首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The humoral immune response to protein antigens is composed of a rapid low-affinity IgM antibody response followed by an IgG response exhibiting higher affinity. Here, we demonstrate that Lsc, a protein that regulates G protein-coupled-receptor signaling and RhoA activation, is required by B lymphocytes for the antigen-specific IgM antibody response to a protein antigen. We further show that in lsc(-/-) mice, MZB cells are selectively affected such that naive and in vivo-activated MZB cells migrate toward sphingosine-1-phosphate at increased proportions but release inefficiently from integrin ligands. Consequently, lsc(-/-) MZB cells do not traffick appropriately in an immune response and do not contribute to the TD antibody response. These data demonstrate that Lsc regulates the migration and adhesion of MZB cells, and this regulation appears to be required for these cells to contribute to the antibody response to TD antigens.  相似文献   

2.
The Lsc RhoGEF (also known as p115-RhoGEF) is a GTP exchange factor (GEF), an activator of GTPases of the Rho family. Lsc has a RhoGEF domain specific for Rho GTPase and a regulator of G protein signaling (RGS) domain specific for Galpha(12/13) subunits. One G protein receptor that can couple to Galpha(12/13) subunits is the receptor for thromboxane A(2 )(TXA(2)), thromboxane-prostanoid (called TP), which is highly expressed in immature thymocytes. TXA(2) has been implicated in thymocyte apoptosis. We found that Lsc(-/-) mice on a BALB/c background show thymic hyperplasia due to increased numbers of thymocytes and that these numbers further increase with the age of the mice. To investigate a role for Lsc in TXA(2) signaling, we analyzed activation of primary thymocytes by TXA(2) in vitro. TXA(2)-induced apoptosis of double-positive thymocytes and Rho activation required Lsc, and TXA(2) stimulation of actin polymerization and cofilin phosphorylation required both Lsc and Rho kinase (ROCK). Additionally, in the absence of Lsc, phosphorylation of the survival kinase Akt in response to TXA(2) was greatly enhanced. Together, these data demonstrate that Lsc is essential for mediating TXA(2 )signaling involved in apoptosis and actin organization and suggest that TXA(2) regulates thymic cellularity via Lsc.  相似文献   

3.
Lsc is a hematopoietic-restricted protein that functions as an effector of G alpha(12/13)-associated G-protein coupled receptors that activates RhoA. In the absence of Lsc leukocytes exhibit impaired migration and B lymphocytes inefficiently resolve integrin-mediated adhesion. Here, we demonstrate that Lsc exists physiologically in primary B lymphocytes as a large molecular weight complex resembling a homo-tetramer. Interfering with the assembly of this large molecular weight Lsc oligomer results in the activation of both Lsc functional activities and leads to cell rounding and inhibition of integrin-mediated adhesion. During cell migration on integrin ligands we find Lsc localizes predominantly toward the rear of migrating cells where we suggest it activates RhoA to resolve integin-mediated adhesion. Together these data demonstrate that Lsc regulates integrin-mediated adhesive events at the trailing edge of migrating cells.  相似文献   

4.
Marginal zone B (MZB) cells are a B-cell subset that produces T-cell-independent antibodies to blood-borne antigens. In this study, we examined the effects of MZB cell depletion on the immune response to the Lyme disease spirochete Borrelia burgdorferi, an extracellular pathogen for which T-cell-independent antibody is an important host defense. MZB cell depletion of C3H/HeJ mice using monoclonal antibody to LFA-1 and alpha(4)beta(1) integrins reduced B. burgdorferi-specific immunoglobulin M (IgM) titers, enhanced pathogen burden, and led to more severe arthritis assessed within the first 2 weeks of infection. In addition, MZB cell-depleted mice had reduced levels of B. burgdorferi-specific IgG, which correlated with diminished splenic CD4+ T-cell-activation, proliferation, and cytokine production. Passive transfer of immune mouse serum from infected control mice into infected MZB cell-depleted mice reduced pathogen burden but did not alter the expression of T-cell activation markers on splenic CD4+ T cells. These findings demonstrate that MZB cells not only are a source of pathogen-specific IgM important for limiting spirochete burden and pathology but also play a prominent role in the priming of splenic T-cell responses to a blood-borne pathogen.  相似文献   

5.
Integrin-linked kinase (ILK) is a multidomain focal adhesion protein implicated in signal transduction between integrins and growth factor/extracellular receptors. We have previously shown that ILK expression is increased in liver fibrosis and that ILK appears to be a key regulator of fibrogenesis in rat hepatic stellate cells, effectors of the fibrogenic response. Here we hypothesized that the mechanism by which ILK mediates the fibrogenic phenotype is by engaging the small GTPase, Rho in a signal transduction pathway linked to fibrogenesis. ILK function in quiescent (non-fibrogenic) and activated (fibrogenic) stellate cells was examined in cells isolated from rat livers. ILK, Rho, and Gα(12/13) signaling were manipulated using established chemical agents or specific adenoviral constructs. ILK activity was minimal in quiescent stellate cells, but prominent in activated stellate cells; inhibition of ILK activity had no effect in quiescent cells, but had prominent effects in activated cells. Overexpression of ILK in activated stellate cells increased Rho activity, but had no effect in quiescent cells. Further, endothelin-1 stimulated Rho activity in activated stellate cells, but not in quiescent cells. Rho, Rho guanine nucleotide exchange factors, and Gα(12/13) expression were increased after stellate cell activation. Inhibition of Gα(12/13) signaling, by expression of the RGS domain of the p115-Rho-specific GEF (p115-RGS) in activated stellate cells, significantly inhibited type I collagen and smooth muscle α-actin expression, both classically upregulated after stellate cell activation. The data suggest that ILK mediates Rho-dependent functional effects in activated stellate cells, and raise the possibility that ILK is important in cross-talk with the G-protein-coupled receptor system.  相似文献   

6.
T1 and T2 transitional B cells are precursors for marginal zone B cells (MZB), which surround splenic follicles. MZB are essential for marginal zone formation, are central to the innate immune response, and contribute to adaptive immunity. Differentiation, migration, and homing of MZB and their precursors remain to be fully understood. We show that SWAP-70, a RhoGTPase-interacting and F-actin-binding protein with functions in cell polarization, migration, and adhesion regulates MZB development and marginal zone formation. The percentage of MZB in spleen of Swap70(-/-) mice was reduced to about one-third of that found in WT mice. Swap70(-/-) T1 cells accumulated in integrin ligand(high) regions of the splenic red pulp and failed to efficiently develop into T2 cells. Adoptive transfer and mixed BM chimera experiments demonstrated this to be a B-cell intrinsic phenotype. T-cell-independent antibody production was not impaired, however, and thus suggests that this process does not require correct homing of MZB precursors. B-cell adhesion through α(L)β(2) and α(4)β(1) integrins was hyper-activated in vitro and on tissue sections, and S1P-stimulated chemokinesis of MZB was reduced in the absence of SWAP-70. Thus, SWAP-70 acts as a regulator of the adhesion process, particularly important for differentiation control of B-cell precursors and their contribution to splenic tissue formation.  相似文献   

7.
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.  相似文献   

8.
Prostaglandin (PG) D(2), and its metabolites, are known to be important mediators during acute and chronic inflammation. However, their functions during the early phases of the immune response are poorly documented. In the present study, we show that PGD(2 )inhibits, in a dose-dependent manner, the CD40- and LPS-induced secretion of the Th1-driving factor IL-12 by murine splenic dendritic cells (DC), the most potent antigen-presenting cells. The inhibition of IL-12 production is mediated only in part by the cell surface G alpha s protein-coupled D prostanoid receptor (termed DP1) but not by the G alpha i protein-coupled DP receptor, DP2. We show that recruitment of DP1 in DC results in the activation of a cyclic AMP/protein kinase A pathway that is partially responsible for the inhibition of IL-12 production. We also suggest that the DP1-independent effects exerted by PGD(2) on IL-12 production may be due to the action of ist PGJ(2), but not PGF(2)alpha, metabolites. Electrophoretic mobility shift assays demonstrated that PGD(2) affects NF-kappa B activation through (the) DP1-independent pathway(s). Together these data suggest that PGD(2), by interacting with DP1 and by binding to other target cellular proteins, may regulate immune responses by affecting IL-12 production in DC.  相似文献   

9.
OBJECTIVE: To obtain information on the activation pathway of the monomeric G protein, RhoA, in bronchial smooth muscle, the expression of G alpha12 and G alpha13 in bronchial smooth muscle of the rat was determined. The levels of these G proteins were also compared between antigen-induced airway hyperresponsive and normal control groups. METHODS: Actively sensitized rats were repeatedly challenged by antigen inhalation. Twenty-four hours after the final antigen challenge, membrane preparations of bronchial smooth muscles were prepared. Immunoblottings were performed, and the density ratios of G alpha12/beta-actin and G alpha13/beta-actin were calculated to quantify the levels of these G-protein alpha subunits. RESULTS: Both G alpha12 and G alpha13 proteins were expressed in rat bronchial smooth muscle. The levels of bronchial G alpha12 and G alpha13 proteins in the repeatedly antigen challenged rats were significantly increased as compared with those in control animals; the magnitude of upregulation in the airway-hyperresponsive group was 89% and 68% in the control group, respectively. CONCLUSION: G alpha12 and G alpha13 proteins were expressed in rat bronchial smooth muscle. Considering the probable involvement of G12 and G13 proteins in Ca2+ sensitization through Rho protein, the augmented expression of such G proteins after repeated antigen challenge may be responsible for the hyperresponsiveness of bronchial smooth muscle contraction in rats.  相似文献   

10.
Inactivation of members of the nuclear factor-kappaB (NF-kappaB) family results in the decrease or defect of marginal zone B (MZB) cells. It is not known which inhibitors of the NF-kappaB family (IkappaB) are required for MZB cell development. Here, we show that mice with B cell-specific inactivation of the main NF-kappaB inhibitor IkappaBalpha have a marked decrease of MZB cells and their presumed precursors. They exhibited increased mortality rates after blood-borne bacterial infection, indicating the importance of MZB cells for bacterial clearance. In contrast, response to T cell-dependent and -independent antigens resulted only in minor changes in immunoglobulin production. Our data demonstrate the importance of the intact NF-kappaB/IkappaBalpha pathway for proper MZB cell development.  相似文献   

11.
12.
The possible involvement of Rho family GTP-binding proteins in the regulation of phospholipase D (PLD) activity has recently been demonstrated. In the present study, to further examine the role of Rho family proteins in PLD activation of human promyelocytic leukemic HL60 cells, we used toxin A and toxin B from the anaerobic bacterium Clostridium difficile, which was shown to glucosylate Rho family proteins and inhibit their interaction with effectors. Pretreatment of [3H]oleic acid-labeled HL60 cell lysates with either one of the toxins resulted in a remarkable inhibition of membrane PLD activity stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). The magnitude of inhibition of PLD activity was correlated well with the extent of toxin A- or B-induced glucosylation of 22-kDa RhoA in HL60 cells, toxin B being more effective than toxin A. GTPgammaS-stimulated PLD activation measured with the exogenous substrate containing phosphatidylinositol 4,5-bisphosphate was also inhibited by toxin B. Toxin B had no effect on GTP-gammaS-induced translocation of RhoA from cytosol to membranes. Furthermore, the toxin B pretreatment also suppressed PLD activation induced by 4beta-phorbol 12-myristate 13-acetate in HL60 cell lysates. Thus, it was indicated that Rho family proteins play a key role in GTPgammaS- and 40-phorbol 12-myristate 13-acetate-induced PLD activity in HL60 cells. In addition, the results obtained here indicate that C. difficile toxins are a useful tool for researching the regulation of the Rho family protein-mediated PLD activation and also provide a clue toward understanding the pathogenic background of pseudomembranous colitis from the viewpoint of signal transduction.  相似文献   

13.
RBP-J is a key mediator of Notch signaling that regulates cell fate determination in various lineages. To investigate the function of Notch-RBP-J in mature B cell differentiation, we generated mice that selectively lacked B cell RBP-J expression using conditional mutagenesis. Absence of RBP-J led to the loss of marginal zone B (MZB) cells with a concomitant increase in follicular B cells; in contrast, B1 cells in the peritoneal cavity were unaffected. Lack of RBP-J caused no defects in B cells maintenance, survival, plasma cell differentiation or activation. It is therefore likely that Notch-RBP-J signaling regulates the lineage commitment of mature B cells into follicular versus MZB cells. In addition, in mice with RBP-J-deficient B cells, had no obvious changes in immunoglobulin production in response to Ficoll, lipopolysaccharide or chicken gammaglobulin. In contrast, these mice exhibited increased mortality rates after blood-borne bacterial infection, which indicates that MZB cells play pivotal roles in the clearance of these bacteria.  相似文献   

14.
The lymphoid organs contain specialized microanatomic structures composed of lymphoid, myeloid and stromal cells that are vital to the generation of an effective adaptive immune response. Although the existence of these specialized structures has been known for over a century, the developmental signals that generate them and the specific roles of these structures in the immune response have remained largely elusive. Because of their position adjacent to the marginal sinuses, marginal zone B (MZB) cells are amongst the first population of cells seen by blood born antigens and are presumed to have a critical role in host defense against bacterial pathogens. Here we demonstrate that a deficiency of the tyrosine kinase (Pyk-2) results in a cell autonomous defect of MZB cell production. In response to repetitive polysaccharide antigens (T-independent type II (TI-II)) Pyk-2-deficient mice displayed marked suppression of IgM, IgG3 and IgG2a production. Furthermore, complement receptor engagement proved necessary for the specific targeting of polysaccharide antigens to MZB cells. These results suggest how innate immune responses mediated through complement coupling are translated into an adaptive response by MZB cells, and provide a potential mechanism for the T cell independence of humoral responses to polysaccharide antigens.  相似文献   

15.
Notch2 and Delta-like 1 (Dll1) have been implicated in the development of marginal zone B (MZB) cells. In the present study, we characterized the expression and function of mouse Notch receptors and ligands in the spleen by using newly generated mAbs. Although Notch2 was expressed on both B and T cells in the spleen, the highest expression was observed on precursors of marginal zone B and MZB cells. Dll1 was expressed on macrophage and erythroblasts in the red pulp, but not on B cells or marginal zone macrophage. Administration of a blocking mAb against Dll1 not only blocked the development of MZB cells in juvenile mice but also gradually depleted the pre-established MZB cells in adult mice, indicating a critical role for Dll1 in the maintenance of MZB cells in the spleen of normal mice. Interestingly, Dll1 was not necessary for the maintenance of MZB cells in lupus-prone (NZB x NZW) F1 mice particularly after the onset of the disease, suggesting that the Dll1 independence may be a feature of dysregulated MZB cells producing auto-antibodies.  相似文献   

16.
17.
Background : The Rho small G protein family, which includes the Rho, Rac and Cdc42 subfamilies, is implicated in various cell functions such as cell shape change, cell motility and cytokinesis, through the reorganization of actin filaments. Rho GDI is an inhibitory regulator of the Rho small G protein family and inhibits the Rho family dependent cell functions. Reorganization of actin filaments is also known to regulate Ca2+-dependent exocytosis.
Results: We have examined here whether the Rho family members are also involved in Ca2+-dependent exocytosis. We have found, by the use of the human growth hormone (GH) co-expression assay system on PC12 cells, that overexpression of Rho GDI inhibits high K+-induced, Ca2+-dependent GH release. This inhibitory action of Rho GDI is restored by co-expression of a dominant active mutant of RhoA or Rac1, but not of a dominant active mutant of Cdc42. C3 transferase, known to ADP-ribosylate Rho and to inhibit its function, also inhibits this GH release. Overexpression of a dominant active mutant of RhoA or Rac1 alone shows only a small effect on GH release. Moreover, immunocytochemical studies show that the overexpression of Rho GDI prevents a partial disruption of the cortical actin network which accompanies exocytosis.
Conclusions: These results suggest that RhoA, Rac1 and Rho GDI are involved in Ca2+-dependent exocytosis at least partly through the reorganization of actin filaments, and that the activation of RhoA or Rac1 alone is not sufficient for this reaction.  相似文献   

18.
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, γδ T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.  相似文献   

19.
The Notch genes play a key role in cellular differentiation. The significance of Notch1 during thymocyte development is well characterized, but the function of Notch2 is poorly understood. Here we demonstrate that Notch2 but no other Notch family member is preferentially expressed in mature B cells and that conditionally targeted deletion of Notch2 results in the defect of marginal zone B (MZB) cells and their presumed precursors, CD1d(hi) fraction of type 2 transitional B cells. Among Notch target genes, the expression level of Deltex1 is prominent in MZB cells and strictly dependent on that of Notch2, suggesting that Deltex1 may play a role in MZB cell differentiation.  相似文献   

20.
Wnt/Frizzled (Fz) signaling controls cell polarity/movements during vertebrate gastrulation via incompletely defined mechanisms. We demonstrated previously that Wnt/Fz activation of Rho, a GTPase and regulator of cytoskeletal architecture, is essential for vertebrate gastrulation. Here we report that in mammalian cells and Xenopus embryos, Wnt/Fz signaling coactivates Rho and Rac, another GTPase and distinct regulator of cytoskeletal architecture. Wnt/Fz activation of Rac is independent of Rho and mediates Wnt/Fz activation of Jun N-terminal kinase (JNK). Dishevelled (Dvl), a cytoplasmic protein downstream of Fz, forms a Wnt-induced complex with Rac independent of the Wnt-induced Dvl-Rho complex. Depletion or inhibition of Rac function perturbs Xenopus gastrulation without affecting Wnt/Fz activation of the Rho or beta-catenin pathway. We propose that parallel activation of Rac and Rho pathways by Wnt/Fz signaling is required for cell polarity and movements during vertebrate gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号