首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamic stabilities are pivotal for understanding structure–function relationships of proteins, and yet such determinations are rare for membrane proteins. Moreover, the few measurements that are available have been conducted under very different experimental conditions, which compromises a straightforward extraction of physical principles underlying stability differences. Here, we have overcome this obstacle and provided structure–stability comparisons for multiple membrane proteins. This was enabled by measurements of the free energies of folding and the m values for the transmembrane proteins PhoP/PhoQ-activated gene product (PagP) and outer membrane protein W (OmpW) from Escherichia coli. Our data were collected in the same lipid bilayer and buffer system we previously used to determine those parameters for E. coli outer membrane phospholipase A (OmpLA). Biophysically, our results suggest that the stabilities of these proteins are strongly correlated to the water-to-bilayer transfer free energy of the lipid-facing residues in their transmembrane regions. We further discovered that the sensitivities of these membrane proteins to chemical denaturation, as judged by their m values, was consistent with that previously observed for water-soluble proteins having comparable differences in solvent exposure between their folded and unfolded states. From a biological perspective, our findings suggest that the folding free energies for these membrane proteins may be the thermodynamic sink that establishes an energy gradient across the periplasm, thus driving their sorting by chaperones to the outer membranes in living bacteria. Binding free energies of these outer membrane proteins with periplasmic chaperones support this energy sink hypothesis.  相似文献   

2.
How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure.  相似文献   

3.
We designed a single-chain variant of the Arc repressor homodimer in which the beta strands that contact operator DNA are connected by a hairpin turn and the alpha helices that form the tetrahelical scaffold of the dimer are attached by a short linker. The designed protein represents a noncyclic permutation of secondary structural elements in another single-chain Arc molecule (Arc-L1-Arc), in which the two subunits are fused by a single linker. The permuted protein binds operator DNA with nanomolar affinity, refolds on the sub-millisecond time scale, and is as stable as Arc-L1-Arc. The crystal structure of the permuted protein reveals an essentially wild-type fold, demonstrating that crucial folding information is not encoded in the wild-type order of secondary structure. Noncyclic rearrangement of secondary structure may allow grouping of critical active-site residues in other proteins and could be a useful tool for protein design and minimization.  相似文献   

4.
In studies of the ensembles of unfolded structures of a four-helix bundle protein, we have detected the presence of potential precursors of native tertiary structures. These observations were based on the perturbation of NMR chemical shifts of the protein backbone atoms by single site mutations. Some mutations change the chemical shifts of residues remote from the site of mutation indicating the presence of an interaction between the mutated and the remote residues, suggesting that the formation of helix segments and helix-helix interactions is cooperative. We can begin to track down the folding mechanism of this protein using only experimental data by combining the information available for the rate limiting structure formation during the folding process with measurements of the site specific hydrogen bond formation in the burst phase, and with the existence prior to the folding reaction of tertiary structures in the ensemble of otherwise unfolded structures observed in the present study.  相似文献   

5.
6.
The cis/trans isomerization of peptide bonds before proline (prolyl bonds) is a rate-limiting step in many protein folding reactions, and it is used to switch between alternate functional states of folded proteins. Several prolyl isomerases of the FK506-binding protein family, such as trigger factor, SlyD, and FkpA, contain chaperone domains and are assumed to assist protein folding in vivo. The prolyl isomerase activity of FK506-binding proteins strongly depends on the nature of residue Xaa of the Xaa-Pro bond. We confirmed this in assays with a library of tetrapeptides in which position Xaa was occupied by all 20 aa. A high sequence specificity seems inconsistent with a generic function of prolyl isomerases in protein folding. Accordingly, we constructed a library of protein variants with all 20 aa at position Xaa before a rate-limiting cis proline and used it to investigate the performance of trigger factor and SlyD as catalysts of proline-limited folding. The efficiencies of both prolyl isomerases were higher than in the tetrapeptide assays, and, intriguingly, this high activity was almost independent of the nature of the residue before the proline. Apparently, the almost indiscriminate binding of the chaperone domain to the refolding protein chain overrides the inherently high sequence specificity of the prolyl isomerase site. The catalytic performance of these folding enzymes is thus determined by generic substrate recognition at the chaperone domain and efficient transfer to the active site in the prolyl isomerase domain.  相似文献   

7.
The B domain of staphylococcal protein A (BdpA) is a small helical protein that has been studied intensively in kinetics experiments and detailed computer simulations that include explicit water. The simulations indicate that BdpA needs to reorganize in crossing the transition barrier to facilitate folding its C-terminal helix (H3) onto the nucleus formed from helices H1 and H2. This process suggests frustration between two partially ordered forms of the protein, but recent φ value measurements indicate that the transition structure is relatively constant over a broad range of temperatures. Here we develop a simplistic model to investigate the folding transition in which properties of the free energy landscape can be quantitatively compared with experimental data. The model is a continuation of the Muñoz–Eaton model to include the intermittency of contacts between structured parts of the protein, and the results compare variations in the landscape with denaturant and temperature to φ value measurements and chevron plots of the kinetic rates. The topography of the model landscape (in particular, the feature of frustration) is consistent with detailed simulations even though variations in the φ values are close to measured values. The transition barrier is smaller than indicated by the chevron data, but it agrees in order of magnitude with a similar α-carbon type of model. Discrepancies with the chevron plots are investigated from the point of view of solvent effects, and an approach is suggested to account for solvent participation in the model.  相似文献   

8.
The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a "minimally frustrated" sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.  相似文献   

9.
The protein universe is the set of all proteins of all organisms. Here, all currently known sequences are analyzed in terms of families that have single-domain or multidomain architectures and whether they have a known three-dimensional structure. Growth of new single-domain families is very slow: Almost all growth comes from new multidomain architectures that are combinations of domains characterized by ≈15,000 sequence profiles. Single-domain families are mostly shared by the major groups of organisms, whereas multidomain architectures are specific and account for species diversity. There are known structures for a quarter of the single-domain families, and >70% of all sequences can be partially modeled thanks to their membership in these families.  相似文献   

10.
Molecular dynamics simulations of protein folding or unfolding, unlike most in vitro experimental methods, are performed on a single molecule. The effects of neighboring molecules on the unfolding/folding pathway are largely ignored experimentally and simply not modeled computationally. Here, we present two all-atom, explicit solvent molecular dynamics simulations of 32 copies of the Engrailed homeodomain (EnHD), an ultrafast-folding and -unfolding protein for which the folding/unfolding pathway is well-characterized. These multimolecule simulations, in comparison with single-molecule simulations and experimental data, show that intermolecular interactions have little effect on the folding/unfolding pathway. EnHD unfolded by the same mechanism whether it was simulated in only water or also in the presence of other EnHD molecules. It populated the same native state, transition state, and folding intermediate in both simulation systems, and was in good agreement with experimental data available for each of the three states. Unfolding was slowed slightly by interactions with neighboring proteins, which were mostly hydrophobic in nature and ultimately caused the proteins to aggregate. Protein–water hydrogen bonds were also replaced with protein–protein hydrogen bonds, additionally contributing to aggregation. Despite the increase in protein–protein interactions, the protein aggregates formed in simulation did not do so at the total exclusion of water. These simulations support the use of single-molecule techniques to study protein unfolding and also provide insight into the types of interactions that occur as proteins aggregate at high temperature at an atomic level.  相似文献   

11.
An invariant substructure that forms two interlocked pairs of neighboring beta-strands occurs in essentially all known sandwich-like proteins. Eight conserved positions in these strands were recently shown to act as structural determinants. To test whether the residues at these invariant positions are conserved for mechanistic (i.e., part of folding nucleus) or energetic (i.e., governing native-state stability) reasons, we characterized the folding behavior of eight point-mutated variants of the sandwich-like protein Pseudomonas aeruginosa apo-azurin. We find a simple relationship among the conserved positions: half of the residues form native-like interactions in the folding transition state, whereas the others do not participate in the folding nucleus but govern high native-state stability. Thus, evolutionary preservation of these specific positions gives both mechanistic and energetic advantages to members of the sandwich-like protein family.  相似文献   

12.
The analytical toolkit developed for investigations into water-soluble protein folding has yet to be applied in earnest to membrane proteins. A major problem is the difficulty in collecting kinetic data, which are crucial to understanding any reaction. Here, we combine kinetic and thermodynamic studies of the reversible unfolding of an alpha-helical membrane protein to provide a definitive value for the reaction free energy and a means to probe the transition state. Our analyses show that the major unfolding step in the SDS-induced denaturation of bacteriorhodopsin involves a reduction in alpha-helical structure and proceeds with a large free-energy change; both our equilibrium and kinetic measurements predict that the free energy of unfolding in the absence of denaturant is +20 kcal.mol(-1), with an associated m-value of 25 kcal.mol(-1). The rate of unfolding in the absence of denaturant, k(u)(H(2)O), is surprisingly very slow ( approximately 10(-15) s(-1)). The kinetics also give information on the transition state for this major unfolding step, with a value for beta (m(f)/[m(f) + m(u)]) of approximately 0.1, indicating that the transition state is close to the unfolded state. We thus present a basis for mapping the structural and energetic properties of membrane protein folding by mutagenesis and classical kinetics.  相似文献   

13.
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use (15)N, , and (13)CO NMR R(2) relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which is invisible in NMR spectra. Measurements of R(2) dispersion for residues contacted by the F-helix region in the native (N) structure reveal a transient state formed by local unfolding of helix F and undocking from the protein core. A similar state was detected at pH 4.75-4.95 and determined to be an on-pathway intermediate (I1) in a linear three-state unfolding scheme (N&lrarr2;I1&lrarr2;MG) leading to a transiently populated molten globule (MG) state. The slowest steps in unfolding and refolding are N → I1 (36 s(-1)) and MG → I1 (26 s(-1)), respectively. Differences in chemical shift between N and I1 are very small, except in regions adjacent to helix F, showing that their core structures are similar. Chemical shift changes between the N and MG states, obtained from R(2) dispersion, reveal that the transient MG state is structurally similar to the equilibrium MG observed previously at high temperature and low pH. Analysis of MG state chemical shifts shows the location of residual helical structure in the transient intermediate and identifies regions that unfold or rearrange into nonnative structure during the N → MG transition. The experiments also identify regions of energetic frustration that "crack" during unfolding and impede the refolding process.  相似文献   

14.
15.
Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation.  相似文献   

16.
Repeat proteins are widespread in nature, with many of them functioning as binding molecules in protein-protein recognition. Their simple structural architecture is used in biotechnology for generating proteins with high affinities to target proteins. Recent folding studies of ankyrin repeat (AR) proteins revealed a new mechanism of protein folding. The formation of an intermediate state is rate limiting in the folding reaction, suggesting a scaffold function of this transient state for intrinsically less stable ARs. To investigate a possible common mechanism of AR folding, we studied the structure and folding of a new thermophilic AR protein (tANK) identified in the archaeon Thermoplasma volcanium. The x-ray structure of the evolutionary much older tANK revealed high homology to the human CDK inhibitor p19(INK4d), whose sequence was used for homology search. As for p19(INK4d), equilibrium and kinetic folding analyses classify tANK to the family of sequential three-state folding proteins, with an unusual fast equilibrium between native and intermediate state. Under equilibrium conditions, the intermediate can be populated to >90%, allowing characterization on a residue-by-residue level using NMR spectroscopy. These data clearly show that the three C-terminal ARs are natively folded in the intermediate state, whereas native cross-peaks for the rest of the molecule are missing. Therefore, the formation of a stable folding unit consisting of three ARs is the necessary rate-limiting step before AR 1 and 2 can assemble to form the native state.  相似文献   

17.
The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.  相似文献   

18.
19.
Recent experiments claiming that Naf-BBL protein follows a global downhill folding raised an important controversy as to the folding mechanism of fast-folding proteins. Under the global downhill folding scenario, not only do proteins undergo a gradual folding, but folding events along the continuous folding pathway also could be mapped out from the equilibrium denaturation experiment. Based on the exact calculation using a free energy landscape, relaxation eigenmodes from a master equation, and Monte Carlo simulation of an extended Muñoz–Eaton model that incorporates multiscale-heterogeneous pairwise interactions between amino acids, here we show that the very nature of a two-state cooperative transition such as a bimodal distribution from an exact free energy landscape and biphasic relaxation kinetics manifest in the thermodynamics and folding–unfolding kinetics of BBL and peripheral subunit-binding domain homologues. Our results provide an unequivocal resolution to the fundamental controversy related to the global downhill folding scheme, whose applicability to other proteins should be critically reexamined.  相似文献   

20.
A designed protein as experimental model of primordial folding   总被引:1,自引:0,他引:1  
How do proteins accomplish folding during early evolution? Theoretically the mechanism involves the selective stabilization of the native structure against all other competing compact conformations in a process that involves cumulative changes in the amino acid sequence along geological timescales. Thus, an evolved protein folds into a single structure at physiological temperature, but the conformational competition remains latent. For natural proteins such competition should emerge only near cryogenic temperatures, which places it beyond experimental testing. Here, we introduce a designed monomeric miniprotein (FSD-1ss) that within biological temperatures (330–280 K) switches between simple fast folding and highly complex conformational dynamics in a structurally degenerate compact ensemble. Our findings demonstrate the physical basis for protein folding evolution in a designed protein, which exhibits poorly evolved or primordial folding. Furthermore, these results open the door to the experimental exploration of primitive folding and the switching between alternative protein structures that takes place in evolutionary branching points and prion diseases, as well as the benchmarking of de novo design methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号