首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The organic anion transporting polypeptides (humans OATP; other species Oatp) belong to the SLCO gene superfamily of transporters and are twelve transmembrane domain glycoproteins expressed in various epithelial cells. Some OATPs/Oatps are expressed in a single organ, while others are expressed ubiquitously. 2. The functionally characterized members mediate sodium-independent transport of a variety of structurally independent, mainly amphipathic organic compounds, including bile salts, hormones and their conjugates, toxins, and various drugs. 3. This review summarizes the general features and the substrates of the eleven human OATPs. Furthermore, it reviews what is known about the mechanism of their multispecificity, their predicted structure, their role in drug-food interactions, and their role in cancer. 4. Finally, some open questions are raised that need to be addressed to advance OATP research in the near future.  相似文献   

2.
1.?The organic anion transporting polypeptides (humans OATP; other species Oatp) belong to the SLCO gene superfamily of transporters and are twelve transmembrane domain glycoproteins expressed in various epithelial cells. Some OATPs/Oatps are expressed in a single organ, while others are expressed ubiquitously.

2.?The functionally characterized members mediate sodium-independent transport of a variety of structurally independent, mainly amphipathic organic compounds, including bile salts, hormones and their conjugates, toxins, and various drugs.

3.?This review summarizes the general features and the substrates of the eleven human OATPs. Furthermore, it reviews what is known about the mechanism of their multispecificity, their predicted structure, their role in drug–food interactions, and their role in cancer.

4.?Finally, some open questions are raised that need to be addressed to advance OATP research in the near future.  相似文献   

3.
4.
Flavonoids such as quercetin and kaempferol mediate several health protective effects, e.g., anticancer effects. They are inhibitors of organic anion transporting polypeptides (OATP) and organic cation transporters (e.g., OCT2). However, little is known whether such transporters contribute to the cellular uptake of flavonoids. Therefore, we investigated the cellular uptake of kaempferol and quercetin using HEK293 cell lines stably expressing different human OATPs or OCT1. Kaempferol was not a substrate of any of the investigated transporters (OATP1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP5A1, and OCT1). Quercetin showed a significantly higher uptake into the HEK293-OATP1A2, HEK293-OATP2A1, HEK293-OATP2B1, and HEK293-OCT1 cells compared to control cells. The OATP1A2-, OATP2B1-, and OCT1-mediated quercetin uptake was inhibited by known inhibitors such as naringin, cyclosporin A, and quinidine, respectively. The cellular accumulation of quercetin into HEK293-OATP2A1 cells was not inhibited by prostaglandin E2 and diclofenac. The ionophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) reduced the net uptake of quercetin by increasing the uptake in the HEK293-control cells and causing no significant change in the HEK293-OATP2B1 cells indicating that quercetin follows the FCCP-driven proton flux through the plasma membrane. In addition to passive diffusion, the SLC transporters OATP1A2, OATP2B1, and OCT1 contribute to cellular accumulation of quercetin.  相似文献   

5.
INTRODUCTION: Organic anion transporting polypeptide (OATP) uptake transporters are important for the disposition of many drugs and perturbed OATP activity can contribute to adverse drug reactions (ADRs). It is well documented that both genetic and environmental factors can alter OATP expression and activity. Genetic factors include single nucleotide polymorphisms (SNPs) that change OATP activity and epigenetic regulation that modify OATP expression levels. SNPs in OATPs contribute to ADRs. Environmental factors include the pharmacological context of drug-drug interactions and the physiological context of liver diseases. Liver diseases such as non-alcoholic fatty liver disease, cholestasis and hepatocellular carcinoma change the expression of multiple OATP isoforms. The role of liver diseases in the occurrence of ADRs is unknown. AREAS COVERED: This article covers the roles OATPs play in ADRs when considered in the context of genetic or environmental factors. The reader will gain a greater appreciation for the current evidence regarding the salience and importance of each factor in OATP-mediated ADRs. EXPERT OPINION: A SNP in a single OATP transporter can cause changes in drug pharmacokinetics and contribute to ADRs but, because of overlap in substrate specificities, there is potential for compensatory transport by other OATP isoforms. By contrast, the expression of multiple OATP isoforms is decreased in liver diseases, reducing compensatory transport and thereby increasing the probability of ADRs. To date, most research has focused on the genetic factors in OATP-mediated ADRs while the impact of environmental factors has largely been ignored.  相似文献   

6.
Troglitazone is a thiazolidinedione insulin sensitizer drug that is metabolized mainly to a sulfate conjugate (M-1) in humans. It was reported to cause hepatotoxicity, although the cause has not been fully clarified. The objective of this study was to identify whether organic anion transporting polypeptide (OATP) transporters expressed at the basolateral membrane of human hepatocytes participate in troglitazone-associated hepatotoxicity. When OATP-B, OATP-C, or OATP8 was expressed in Xenopus oocytes, the transporter-mediated uptake into oocytes of troglitazone sulfate conjugate and the inhibitory effects of thiazolidinediones and the metabolites of troglitazone on estrone-3-sulfate transport were measured. M-1 was transported well by OATP-C but was not transported by OATP-B. OATP8 showed weak, but not statistically significant, transport of M-1. M-1 exhibited a strong inhibitory effect on estrone-3-sulfate transport by OATP-C and OATP8, suggesting a higher affinity than other thiazolidinediones and the metabolites of troglitazone, glucuronide conjugate and quinone metabolite. In conclusion, the sulfate conjugate of troglitazone has a higher affinity for OATPs than troglitazone itself or other metabolites. Since OATP transporters are important in the hepatic handling of bile acids, bilirubin, and other endogenous anionic compounds, M-1 may disturb the hepatic influx and efflux transport of these endogenous molecules across the basolateral membranes. Moreover, OATP-C may be involved in the hepatic toxicity of troglitazone through the inhibitory action of M-1.  相似文献   

7.
Organic anion-transporting polypeptides (Oatps) are Na(+)-independent solute carriers for cellular uptake of organic compounds. The purpose of this study is to determine 1) the constitutive mRNA expression of the 15 mouse Oatp genes in 12 tissues, 2) whether there are gender differences in Oatp expression, and 3) the ontogenic expression of Oatps in liver and kidney. The mRNA expression of the 15 mouse Oatps was quantified using the branched DNA technique. Oatp1a1, 1a4, 1b2, and 2b1 are expressed in liver at relatively high levels, with Oatp1b2 being exclusively expressed in liver. Oatp1a1, 1a6, 3a1, and 4c1 are highly expressed in kidney. Oatp1a4 and 1c1 are highly expressed in brain. Oatp1a5, 6b1, 6c1, and 6d1 are predominant in testes. Oatp2a1, 4a1, and 5a1 are predominantly expressed in placenta. In liver, expression of Oatp1a1 was male-predominant, whereas expression of Oatp1a4 and 1a6 was female-predominant. In kidney, expression of Oatp1a1, 3a1, and 4c1 was higher in males than in females. Hepatic expression of Oatp1a1, 1a4, 1a6, 1b2, and 2b1 gradually increased after birth and reached adult levels by 6 weeks of age. Only Oatp2a1 was expressed at adult levels at birth. In kidney, expression of mouse Oatp1a1, 1a6, and 3a1 was lower at birth than at 6 weeks of age, whereas expression of mouse Oatp1a4, 2a1, and 2b1 was similar at birth and at 6 weeks of age. These data on the tissue distribution and ontogenic expression of mouse Oatps will aid in understanding the pharmacokinetics and toxicokinetics of drugs and other chemicals.  相似文献   

8.
溶质运载蛋白家族(solute carrier family,SLC)和ATP结合盒转运蛋白家族(ATP binding cas-sette family,ABC)在药物吸收、消除和组织分布中起重要作用。本综述将对有机阴离子转运肽(or-ganic anion transporting polypeptide,OATP)的最新命名、分类、组织分布、功能及在药物转运中的作用加以介绍。  相似文献   

9.
Human organic anion transporters mediate the transport of tetracycline   总被引:2,自引:0,他引:2  
The purpose of this study was to elucidate the molecular mechanism for renal tetracycline transport by human organic anion transporters (hOATs) using proximal tubular cells stably expressing hOATs. The cells stably expressing hOAT1, hOAT2, hOAT3 and hOAT4 exhibited a higher amount of [3H]tetracycline uptake compared with mock cells. The apparent Km values for hOAT2-, hOAT3- and hOAT4-mediated tetracycline uptakes were 439.9 +/- 23.0, 566.2 +/- 28.4 and 122.7 +/- 16.0 microM, respectively. Tetracycline significantly inhibited the organic anion uptake by hOAT1, hOAT2 and hOAT4, but not hOAT3. In addition, oxytetracycline, minocycline and doxycycline inhibited the organic anion uptake by hOAT1, whereas oxytetracycline, minocycline but not doxycycline inhibited the organic anion uptake by hOAT2. In contrast, oxytetracycline, minocycline and doxycycline exhibited no significant inhibitory effects on the organic anion uptake by hOAT3 and hOAT4. HOAT1 and hOAT4 mediated the efflux of tetracycline, but hOAT2 and hOAT3 did not. These results suggest that hOAT1, hOAT2 and hOAT3 mediate the basolateral uptake and/or efflux of tetracycline, whereas hOAT4 is responsible for the reabsorption as well as the efflux of tetracycline in the apical side of the proximal tubule. These pharmacological characteristics of hOATs may be significantly related to events associated with the development of tetracycline-induced nephrotoxicity in the human kidney.  相似文献   

10.
有机阴离子转运多肽(OATPs)是人及动物体内最重要的细胞膜吸收转运蛋白,在肝脏中有大量分布,介导多种内源性物质及临床常用药物的吸收转运,影响着药物在体内的吸收、分布和清除过程.许多植物药及其有效成分是OATPs的底物,它们对OATPs活性表现出抑制或者诱导作用,从而对OATPs介导的其他药物转运产生影响,改变药物生物利用度或产生不良反应.本文概述了基于OATPs介导的植物药-化学药物之间可能发生的相互作用研究进展.  相似文献   

11.
The organic anion transport system is involved in the tubular excretion of various clinically important drugs. The purpose of this study was to characterize the effects of various organic anion transport inhibitors on organic anion transport using proximal tubule cells stably expressing human organic anion transporter 1 (human-OAT1) and human-OAT3, which are localized to the basolateral membrane of the proximal tubule. Organic anion transport inhibitors including betamipron, cilastatin, KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine) and probenecid significantly inhibited human-OAT1- and human-OAT3-mediated organic anion uptake in a dose-dependent manner. Kinetic analyses revealed that these inhibitions were competitive. The Ki values of betamipron, cilastatin, KW-3902 and probencid for human-OAT1 were 23.6, 1470, 7.82 and 12.1 microM, whereas those for human-OAT3 were 48.3, 231, 3.70 and 9.0 microM. These results suggest that betamipron and probenecid could inhibit both human-OAT1- and human-OAT3-mediated organic anion transport in vivo, whereas cilastatin could inhibit only human-OAT3-mediated one. In contrast, KW-3902 did not exert the effects of significance, whereas KW-3902 was the most potent.  相似文献   

12.
Human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8) are responsible for renal tubular secretion of an antifolic acid methotrexate, and are considered to be involved in drug interaction of methotrexate with nonsteroidal anti-inflammatory drugs (NSAIDs). In our hospital, a delay of methotrexate elimination was experienced in a patient with Hodgkin's disease, who took loxoprofen, a commonly used NSAID in Japan, which suggested a cause. In this study, we examined the drug interaction via hOAT1 and hOAT3, using Xenopus laevis oocytes. hOAT1 and hOAT3 mediated the methotrexate transport with low affinity (K(m) of 724.0 muM) and high affinity (K(m) of 17.2 muM), respectively. Loxoprofen and its trans-OH metabolite, an active major metabolite, markedly inhibited the methotrexate transport by both transporters. Their inhibition concentrations (IC(50)) were in the range of the therapeutic levels. These findings suggest that loxoprofen retards the elimination of methotrexate, at least in part, by inhibiting hOAT1 and hOAT3.  相似文献   

13.
OATP1A2 and OATP2B1 are uptake transporters of the human organic anion transporting polypeptide (OATP) family with a broad substrate spectrum including several endogenous compounds as well as drugs such as the antihistaminic drug fexofenadine and HMG-CoA reductase inhibitors. Both transporters are localized in the apical membrane of human enterocytes. Flavonoids, abundantly occurring in plants, have previously been shown to interact with drug metabolizing enzymes and transporters. However, the impact of flavonoids on OATP1A2 and OATP2B1 transport function has not been analyzed in detail. Therefore, HEK293 cell lines stably expressing OATP1A2 and OATP2B1 were used to investigate the influence of the Ginkgo flavonoids apigenin, kaempferol, and quercetin on the transport activity of OATP1A2 and OATP2B1. Ki values of all three flavonoids determined from Dixon plot analyses using BSP as substrate indicated a competitive inhibition with quercetin as the most potent inhibitor of OATP1A2 (22.0 μM) and OATP2B1 (8.7 μM) followed by kaempferol (OATP1A2: 25.2 μM, OATP2B1: 15.1 μM) and apigenin (OATP1A2: 32.4 μM OATP2B1: 20.8 μM). Apigenin, kaempferol, and quercetin led to a concentration-dependent decrease of the OATP1A2-mediated fexofenadine transport with IC50 values of 4.3 μM, 12.0 μM, and 12.6 μM, respectively. The OATP1A2- and OATP2B1-mediated transport of atorvastatin was also efficiently inhibited by apigenin (IC50 for OATP1A2: 9.3 μM, OATP2B1: 13.9 μM), kaempferol (IC50 for OATP1A2: 37.3 μM, OATP2B1: 20.7 μM) and quercetin (IC50 for OATP1A2: 13.5 μM, OATP2B1: 14.1 μM). These data indicate that modification of OATP1A2 and OATP2B1 transport activity by apigenin, kaempferol, and quercetin may be a mechanism for food-drug or drug-drug interactions in humans.  相似文献   

14.
Mycotoxins are secondary metabolites of moulds that which exert adverse effects in humans and animals. It is known that direct cellular toxicity is often associated with increased cellular accumulation of toxic compounds, and membrane transport may be the first fundamental stage in the development of the cytotoxicity. To elucidate the entry pathway for mycotoxins into cells, we have investigated the interactions of human and rat organic anion transporters (hOATs/rOats) and human organic cation transporters (hOCTs) with mycotoxins using cells stably expressing hOATs/rOats/hOCTs. The mycotoxins tested were aflatoxin B1, alpha-zearalenol, citrinin, citrioveridine, cyclopiazonic acid, fumonisin B1, gliotoxin, patulin, penicillic acid, rubratoxin B, and zearalenone. These mycotoxins inhibited organic anion uptake mediated by hOAT1-4, and organic cation uptake mediated by hOCT1-2. By comparing the IC(50) values of mycotoxins for hOATs, it was found that hOAT1 and hOAT3 exhibited higher affinity interactions with mycotoxins than hOAT2 and hOAT4. There was no interspecies difference between humans and rats for the interactions of OATs with mycotoxins except that of OAT3 with rubratoxin B. Finally, we observed that hOAT1-4 and hOCT1-2 mediated the uptake of aflatoxin B1. In conclusion, hOATs and hOCTs interacted with various mycotoxins. Considering the localization of hOATs/rOats and hOCTs, it was suggested that these transporters were the possible entrance pathway for mycotoxins in kidney and liver, leading to the induction of adverse effects in humans and rats.  相似文献   

15.
Introduction: The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets.

Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug–drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1.

Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.  相似文献   


16.
Eleven members of the human organic anion transporter (OATP) family (grouped into six families) facilitate the Na(+)- independent transmembrane transport of various endo- and xenobiotics (bile acids, bilirubin, steroid hormone conjugates, thyroid hormones, prostaglandins, clinically used drugs, and toxins). OATPs are 12-transmembrane glycoproteins (643-722 amino acids) and contain many conserved structural features, for example, eleven cysteines in the large extracellular loop 5. They are important for proper transport, for which translocation of substrates through a central, positively-charged pore in a rocker-switch-type mechanism has been proposed. Although OATPs are expressed in various cells and tissues, some members show a more restricted pattern (well-studied OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis). In cancer, the distribution pattern is no longer maintained, and OATPs, like OATP1B3, become upregulated in malignant tissues (colon, breast, prostate). Studies in cell lines and animal models further revealed that the expression of OATPs is regulated in a cell- and tissue-specific way by cytokines and activation of nuclear receptors (LXR, FXR, PXR, CAR, HNF4). Also epigenetic mechanisms and postranslational modifications influence their expression and function. Therefore, changes in the expression of OATPs under pathological conditions will influence transport processes causing an altered accumulation of OATP substrates in cells of excretory organs (intestine, liver, kidney) and on various blood/organ barriers (such as brain, testis, placenta). For drugs, this may result in increased toxicity and adverse drug reactions. Therefore, it is important to improve the knowledge on the regulation and function of individual OATPs, and to apply it for therapeutic considerations.  相似文献   

17.
Drug-drug interaction(DDI)is one of causes of adverse drug events and can result in lifethreatening consequences.Organic anion-transporting polypeptide(OATP)2B1 is a major uptake transporter in the intestine and contributes to transport various clinically used therapeutic agents.The intestine has a high risk of DDI,because it has a special propensity to be exposed to a high concentration of drugs.Thus,understanding drug interaction mediated by OATP2B1 in the absorption process is important for the prevention of adverse drug events,including decrease in the therapeutic effect of co-administered drugs.Acute drug interaction occurs through the direct inhibitory effect on transporters,including OATP2B1.Moreover,some compounds such as clinically used drugs and food components have an acute stimulatory effect on transport of co-administered drugs by OATP2B1.This review summarizes the acute stimulatory effect on the transport mediated by OATP2B1 and discusses the mechanisms of the acute stimulatory effects of compounds.There are two types of acute stimulatory effects,substrate-independent and-dependent interactions on OATP2B1 function.The facilitating translocation of OATP2B1 to the plasma membrane is one of causes for the substrate-independent acute stimulatory effect.On the contrary,the substrate-dependent effect is based on the direct binding to the substrate-binding site or allosteric progesterone-binding site of OATP2B1.  相似文献   

18.
The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.  相似文献   

19.
20.
The choroid plexus (CP) acts as a site for the elimination of xenobiotic organic compounds from the cerebrospinal fluid (CSF). The purpose of the present study is to investigate the role of rat organic anion transporter 3 (rOat3; Slc22a8) in the uptake of H(2)-receptor antagonists (cimetidine, ranitidine, and famotidine) by the isolated rat CP. Saturable uptake of cimetidine and ranitidine was observed in rOat3-LLC with K(m) values of 80 and 120 microM, respectively, whereas famotidine was found to be a poor substrate. The steady-state concentration of the H(2)-receptor antagonists in the CSF was significantly increased by simultaneously administered probenecid, although it did not affect their brain and plasma concentrations. Saturable uptake of cimetidine and ranitidine was observed in the isolated rat CP with K(m) values of 93 and 170 microM, respectively, whereas 50% of the uptake of famotidine remained at the highest concentration examined (1 mM). The K(i) value of ranitidine for the uptake of cimetidine by the isolated CP (50 microM) was similar to its own K(m) value, suggesting that they share the same transporter for their uptake. The inhibition potency of organic anions such as benzylpenicillin, estradiol 17beta-glucuronide, p-aminohippurate, and estrone sulfate for the uptake of cimetidine by the isolated rat CP was similar to that for benzylpenicillin, the uptake of which has been hypothesized to be mediated by rOat3, whereas a minimal effect by tetraethylammonium excludes involvement of organic cation transporter(s). These results suggest that rOat3 is the most likely candidate transporter involved in regulating the CSF concentration of H(2)-receptor antagonists at the CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号