonstrated by RNA-RNA hybridization, suggesting a possible bovine origin of the virus. Serologic analysis of serum samples obtained from selected pig-tailed macaques in the colony suggested that a rotavirus bearing P[1]:G8 specificity was endemic among macaques for at least 8 years (1987-1994). This is the first report describing an isolation of a simian rotavirus bearing a non-G3 VP7 and possibly a P6[1] specificities. Because of its unique simian serotype, this virus may prove to be valuable in challenge studies in a non-human primate model in studies of rotavirus immunity.  相似文献   

13.
Shi H  Chen J  Li H  Sun D  Wang C  Feng L 《Archives of virology》2012,157(10):1897-1903
The fifth most important G genotype, G9 rotavirus, is recognized as an emerging genotype that is spreading around the world. Sequence analysis was completed of a rare group A rotavirus, strain G9P[23], that was designated rotavirus A pig/China/NMTL/2008/G9P[23] and abbreviated as NMTL. It was isolated from a piglet with diarrhea in China. Nucleotide sequence analysis revealed that the VP7 gene clustered within the G9 lineage VId. The VP4 gene clustered within the rare P[23] genotype. NMTL is the first porcine G9 stain reported in China. Thus, to further characterize the evolutionary diversity of the NMTL strain, all gene segments were used to draw a phylogenetic tree. Based on the new classification system of rotaviruses, the NMTL sequence revealed a G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype with close similarity to human Wa-like and porcine strains. The results showed that (i) NSP2 and NSP4 genes of NMTL exhibited higher genetic relatedness to human group A rotaviruses than to porcine strains, (ii) the VP2 and VP4 genes clustered with porcine and porcine-like human strains, and (iii) VP1 genes clustered apart from the Wa-like human and porcine clusters. In view of rotavirus evolution, this report provides additional evidence to support the notion that the human and porcine rotavirus genomes might be related.  相似文献   

14.
Analysis of archival stool collections provides an invaluable source of virus strains and genetic material that may be exploited for molecular, epidemiological, and biological studies. The aim of this study was the molecular characterization of unusual human rotavirus (HRV) strains displaying atypical combinations of electropherotype (e-type) and VP4 and/or VP7 genotypes. Analysis of a panel of archival stools collected in northern Italy revealed continual circulation of P[8]G1 HRVs during 1987-1990 and the onset of P[6] + P[8]G1 strains after 1989. Interestingly, nine G1 strains, associated with either P[8], P[4] + P[8], P[6] + P[8], or untypeable VP4 genes, and two P[4]G1 + G2 strains, displayed short RNA e-type. The genetic constellation of the unusual strains was investigated by analysis of the VP4, VP6, VP7, and NSP4 genes. All the G1 strains with short e-type were subgroup (SG)II or SGI + SGII, and possessed a NSP4 of genogroup B or A + B. Conversely, the P[4]G1 + G2 strains were SGI and possessed a genogroup A NSP4. Sequence analysis of the VP7 and VP4 genes revealed that the unusual P[8]G1 and P[4]G1 + G2 viruses emerged by reassortment of strains circulating locally, rather than by introduction of new strains.  相似文献   

15.
Group A rotaviruses (RVs) are important pathogens that cause acute, dehydrating gastroenteritis in infants and young children. In this study, a multiplex real-time polymerase chain reaction protocol using primers and TaqMan(?) probes specific for viral VP4 and VP7 genes was evaluated. This assay offers simultaneous genotyping and quantification of the most common RV genotypes G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]. It was compared to the molecular typing results provided by conventional PCR. A total of 92 archived stool specimens obtained from children younger than 5 years old with the diagnosis of acute gastroenteritis were examined. Real-time PCR assay detected rotavirus strains among the most common genotype combinations G4P[8] (70.7%), G1P[8] (10.9%), G2P[4] (5.4%), G9P[8] (2.2%). This new assay described has an acceptable sensitivity (low limit 6.3×10(2)copies/g of stool).  相似文献   

16.
A total of 162 rotavirus strains detected between 1996 and 2006 among individuals with diarrhea in Rio de Janeiro, Brazil, were analyzed by multiple‐gene genotyping. Characterization of strains was done by RT‐PCR assay for amplification and typing of the VP7‐, VP4‐, VP6‐, and NSP4‐encoding genes. Overall, 139 (85.8%) strains belonged to the common group A rotavirus combinations: 67 (41.4%) belonged to genotype G1‐P[8]‐I1‐E1; 18 (11.1%) were G2‐P[4]‐I2‐E2; 11 (6.8%) were G3‐P[8]‐I1‐E1; 12 (7.4%) were G4‐P[8]‐I1‐E1; and 31 (19.1%) were G9‐P[8]‐I1‐E1. Two samples presented mixed genotypes (G1 + G3‐P[8]‐I1‐E1 and G1 + G9‐P[9]‐I1‐E1) and rare combinations, such as G2‐P[6]‐I2‐E2 and G9‐P[6]‐I2‐E2, were detected in six (3.7%) strains. The results suggest a linkage among all four genes. Genotypes G1/G3/G4/G5/G9‐P[8] were correlated strongly to I1‐E1 genotypes and G2‐P[4]/P[6] were correlated to I2‐E2 genotypes. Unusual combinations of genes, such as G3‐P[9]‐I2‐E2, G9‐P[9]‐I1‐E2, and G3‐P[9]‐I3‐E3, were observed in 15 (9.3%) strains. The characterization of multiple genes allows a more complete analysis of the rotavirus isolates and provides evidence of natural reassortment of strains. J. Med. Virol. 82:1797–1802, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
To assess the genetic diversity of rotavirus strains in Norway, the distribution of rotavirus genotypes was studied in children admitted to hospital with acute gastroenteritis. The detection of rotavirus in stool samples was compared using an enzyme‐linked immunosorbent assay (ELISA), an immunochromatographic test and RT‐PCR. Children <5 years of age admitted to hospital with diarrhea in three large hospitals were enrolled prospectively from March 2006 to February 2008. Rotavirus was detected in 58% of the children by the immunochromatographic test, in 63% by ELISA and 72% by RT‐PCR. A total of 219 (70%) rotavirus isolates were characterized in order to determine the genotype. The predominant G types included G1 (53%), G9 (16%), and G3 (13%), and the frequency of G3 varied more than G9 between seasons (8–20%). The P[8] genotype was identified in 188 (86%) of samples, and the globally common genotype combinations G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8] accounted together for >80% of infection. No unusual rotavirus strains were detected, and only four samples contained mixed infections. This study demonstrates that ELISA has similar specificity but lower sensitivity compared to RT‐PCR. The immunochromatographic test had the lowest sensitivity and specificity compared to the other assays. Rotaviruses causing severe gastroenteritis leading to hospitalization of children <5 years of age in Norway include the common genotypes, however, a considerable geographical and seasonal variation was observed in the distribution of these genotypes. These data may be important for assessing the need for introducing rotavirus vaccines into immunization programs in Norway. J. Med. Virol. 81:1839–1844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2‐year‐old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full‐length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4‐P[6]‐I5‐R1‐C1‐M1‐A1‐N1‐T7‐E1‐H1. This genotype includes the porcine‐like VP6 genotype (I5) and bovine‐like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine‐human reassortant strain IAL28. To our knowledge, R479 is the first porcine–bovine reassortant rotavirus isolated from a human. J. Med. Virol. 82:1094–1102, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
A rotavirus surveillance study was undertaken in Slovenia from December 2005 to March 2006. Stool samples from 114 children hospitalized with acute viral gastroenteritis were collected from two main Slovenian hospitals. These confirmed rotavirus-positive samples were selected for a rotavirus G and P genotype prevalence study. Six untypable strains of genotype G were further analyzed with sequencing of the VP7, VP8*, and NSP4 genes. The findings of the study were that the G1 genotype was the most prevalent, found in 72 samples (63.2%), followed by G9 in 26 samples (22.8%), G4 in 10 samples (8.8%), and G3 in 2 samples (1.7%). All G genotypes were combined with the P[8] genotype specificity. After sequence analysis, one G8 and two G12 genotypes were also characterized. In a VP7-based phylogenetic analysis, the G8P[8] strain (SI-885/06) was more closely related to the Cody I801 bovine strain than to other human strains. Both G12 strains (SI-264/06 and SI-403/06) were shown to belong to the Se585 G12 cluster. In the VP8* phylogenetic tree, all analyzed strains except one, belonged to the P[8] lineage II and shared high identity in amino acid sequence. All characterized strains were clustered into the NSP4 genotype B. The molecular characterization of this G8 strain supports the theory of interspecies transmission of rotaviruses and animal-human genome reassortment. This is the first report on rotavirus G12 detection in Slovenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号