首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose To characterize solid maltose microneedles and assess their ability to increase transdermal drug delivery. Materials and Methods Microneedles and microchannels were characterized using methylene blue staining and scanning electron microscopy. Diffusion pattern of calcein was observed using confocal scanning laser microscopy. Transepidermal water loss (TEWL) measurements were made to study the skin barrier recovery after treatment. Uniformity in calcein uptake by the pores was characterized and percutaneous penetration of nicardipine hydrochloride (NH) was studied in vitro and in vivo across hairless rat skin. Results Microneedles were measured to be 508.46 ± 9.32 μm long with a radius of curvature of 3 μm at the tip. They penetrated the skin while creating microchannels measuring about 55.42 ± 8.66 μm in diameter. Microchannels were visualized by methylene blue staining. Pretreatment with microneedles resulted in the migration of calcein into the microchannels. TEWL increased after pretreatment and uptake of calcein by the pores was uniform as measured by the pore permeability index values. NH in vitro transport across skin increased significantly after pretreatment (flux 7.05 μg/cm2/h) as compared to the untreated skin (flux 1.72 μg/cm2/h) and the enhanced delivery was also demonstrated in vivo in hairless rats. Conclusion Maltose microneedles were characterized and shown to create microchannels in the skin, which were also characterized and shown to improve the transdermal delivery of NH.  相似文献   

2.
Transdermal delivery of therapeutic agents for cosmetic therapy is limited to small and lipophilic molecules by the stratum corneum barrier. Microneedle technology overcomes this barrier and offers a minimally invasive and painless route of administration. DermaRoller®, a commercially available handheld device, has metal microneedles embedded on its surface which offers a means of microporation. We have characterized the microneedles and the microchannels created by these microneedles in a hairless rat model, using models with 370 and 770 μm long microneedles. Scanning electron microscopy was employed to study the geometry and dimensions of the metal microneedles. Dye binding studies, histological sectioning, and confocal microscopy were performed to characterize the created microchannels. Recovery of skin barrier function after poration was studied via transepidermal water loss (TEWL) measurements, and direct observation of the pore closure process was investigated via calcein imaging. Characterization studies indicate that 770 μm long metal microneedles with an average base width of 140 μm and a sharp tip with a radius of 4 μm effectively created microchannels in the skin with an average depth of 152.5 ± 9.6 μm and a surface diameter of 70.7 ± 9.9 μm. TEWL measurements indicated that skin regains it barrier function around 4 to 5 h after poration, for both 370 and 770 μm microneedles. However, direct observation of pore closure, by calcein imaging, indicated that pores closed by 12 h for 370 μm microneedles and by 18 h for 770 μm microneedles. Pore closure can be further delayed significantly under occluded conditions.Key words: microneedles, microporation, pore closure, skin, transdermal delivery  相似文献   

3.
Abstract

The objective of this study was to investigate the effect of modulated current application using iontophoresis- and microneedle-mediated delivery on transdermal permeation of ropinirole hydrochloride. AdminPatch® microneedles and microchannels formed by them were characterized by scanning electron microscopy, dye staining and confocal microscopy. In vitro permeation studies were carried out using Franz diffusion cells, and skin extraction was used to quantify drug in underlying skin. Effect of microneedle pore density and ions in donor formulation was studied. Active enhancement techniques, continuous iontophoresis (74.13?±?2.20?µg/cm2) and microneedles (66.97?±?10.39?µg/cm2), significantly increased the permeation of drug with respect to passive delivery (8.25?±?2.41?µg/cm2). Modulated iontophoresis could control the amount of drug delivered at a given time point with the highest flux being 5.12?±?1.70?µg/cm2/h (5–7?h) and 5.99?±?0.81?µg/cm2/h (20–22?h). Combination of modulated iontophoresis and microneedles (46.50?±?6.46?µg/cm2) showed significantly higher delivery of ropinirole hydrochloride compared to modulated iontophoresis alone (84.91?±?9.21?µg/cm2). Modulated iontophoresis can help in maintaining precise control over ropinirole hydrochloride delivery for dose titration in Parkinson’s disease therapy and deliver therapeutic amounts over a suitable patch area and time.  相似文献   

4.
The purpose of this work was to investigate the in vitro transdermal delivery of low molecular weight heparin (LMWH). Hairless rat skin was mounted on Franz diffusion cells and treated with various enhancement strategies. Passive flux was essentially zero and remained low even after iontophoresis (0.065 U cm(-2) h(-1)) or application of ultrasound (0.058 U cm(-2) h(-1)). A significant increase in flux across tape stripped skin (4.0 U cm(-2) h(-1)) suggests the interaction of stratum corneum (SC) with LMWH which was confirmed using Differential Scanning Calorimetry and Fourier Transform-Infrared spectrophotometry. Maltose microneedles were then employed as a means to locally disrupt and bypass the SC. Transepidermal water loss (TEWL) and transcutaneous electrical resistance (TER) were measured to confirm the barrier disruption. Microneedles breached the SC resulting in increased TEWL, decreased TER and enhanced LMWH permeability (0.175 U cm(-2) h(-1)). Microneedles when used in conjunction with iontophoresis had a synergistic effect on LMWH delivery resulting in enhancement of flux by 14.7-fold as compared to iontophoresis used alone. Confocal laser scanning microscopy substantiated the evidence about LMWH interaction with SC. In conclusion, LMWH was shown to interact with SC and therefore tape stripping or microneedles dramatically increased its delivery due to disruption of the SC skin barrier.  相似文献   

5.
The objective of this study was to investigate the feasibility of using microneedle technology to enhance transcutaneous permeation of human immunoglobulin G (IgG) across hairless rat skin. Microchannels created by maltose and metal (DermaRoller?) microneedles were characterized by techniques such as methylene blue staining, histological examination, and calcein imaging. Methylene blue staining and histological sections of treated skin showed that maltose microneedles and DermaRoller? breached the skin barrier by creating microchannels in the skin with an average depth of ~150 µm, as imaged by confocal microscopy. Calcein imaging and pore permeability index values suggested the uniformity of the created pores in microneedle-treated skin. Transdermal studies with IgG indicated a flux rate of 45.96 ng/cm2/h, in vitro, and a Cmax of 7.27 ng/mL, in vivo, for maltose microneedles-treated skin while a flux rate of 353.17 ng/cm2/h, in vitro, and a Cmax of 9.33 ng/mL, in vivo, was achieved for DermaRoller?-treated skin. Transepidermal water loss measurements and methylene blue staining, in vivo, indicated the presence of microchannels for upto 24 h, when occluded. In conclusion, the microchannels created by maltose microneedles and DermaRoller? resulted in the percutaneous enhancement of a macromolecule, human IgG. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1931–1941, 2010  相似文献   

6.

Purpose

Iontophoretic mediated transdermal delivery of ferric pyrophosphate (FPP) in combination with microneedle pretreatment was investigated as a potential treatment for iron deficiency anemia (IDA).

Methods

In vitro transdermal delivery studies were performed using hairless rat skin and pharmacodynamic studies were performed in hairless anemic rat model. The hematological and biochemical parameters like hemoglobin, hematocrit and % serum transferrin were monitored in rats at healthy, anemic condition and post treatment. Micropores created by the microneedles were visualized in histological skin sections after staining with hemotoxylin and eosin. The recovery of micropores was investigated in vivo by measuring Transepidermal water loss (TEWL) at different time points.

Results

The passive, microneedle and iontophoresis mediated delivery did not lead to significant improvement in hematological and biochemical parameters in anemic rats, when used individually. When iontophoresis (0.15 mA/cm2 for 4 hours) was combined with microneedle pretreatment (for 2 min), therapeutically adequate amount of FPP was delivered and there was significant recovery of rats from IDA.

Conclusions

Microneedle and iontophoresis mediated delivery of iron via transdermal route could be developed as a potential treatment for IDA. The transdermal controlled delivery of iron could become a potential, safe and effective alternative to parenteral iron therapy.  相似文献   

7.
The main objective of this study was to investigate the feasibility of delivery of propofol phosphate (PP), a prodrug of propofol, via transdermal route using iontophoresis in combination with chemical permeation enhancers (CPEs). PP, a prodrug, was synthesized and its structure was characterized. In vitro passive and iontophoretic drug transport studies were carried out using Franz diffusion cell across freshly excised hairless rat skin at different concentrations of PP in combination with CPE. Among all the CPEs screened, 0.1% sodium dodecyl sulfate (SDS) increased the passive transdermal flux to 13.43 ± 0.73 μg/(cm2 h) from 8.52 ± 0.82 μg/(cm2 h) (control). Cathodal iontophoresis in combination with 0.1% SDS synergistically enhanced the flux [249.24 ± 6.12μg/(cm2 h)] of PP. The Pharmacokinetic studies were performed in rat model to assess the feasibility of transdermal delivery of PP. The amount of propofol present in plasma samples in control group (passive) was below the detectable levels at all the time points during the study. The plasma concentration—time profile of iontophoresis group of rats was fit to a noncompartmental model and the pharmacokinetic parameters were calculated. These studies suggest the plausibility of achieving therapeutically relevant levels of propofol when delivered via transdermal route by combining iontophoresis with CPE.  相似文献   

8.
The aim of this study was to investigate the transdermal iontophoretic delivery of methotrexate, alone or in combination with microneedles, in-vitro and in-vivo using intracutaneous microdialysis in the hairless rat. The average depth of the microdialysis probe in the skin was found to be 0.54 mm. Methotrexate was stable in the presence of an applied electric field as determined by cyclic voltammetry. A current density of 0.4 mA cm(-2) applied for 60 min was used in combination with maltose microneedles to enhance delivery of methotrexate across the skin. Delivery was enhanced by iontophoresis and microneedles, both in-vitro and in-vivo. A synergistic 25-fold enhancement of delivery was observed in-vivo when a combination of microneedles and ionto- phoresis was used compared with either modality alone.  相似文献   

9.
Electronically facilitated transdermal delivery of human parathyroid hormone (1-34), hPTH (1-34), was investigated in vitro, using dermatomed porcine skin. The effect of iontophoretic current density, electroporative pulse voltages and also electroporation followed by iontophoresis was investigated on the in vitro percutaneous absorption of hPTH (1-34). Iontophoresis at 0.5 mA/cm2 current density significantly enhanced (P<0.05) the flux of hPTH (1-34) in comparison to passive flux. Electroporation pulses of 100, 200 and 300 V significantly increased (P<0.05) the flux of hPTH (1-34) in comparison with the passive as well as iontophoretic flux at 0.5 mA/cm2. The electroporative flux of hPTH (1-34) was found to vary linearly (R2 = 0.97) with the pulse amplitude. The principal barrier of the skin, stratum corneum, was found perturbed following the pulses as evident by light microscopy studies. The application of electroporation pulses followed by iontophoresis further increased the flux by several fold. The flux of hPTH (1-34) with the electroporation pulses of 100 and 300 V followed by iontophoresis at 0.2 mA/cm2 was 10- and 5-fold higher, respectively, in comparison to the flux with corresponding pulses alone. This shows the synergistic effect of iontophoresis in combination with electroporation on skin permeability of hPTH (1-34). The results indicate the possibility of designing controlled transdermal delivery systems for hPTH (1-34) using electroporation followed by iontophoresis.  相似文献   

10.
Despite the advantages of drug delivery through the skin, such as easy accessibility, convenience, prolonged therapy, avoidance of the liver first-pass metabolism and a large surface area, transdermal drug delivery is only used with a small subset of drugs because most compounds cannot cross the skin at therapeutically useful rates. Recently, a new concept was introduced known as microneedles and these could be pierced to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. In this study, biocompatible polycarbonate (PC) microneedle arrays with various depths (200 and 500mum) and densities (45, 99 and 154ea/cm(2)) were fabricated using a micro-mechanical process. The skin permeability of a hydrophilic molecule, calcein (622.5D), was examined according to the delivery systems of microneedle, drug loading, depth of the PC microneedle, and density of the PC microneedle. The skin permeability of calcein was the highest when the calcein gel was applied to the skin with the 500mum-depth PC microneedle, simultaneously. In addition, the skin permeability of calcein was the highest when 0.1g of calcein gel was coupled to the 500mum-depth PC microneedle (154ea/cm(2)) as well as longer microneedles and larger density of microneedles. Taken together, this study suggests that a biocompatible PC microneedle might be a suitable tool for transdermal drug delivery system of hydrophilic molecules with the possible applications to macromolecules such as proteins and peptides.  相似文献   

11.
The aim of this study was to assess the effects of fatty acids and iontophoretic mode of penetration enhancement on transdermal delivery of Arginine Vasopressin (AVP). Sprague-Dawley (SD) rat skin was pretreated with fatty acids (e.g. 5% w/v, lauric acid, oleic acid, and linoleic acid in ethanol:water (EtOH:W, 2:1 system) for 2h and iontophoresis in vitro, separately or together. The results indicate that all fatty acids studied increased (P<0.05) the flux of AVP in comparison to control (not pretreated with enhancer) and their effectiveness in flux enhancement was comparable. Further, oleic acid in combination with iontophoresis significantly increased the permeation of AVP both in comparison to pretreatment with fatty acids and iontophoresis alone. However, iontophoresis did not further increase the permeation of AVP through linoleic acid pretreated skin. Fourier transform infrared (FT-IR) spectroscopic studies revealed that EtOH:W (2:1) system is not effective in lipid extraction. The shift to higher wavenumbers of the symmetric and asymmetric stretching peaks at 2850 and 2920cm(-1) revealed that at the concentration used, oleic acid and linoleic acid caused fluidization of stratum corneum (SC) lipids. This study provides direct evidence that oleic acid in EtOH:W (2:1) system causes disruption of the SC lipid lamellae and that a combination of oleic acid with iontophoresis further enhances the effects of oleic acid in a synergistic manner.  相似文献   

12.
The potential for iontophoresis facilitated transdermal transport of ketorolac was investigated using rat skin. Studies of electrical, physicochemical and device-related factors acting on the permeation kinetics of in vitro iontophoresis were performed. Iontophoresis increased the transdermal permeation flux of ketorolac as compared to the diffusion. Increase in applied current density or decrease in ionic strength of the donor solution enhanced the flux of the drug. Use of either platinum or silver/silver chloride electrodes resulted in similar enhancement of drug flux. Continuous current was more potent than pulsed current in promoting ketorolac transdermal permeation. Increasing the frequency or on:off ratio of pulse current induced an enhancement of the flux through the skin. An increase in donor drug loading dose or increasing the duration of current application resulted in enhancement of the drug flux. Pretreatment of the skin with D-limonene in ethanol or D-limonene in ethanol + ultrasound significantly enhanced the iontophoretic flux of the drug in comparison to passive flux with or without pretreatment. Trimodality treatment comprising of pretreatment with D-limonene in ethanol + ultrasound in combination followed by iontophoresis was found to be most potent for enhancing the rate of permeation of ketorolac.  相似文献   

13.
Transdermal iontophoretic delivery of methylphenidate HCl in vitro   总被引:3,自引:0,他引:3  
Methylphenidate is prescribed orally for Attention Deficit Disorder in children and adults, and for narcolepsy patients. Methylphenidate has a short plasma half-life (1-2 h) and thus needs to be frequently administered for effective therapy. Such therapy has limitations in terms of patient compliance, particularly in young children. For such reasons, the development of a transdermal dosage form of methylphenidate may be useful. This study was undertaken to evaluate the passive and electrically assisted transport (iontophoresis) of methylphenidate from aqueous methylphenidate hydrochloride solutions across excised human skin. A maximum flux of 12.0 micrograms/(cm2 h) of protonated methylphenidate was estimated from the passive transport data at pH 3.5. Iontophoresis significantly enhanced protonated methylphenidate transport as compared with passive delivery. From the present experiments, the efficiency of iontophoretic delivery of methylphenidate was approximately 700 micrograms/(mA h). Based on in vitro skin flux data, the daily dose of 15-40 mg methylphenidate can be achieved using a current density of 0.5 mA/cm2 and a minimum transport area of 2-5 cm2 for 24-h application, or an area of 4-10 cm2 for 12-h (daytime) application. From methylphenidate skin flux values, methylphenidate mobility of 2.2 x 10(-4) cm2/(V s) was estimated, which compares reasonably with its free solution mobility of 6.6 x 10(-4) cm2/(V s).  相似文献   

14.
Drugs currently on the market that can be delivered in patch form tend to be small, moderately lipophilic, potent drug molecules. The horizon of transdermal delivery can be expanded to small water-soluble drugs as well as macromolecules, such as therapeutic proteins, by several enhancement technologies that are being actively investigated. One promising technique is iontophoresis, which has been used for localized delivery of drugs, such as corticosteroids or lidocaine, for several years. Recently, a self-contained pre-filled wearable patch utilising this process has been commercialized for systemic delivery of fentanyl. A glucose-monitoring device based on electro-osmotic flow, which enables extraction of glucose from the interstitial fluid via reverse iontophoresis, is also on the market. Most of the other technologies use physical energy to permeabilize the skin. However, the current used in iontophoresis primarily acts on the drug itself. Delivery is controlled by the current and can thus be modulated if desired. The charge, size, structure, and lipophilicity of the drug all influence its transport. For peptides and proteins, the ideal candidate for iontophoretic delivery is that with a high isoelectric point and a molecular weight <10 kDa. For larger proteins, skin microporation and phonophoresis are promising techniques. Skin microporation can be achieved by thermal means or by using mechanical microneedles. This minimally invasive technique is painless and can deliver a drug of any size through the micron-sized holes created in the skin. Mechanical microneedles may be made of silicon, metal, polymer, or maltose and may be solid or hollow. Phonophoresis or sonophoresis uses sounds that have a frequency beyond 20 kHz to permeabilize the skin. Electroporation is another technology that reversibly permeabilizes the skin by the application of short, high-voltage pulses. Other technologies being evaluated include chemical enhancers, liquid spray-on products, controlled skin abrasion, radiofrequency induced microchannels, and particle mediated immunization.  相似文献   

15.
The purpose of this study was to determine the effect of microneedle (MN) technology and its combination with iontophoresis (ITP) on the in vivo transdermal delivery of salmon calcitonin (sCT). Maltose MNs (500 μm) were used to porate skin prior to application of the drug, with or without ITP. Micropores created by maltose MNs were characterized by histological sectioning and calcein imaging studies, which indicated uniformity of the created micropores. In vivo studies were performed in hairless rats to assess the degree of enhancement achieved by ITP (0.2 mA/cm2 for 1 h), MNs (81 MNs), and their combination. In vivo studies indicate a serum maximal concentration of 0.61 ± 0.42 ng/mL, 1.79 ± 0.72 ng/mL, and 5.51 ± 0.32 ng/mL for ITP, MNs, and combination treatment, respectively. MN treatment alone increased serum concentration 2.5-fold and the combination treatment increased the concentration ninefold as compared with iontophoretic treatment alone. Combination treatment of ITP and MNs resulted in the highest delivery of sCT and therapeutic levels were achieved within 5 min of administration.  相似文献   

16.
A new type of electrochemical transdermal patch has been investigated using release/permeation experiments with excised nude mouse skin. The patch comprises a drug-containing hydrogel sandwiched between two electrodes that are arranged parallel to the skin surface. The objective was to determine the mechanism of working of enhanced flux for the drug fentanyl when low voltages are applied. The results indicate that a voltage-induced hydrolysis of the water present in the patch's hydrogel occurs. This causes a pH shift that results in deprotonization of the fentanyl and hence enhanced release/permeation. The enhanced flux is up to approximately 30 μg/(cm(2) h) over 20 h and requires only a low-voltage application over a duration of just 60 s. Because the enhancement mechanism occurs in the patch and not in the skin, the potential for substantially reduced skin irritation compared with iontophoresis is given.  相似文献   

17.
The delivery of large peptides through the skin poses a significant challenge, and various strategies are under active investigation for enhancing the transdermal permeation. For large peptides, it is difficult to achieve significant permeation using iontophoresis alone. Hence a combination of fatty acids with iontophoresis was hypothesized to result in higher enhancement than achieved with either of them alone. Saturated fatty acids and cis unsaturated fatty acids were studied in combination with iontophoresis using excised rat skin. The skin was pretreated for 2 h with an ethanolic (EtOH) solution of 5% w/v or v/v fatty acids, namely lauric acid (LA), oleic acid (OA), linoleic acid (LOA) and linolenic acid (LLA), followed by either passive or iontophoretic permeation (0.5 mA/cm2 for 6 h). Fourier transform infrared spectroscopy (FT-IR) was used to investigate the biophysical changes on treatment with fatty acid/EtOH or neat fatty acid, mainly focusing on the infrared region at 2,920, 1,710 and 1,720 cm(-1). Unsaturated fatty acids showed higher enhancement than LA, and the enhancement increased with the number of double bonds. On the other hand, in the presence of iontophoresis, LA/EtOH showed the highest enhancement. Neat LOA did not show any significant difference (p > 0.05) compared to the LOA/EtOH combination. FT-IR studies revealed that fatty acids act by interacting with the skin lipids. All the fatty acids showed synergistic enhancement when combined with iontophoresis. The flux enhancement was highest with LA, which in the presence of iontophoresis showed 20 times enhancement of insulin flux in comparison to passive flux and 9 times enhancement as compared to iontophoresis alone. Flux enhancement of unsaturated fatty acids was in the following decreasing order LOA > OA > LLA.  相似文献   

18.
Insulin delivery relies on subcutaneous or intravascular injection, leading to reduced patient compliance. Transdermal delivery of insulin has been successfully demonstrated but dose accuracy and skin irritation are problematic in addition to the complex basal-bolus delivery profile required by insulin therapy. Here we present a novel intraepidermal delivery technology (delivered site at epidermis layer, <150 μm) by combining skin pretreatment with short microneedles (<150 μm in length) and iontophoresis transdermal patch (enhanced transport via electrical field) that can provide a continuous basal dose and on-demand bolus dosing for mealtime insulin needs. To our knowledge, this is the first demonstration of therapeutic equivalence between fast-acting human regular insulin and long-acting insulin with possibilities for on-demand dose adjustment. This new intraepidermal delivery technology is likely to change the therapy regimen of patients suffering from insulin-dependent diabetes mellitus and provide a way to lower cost in comparison with insulin pumps and improve patient compliance. FROM THE CLINICAL EDITOR: The authors present a novel intraepidermal insulin delivery technology by combining skin pretreatment with short microneedles and iontophoresis transdermal patch to provide a continuous basal dose and on-demand bolus dosing. This new method is has the potentials to replace insulin pumps by offering a cost effective alternative with less inconvenience and improved compliance.  相似文献   

19.
This study investigates the effects of terpenes and iontophoresis on the in vitro permeation of arginine vasopressin (AVP) through rat skin and the biophysical changes induced by the chemical enhancers in the stratum corneum (SC) lipids by FT-IR spectroscopy. Pretreatment with terpenes (e.g. 5% w/v, carvone, pulegone, cineole and menthol in EtOH:W (2:1) system) increased (P < 0.05) the flux of AVP in comparison to control (not pretreated with enhancer) but was not significantly different (P > 0.05) in comparison to iontophoresis. Amongst different terpenes studied maximum enhancement ratio was observed with cineole. In combination, iontophoresis did not further increase (P > 0.05) the permeation of AVP through the enhancer pretreated epidermis in comparison to pretreatment with enhancer or iontophoresis alone. Hence it was concluded that although the combination was effective in flux enhancement compared to control, there was no synergism in action between terpenes and iontophoresis. FT-IR spectroscopic studies revealed that EtOH:W (2:1) system is not effective in lipid extraction. The area under the symmetric and asymmetric stretching peaks at 2850 and 2920 cm(-1) revealed that at the concentration used terpenes did not extract any lipids from the epidermis. The mode of action of terpenes is attributed to the breaking of hydrogen bonds between the ceramide head groups of lipids in the SC leading to greater fluidization of the SC lipids.  相似文献   

20.
蒋薇薇  杨峰 《药学实践杂志》2023,41(4):212-217,233
离子导入是一种非侵入性的物理促透技术,相较于其他常用促透技术,具有高效、患者依从性好、递送剂量可控等优点,在药物经皮肤、黏膜转运方面具有广阔的应用前景。近年来随着微针、纳米载体等递送技术的发展,离子导入与其他渗透技术的联合应用也逐渐成为研究的热点。本文介绍离子导入给药的转运机制与影响因素,并对该技术与水凝胶、微针和纳米载体等剂型的联合应用的相关研究进行综述和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号