首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: Endorectal (ER) coil-based magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) is often used to obtain anatomic and metabolic images of the prostate and to accurately identify and assess the intraprostatic lesions. Recent advancements in high-field (3 Tesla or above) MR techniques affords significantly enhanced signal-to-noise ratio and makes it possible to obtain high-quality MRI data. In reality, the use of rigid or inflatable endorectal probes deforms the shape of the prostate gland, and the images so obtained are not directly usable in radiation therapy planning. The purpose of this work is to apply a narrow band deformable registration model to faithfully map the acquired information from the ER-based MRI/MRSI onto treatment planning computed tomography (CT) images. METHODS AND MATERIALS: A narrow band registration, which is a hybrid method combining the advantages of pixel-based and distance-based registration techniques, was used to directly register ER-based MRI/MRSI with CT. The normalized correlation between the two input images for registration was used as the metric, and the calculation was restricted to those points contained in the narrow bands around the user-delineated structures. The narrow band method is inherently efficient because of the use of a priori information of the meaningful contour data. The registration was performed in two steps. First, the two input images were grossly aligned using a rigid registration. The detailed mapping was then modeled by free form deformations based on B-spline. The limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which is known for its superior performance in dealing with high-dimensionality problems, was implemented to optimize the metric function. The convergence behavior of the algorithm was studied by self-registering an MR image with 100 randomly initiated relative positions. To evaluate the performance of the algorithm, an MR image was intentionally distorted, and an attempt was then made to register the distorted image with the original one. The ability of the algorithm to recover the original image was assessed using a checkerboard graph. The mapping of ER-based MRI onto treatment planning CT images was carried out for two clinical cases, and the performance of the registration was evaluated. RESULTS: A narrow band deformable image registration algorithm has been implemented for direct registration of ER-based prostate MRI/MRSI and CT studies. The convergence of the algorithm was confirmed by starting the registration experiment from more than 100 different initial conditions. It was shown that the technique can restore an MR image from intentionally introduced deformations with an accuracy of approximately 2 mm. Application of the technique to two clinical prostate MRI/CT registrations indicated that it is capable of producing clinically sensible mapping. The whole registration procedure for a complete three-dimensional study (containing 256 x 256 x 64 voxels) took less than 15 min on a standard personal computer, and the convergence was usually achieved in fewer than 100 iterations. CONCLUSIONS: A deformable image registration procedure suitable for mapping ER-based MRI data onto planning CT images was presented. Both hypothetical tests and patient studies have indicated that the registration is reliable and provides a valuable tool to integrate the ER-based MRI/MRSI information to guide prostate radiation therapy treatment.  相似文献   

2.
PURPOSE: Auto-propagation of anatomic regions of interest from the planning computed tomography (CT) scan to the daily CT is an essential step in image-guided adaptive radiotherapy. The goal of this study was to quantitatively evaluate the performance of the algorithm in typical clinical applications. METHODS AND MATERIALS: We had previously adopted an image intensity-based deformable registration algorithm to find the correspondence between two images. In the present study, the regions of interest delineated on the planning CT image were mapped onto daily CT or four-dimensional CT images using the same transformation. Postprocessing methods, such as boundary smoothing and modification, were used to enhance the robustness of the algorithm. Auto-propagated contours for 8 head-and-neck cancer patients with a total of 100 repeat CT scans, 1 prostate patient with 24 repeat CT scans, and 9 lung cancer patients with a total of 90 four-dimensional CT images were evaluated against physician-drawn contours and physician-modified deformed contours using the volume overlap index and mean absolute surface-to-surface distance. RESULTS: The deformed contours were reasonably well matched with the daily anatomy on the repeat CT images. The volume overlap index and mean absolute surface-to-surface distance was 83% and 1.3 mm, respectively, compared with the independently drawn contours. Better agreement (>97% and <0.4 mm) was achieved if the physician was only asked to correct the deformed contours. The algorithm was also robust in the presence of random noise in the image. CONCLUSION: The deformable algorithm might be an effective method to propagate the planning regions of interest to subsequent CT images of changed anatomy, although a final review by physicians is highly recommended.  相似文献   

3.
PURPOSE: Endorectal coil (ERC) magnetic resonance imaging (MRI) provides superior visualization of the prostate compared with computed tomography at the expense of deformation. This study aimed to develop a multiorgan finite element deformable method, Morfeus, to accurately co-register these images for radiotherapy planning. METHODS: Patients with prostate cancer underwent fiducial marker implantation and computed tomography simulation for radiotherapy planning. A series of axial MRI scans were acquired with and without an ERC. The prostate, bladder, rectum, and pubic bones were manually segmented and assigned linear elastic material properties. Morfeus mapped the surface of the bladder and rectum between two imaged states, calculating the deformation of the prostate through biomechanical properties. The accuracy of deformation was measured as fiducial marker error and residual surface deformation between the inferred and actual prostate. The deformation map was inverted to deform from 100 cm(3) to no coil. RESULTS: The data from 19 patients were analyzed. Significant prostate deformation occurred with the ERC (mean intrapatient range, 0.88 +/- 0.25 cm). The mean vector error in fiducial marker position (n = 57) was 0.22 +/- 0.09 cm, and the mean vector residual surface deformation (n = 19) was 0.15 +/- 0.06 cm for deformation from no coil to 100-cm(3) ERC, with an image vector resolution of 0.22 cm. Accurately deformed MRI scans improved soft-tissue resolution of the anatomy for radiotherapy planning. CONCLUSIONS: This method of multiorgan deformable registration enabled accurate co-registration of ERC-MRI scans with computed tomography treatment planning images. Superior structural detail was visible on ERC-MRI, which has potential for improving target delineation.  相似文献   

4.
The aim of this study is to develop an Automatic Post-processing Tool for four-dimensional (4D) treatment planning (APT4D) that enables the user to perform some necessary procedures related to 4D treatment planning, such as automated image registration, automatic propagation of regions of interest, and dose distribution transformation. Demons-based deformable registrations were performed to map the moving phase images (such as the end-inhalation phase or 0% phase) to the reference phase (typically the end-exhalation fixed phase or 50% phase). Contours were automatically propagated into the moving phase using the image registration results. The dose distribution of each moving phase was transformed to the fixed phase and subsequently was summed as an average with equal weighting factor. To validate the application of APT4D utility, the 4D computed tomography (CT) images of a lung cancer patient and an abdominal cancer patient were acquired and resorted into ten respiratory phases. 4D plans based on the 4D CT images were developed. The correlation coefficient ranged from 0.992 to 0.999 for the re-sampled deformed moving phase image against the fixed phase image for the lung patient plan and from 0.977 to 0.999 for the abdominal patient plan. For all the organs, the match indices between the manual contours and automatic contour propagation results were around 0.92 to 0.95. The 4D composite dose-volume histogram showed dosimetric reductions for liver and kidneys in the high dose region. The APT4D adds automation, efficiency, and functionality, while integrating the whole process of 4D treatment planning.  相似文献   

5.
PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the performance of the algorithm to localize the prostate on cone-beam CT (CBCT) scans acquired on the treatment machine was evaluated. METHODS AND MATERIALS: Five to 17 CBCT scans of 32 prostate cancer patients (332 scans in total) were used. For 18 patients (190 CBCT scans), the CBCT scans were acquired with a collimated field of view (FOV) (craniocaudal). This procedure improved the image quality considerably. The prostate (i.e., prostate plus seminal vesicles) in each CBCT scan was registered to the prostate in the planning CT scan by automatic 3D gray-value registration (normal GR) starting from a registration on the bony anatomy. When these failed, registrations were repeated with a fixed rotation point locked at the prostate apex (fixed apex GR). Registrations were visually assessed in 3D by one observer with the help of an expansion (by 3.6 mm) of the delineated prostate contours of the planning CT scan. The percentage of successfully registered cases was determined from the combined normal and fixed apex GR assessment results. The error in gray-value registration for both registration methods was determined from the position of one clearly defined calcification in the prostate gland (9 patients, 71 successful registrations). Results: The percentage of successfully registered CBCT scans that were acquired with a collimated FOV was about 10% higher than for CBCT scans that were acquired with an uncollimated FOV. For CBCT scans that were acquired with a collimated FOV, the percentage of successfully registered cases improved from 65%, when only normal GR was applied, to 83% when the results of normal and fixed apex GR were combined. Gray-value registration mainly failed (or registrations were difficult to assess) because of streaks in the CBCT scans caused by moving gas pockets in the rectum during CBCT image acquisition (i.e., intrafraction motion). The error in gray-value registration along the left-right, craniocaudal, and anteroposterior axes was 1.0, 2.4, and 2.3 mm (1 SD) for normal GR, and 1.0, 2.0, and 1.7 mm (1 SD) for fixed apex GR. The systematic and random components of these SDs contributed approximately equally to these SDs, for both registration methods. Conclusions: The feasibility of automatic prostate localization on CBCT scans acquired on the treatment machine using an adaptation of the previously developed three-dimensional gray-value registration algorithm, has been validated in this study. Collimating the FOV during CBCT image acquisition improved the CBCT image quality considerably. Artifacts in the CBCT images caused by large moving gas pockets during CBCT image acquisition were the main cause for unsuccessful registration. From this study, we can conclude that CBCT scans are suitable for online and offline position verification of the prostate, as long as the amount of nonstationary gas is limited.  相似文献   

6.
PURPOSE: To demonstrate the theoretical feasibility of integrating two functional prostate magnetic resonance imaging (MRI) techniques (dynamic contrast-enhanced MRI [DCE-MRI] and 1H-spectroscopic MRI [MRSI]) into inverse treatment planning for definition and potential irradiation of a dominant intraprostatic lesion (DIL) as a biologic target volume for high-dose intraprostatic boosting with intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: In 5 patients, four gold markers were implanted. An endorectal balloon was inserted for both CT and MRI. A DIL volume was defined by DCE-MRI and MRSI using different prostate cancer-specific physiologic (DCE-MRI) and metabolic (MRSI) parameters. CT-MRI registration was performed automatically by matching three-dimensional gold marker surface models with the iterative closest point method. DIL-IMRT plans, consisting of whole prostate irradiation to 70 Gy and a DIL boost to 90 Gy, and standard IMRT plans, in which the whole prostate was irradiated to 78 Gy were generated. The tumor control probability and rectal wall normal tissue complication probability were calculated and compared between the two IMRT approaches. RESULTS: Combined DCE-MRI and MRSI yielded a clearly defined single DIL volume (range, 1.1-6.5 cm3) in all patients. In this small, selected patient population, no differences in tumor control probability were found. A decrease in the rectal wall normal tissue complication probability was observed in favor of the DIL-IMRT plan versus the plan with IMRT to 78 Gy. CONCLUSION: Combined DCE-MRI and MRSI functional image-guided high-dose intraprostatic DIL-IMRT planned as a boost to 90 Gy is theoretically feasible. The preliminary results have indicated that DIL-IMRT may improve the therapeutic ratio by decreasing the normal tissue complication probability with an unchanged tumor control probability. A larger patient population, with more variations in the number, size, and localization of the DIL, and a feasible mechanism for treatment implementation has to be studied to extend these preliminary tumor control and toxicity estimates.  相似文献   

7.
PURPOSE: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. METHODS AND MATERIALS: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. RESULTS: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 +/- 0.80 mm and 4.96 +/- 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 +/- 1.22 mm and 4.96 +/- 2.38 mm, respectively, p = 0.012). CONCLUSIONS: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy.  相似文献   

8.
PURPOSE: Daily prostate deformation hinders accurate calculation of dose, especially to intraprostatic targets. We implemented a three-dimensional deformable registration algorithm to aid dose tracking for targeted prostate radiotherapy. METHODS AND MATERIALS: The algorithm registers two computed tomography (CT) scans by iteratively minimizing their differences in image intensity. For validation, we measured the accuracy in registering (a) a pelvic CT set to its mathematically deformed counterpart, (b) CT scans of a deformable pelvic phantom with and without an endorectal balloon inflated, to simulate intraprostatic targets, 23 CT-opaque seeds were embedded in the prostate, and (c) two pelvic CT scans of a patient obtained on 2 separate days. RESULTS: The mean (SD) error in registering the pelvic CT set to its transformed set was 0.5 mm (1.5), with correlation coefficient improvement from 0.626 to 0.991. Using the deformable pelvic phantom, the correlation coefficient improved from 0.543 to 0.816 after registration. The mean (SD) error in tracking the intraprostatic seeds was 0.8 mm (0.5). The correlation coefficient improved from 0.610 to 0.944 after registration of the two patient CT sets. CONCLUSION: The algorithm had an accuracy of about 1 mm. It could be used for optimizing dose calculation and delivery for prostate radiotherapy.  相似文献   

9.
PURPOSE: To assess repositioning reproducibility of the prostate when treatment setup conditions before radiotherapy (RT) are optimized and internal organ motion is reduced with an endorectal inflatable balloon. METHODS AND MATERIALS: Thirty-two patients were treated with 64 Gy to the prostate and seminal vesicles using a three-dimensional conformal radiotherapy technique, followed by a boost (two fractions of 5-8 Gy, 3-5 days apart) delivered to a reduced prostate volume (the peripheral tumor bearing zone with 3-mm margins) using intensity-modulated RT. A commercially available infrared-guided stereotactic repositioning system and a rectal balloon were used. Further improvement in repositioning could be obtained with a stereoscopic X-ray registration device matching the pelvic bones during treatment with the corresponding bones in the planning computed tomography (CT). To simulate repositioning reproducibility, CT resimulation was performed before the last boost fraction. Prostate repositioning was reassessed, first after CT-to-CT fusion with the stereotactic metallic body markers of the infrared-guided system, and second after CT-to-CT registration of the pelvic bony structures. RESULTS: Standard deviations of the prostate (CTV) center of mass shifts in the three axes ranged from 2.2 to 3.6 mm with body marker registration and from 0.9 to 2.5 mm with pelvic bone registration. The latter improvement was significant, particularly in the right-to-left axis (3.5-fold improvement). In 10 patients, systematic rectal probe repositioning errors (i.e., >20-mL probe volume variations or >8-mm probe shifts in the perpendicular axes) were detected. Target repositioning was reassessed excluding these 10 patients. An additional improvement was observed in the anteroposterior axis with 1.7 times and 1.5 times reduction of the standard deviation with body markers and pelvic bone registrations, respectively. CONCLUSIONS: Infrared-guided target repositioning for prostate cancer can be optimized with a stereoscopic X-ray positioning device mostly in the right-to-left axis. An optimally positioned inflatable rectal probe further optimizes target repositioning mostly along the anteroposterior axis. Thus a planning target volume with a margin of 2 (right-to-left), 4 (anteroposteriorly), and 6 (craniocaudally) mm around the CTV can be recommended under optimal setup conditions with pelvic bone registration and optimal repositioning of an inflated rectal balloon.  相似文献   

10.
BACKGROUND: Reproducible target volume assessment is required in order to optimize portal field margins in the treatment of prostate cancer. The benefits of an endorectal balloon on target volume assessment remain unclear. MATERIAL AND METHODS: Nine patients were treated with a daily placed air filled rectal balloon. Portal films and computer-associated tomography during the treatment were used to determine the position of the structures of interest. Comparative planning with or without a balloon was performed in order to determine rectal wall exposure to radiation. RESULTS: The range of movements during treatment predicting the position of the prostate in relation to the symphysis was 0.05-0.59 cm in the lateral direction, 0.27-2.2 cm in the antero-posterior direction, and 0.33-1.8 cm in the crano-caudal direction, as compared to the position of the prostate predicted by the balloon ranging from 0.18 to 0.76 cm in the lateral direction, 0.22-1.68 cm in the antero-posterior direction, and 0.58-2.99 cm in the crano-caudal direction. Planning target volumes (PTV) margins as defined by the position of the balloon were 10 mm in the antero-posterior direction, 6 mm in the lateral direction, and 16 mm in the crano-caudal direction. The volume of rectal wall exposed to radiation was reduced from 40 (+/- 12%) to 25% (+/- 19%) with an endorectal balloon (P < 0.05). CONCLUSIONS: Daily online correction with portal vision for external beam set-up is improved by an endorectal balloon device, leading to improved PTV margins and reduced radiation exposure of the rectal wall.  相似文献   

11.
Clinical applications of magnetic resonance spectroscopic imaging (MRSI) for the study of brain and prostate cancer have expanded significantly over the past 10 years. Proton MRSI studies of the brain and prostate have demonstrated the feasibility of noninvasively assessing human cancers based on metabolite levels before and after therapy in a clinically reasonable amount of time. MRSI provides a unique biochemical "window" to study cellular metabolism noninvasively. MRSI studies have demonstrated dramatic spectral differences between normal brain tissue (low choline and high N-acetyl aspartate, NAA) and prostate (low choline and high citrate) compared to brain (low NAA, high choline) and prostate (low citrate, high choline) tumors. The presence of edema and necrosis in both the prostate and brain was reflected by a reduction of the intensity of all resonances due to reduced cell density. MRSI was able to discriminate necrosis (absence of all metabolites, except lipids and lactate) from viable normal tissue and cancer following therapy. The results of current MRSI studies also provide evidence that the magnitude of metabolic changes in regions of cancer before therapy as well as the magnitude and time course of metabolic changes after therapy can improve our understanding of cancer aggressiveness and mechanisms of therapeutic response. Clinically, combined MRI/MRSI has already demonstrated the potential for improved diagnosis, staging and treatment planning of brain and prostate cancer. Additionally, studies are under way to determine the accuracy of anatomic and metabolic parameters in providing an objective quantitative basis for assessing disease progression and response to therapy.  相似文献   

12.
PURPOSE: Kilovoltage cone-beam CT (CBCT) implemented on board a medical accelerator is available for image-guidance applications in our clinic. The objective of this work was to assess the magnitude and stability of the residual setup error associated with CBCT online-guided prostate cancer patient setup. Residual error pertains to the uncertainty in image registration, the limited mechanical accuracy, and the intrafraction motion during imaging and treatment. METHODS AND MATERIALS: The residual error for CBCT online-guided correction was first determined in a phantom study. After online correction, the phantom residual error was determined by comparing megavoltage portal images acquired every 90 degrees to the corresponding digitally reconstructed radiographs. In the clinical study, 8 prostate cancer patients were implanted with three radiopaque markers made of high-winding coils. After positioning the patient using the skin marks, a CBCT scan was acquired and the setup error determined by fusing the coils on the CBCT and planning CT scans. The patient setup was then corrected by moving the couch accordingly. A second CBCT scan was acquired immediately after the correction to evaluate the residual target setup error. Intrafraction motion was evaluated by tracking the coils and the bony landmarks on kilovoltage radiographs acquired every 30 s between the two CBCT scans. Corrections based on soft-tissue registration were evaluated offline by aligning the prostate contours defined on both planning CT and CBCT images. RESULTS: For ideal rigid phantoms, CBCT image-guided treatment can usually achieve setup accuracy of 1 mm or better. For the patients, after CBCT correction, the target setup error was reduced in almost all cases and was generally within +/-1.5 mm. The image guidance process took 23-35 min, dictated by the computer speed and network configuration. The contribution of the intrafraction motion to the residual setup error was small, with a standard deviation of +/-0.9 mm. The average difference between the setup corrections obtained with coil and soft-tissue registration was greatest in the superoinferior direction and was equal to -1.1 +/- 2.9 mm. CONCLUSION: On the basis of the residual setup error measurements, the margin required after online CBCT correction for the patients enrolled in this study would be approximatively 3 mm and is considered to be a lower limit owing to the small intrafraction motion observed. The discrepancy between setup corrections derived from registration using coils or soft tissue can be due in part to the lack of complete three-dimensional information with the coils or to the difficulty in prostate delineation and requires further study.  相似文献   

13.

Background

We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated.

Materials and methods.

Standard electron density phantom was used to establish CT to electron density calibrations curve. The CT to density curve for the CBCT images were observed for the period of six months. The kV CBCT scans used for adaptive planning was acquired with an on-board imager system mounted on a “Trilogy” linear accelerator. kV CBCT images were acquired for daily setup registration. The effect of variations in CT to density curve was studied on two clinical cases: prostate and lung.

Results

The soft tissue contouring is superior in kV CBCT scans in comparison to mega voltage CT (MVCT) scans. The CT to density curve for the CBCT images was found steady over six months. Due to difficulty in attaining the reproducibility in daily setup for the prostate treatment, there is a day-to-day difference in dose to the rectum and bladder.

Conclusions

There is no need for generating a new CT to density curve for the adaptive planning on the kV CBCT images. Also, it is viable to perform the adaptive planning to check the dose to target and organ at risk (OAR) without performing a new kV CT scan, which will reduce the dose to the patient.  相似文献   

14.
15.
16.
PURPOSE: One benefit to having on-line CT imaging integrated into a radiotherapy system is that images can be collected with the patient in the treatment position. These images can then be automatically registered to planning images for improved positioning and verification. However, many such on-line imaging systems have a limited field of view (LFOV) that could potentially impair registration. Thus, the viability of automatic registration was investigated in the context of collecting on-line LFOV and also limited-slice CT images for radiotherapy. METHODS AND MATERIALS: Mutual information and two new voxel-based registration algorithms were tested to align LFOV and limited-slice prostate and breast images given known displacements. Success rates were tallied for different field-of-view sizes, slice distributions, and initial displacements. RESULTS: Most of the automatic registration algorithms tested were useful for solving these LFOV and limited-slice problems. Registration of LFOV images was generally successful, especially for fields of view of at least half the patient's size. For limited-slice images, success was more closely correlated to the slice spacing than to the number of slices used, with sparse slice spacing being preferable. CONCLUSIONS: Mutual information and other automatic registration algorithms have been identified as useful methods for registering LFOV and limited-slice radiotherapy images with planning CT images.  相似文献   

17.
A technique is presented that allows the direct use of physiological image sets in the radiation therapy treatment planning process. When fused to the treatment planning CT, physiological image studies may allow one to define physiological tumor subvolumes consisting of areas of possible chronic hypoxia, areas of high perfusion, areas of high diffusion, and areas containing high choline concentrations. These physiological tumor subvolumes could be selectively boosted to increase local control of malignant brain tumors once one has determined which of these physiological tumor subvolumes predicts for local tumor recurrence after conventional radiotherapy. In this technique a user assisted automatic registration technique is used that is based on an analytical estimate for the transformation matrix needed to register two rigid bodies. The only user input needed is three non-collinear points selected based on landmarks in the primary image and the corresponding three points in the secondary image. Since this registration technique uses two sets of at least three user-defined landmark points each of which has some selection error associated with it, the final registration will have an error that depends only on the selection error associated with the point sets. Since physiological image studies are acquired at the same setting as the T1- w MRI their spatial orientation with respect to the T1- w MRI is known. Therefore, the registration of multiple physiological image studies to the treatment planning CT can be accomplished by first correlating them to the T1- w MRI, and in a second step the T1- w MRI is then registered to the treatment planning CT. The desired registration of the physiological image studies to the treatment planning CT is then accomplished by simply composing the appropriate transformation matrices.  相似文献   

18.
目的 探讨前列腺癌调强放疗时直肠内气囊的应用对危及器官剂量学影响 方法 10 例 前列腺癌患者分别在放置与不放置直肠内气囊时进行模拟CT扫描,在获得的20套定位CT图像上分别定义靶区和危及器官(直肠、膀胱、双侧股骨头),制定7个野调强计划,处方剂量95%计划靶体积78 Gy分39次。分别采集放置与不放置直肠内气囊时危及器官的V1~V70(间隔10 Gy)和V75并行配对t检验。结果 放置直肠内气囊的直肠V10~V60低于不放置的,分别为75.5%∶82.2%、52.6%∶ 62.8%、35.3%∶ 43.9%、26.1%∶ 31.4%、19.6%∶24.0%、14.2%∶ 17.1%(χ2=9.46, P<0.01);但V70、V75相似,分别为8.7%∶9.9%、5.6%∶ 6.2%(χ2=1.82,P>0.05)。放置直肠内气囊后对膀胱和双侧股骨头的剂量分布无明显影响。 结论 前列腺癌调强放疗时应用直肠内气囊可明显降低直肠接受中低剂量照射的体积,从而可能降低前列腺癌调强放疗时直肠的不良反应。  相似文献   

19.
The purpose of this study was to determine the utility of quantitative single photon emission computed tomography (SPECT) lung perfusion scans and F-18 fluorodeoxyglucose positron emission computed tomography (PET) during X-ray computed tomography (CT)-based treatment planning for patients with lung cancer. Pre-radiotherapy SPECT (n = 104) and PET (n = 35) images were available to the clinician to assist in radiation field design for patients with bronchogenic cancer. The SPECT and PET scans were registered with anatomic information derived from CT. The information from SPECT and PET provides the treatment planner with functional data not seen with CT. SPECT yields three-dimensional (3D) lung perfusion maps. PET provides 3D metabolic images that assist in tumor localization. The impact of the nuclear medicine images on the treatment planning process was assessed by determining the frequency, type, and extent of changes to plans. Pre-radiotherapy SPECT scans were used to modify 11 (11%) treatment plans; primarily altering beam angles to avoid highly functioning tissue. Fifty (48%) SPECT datasets were judged to be 'potentially useful' due to the detection of hypoperfused regions of the lungs, but were not used during treatment planning. PET data influenced 34% (12 of 35) of the treatment plans examined, and resulted in enlarging portions of the beam aperture (margins) up to 15 mm. Challenges associated with image quality and registration arise when utilizing nuclear medicine data in the treatment planning process. Initial implementation of advanced SPECT image reconstruction techniques that are not typically used in the clinic suggests that the reconstruction method may influence dose response data derived from the SPECT images and improve image registration with CT. The use of nuclear medicine transmission computed tomography (TCT) for both SPECT and PET is presented as a possible tool to reconstruct more accurate emission images and to aid in the registration of emission data with the planning CT. Nuclear medicine imaging techniques appear to be a potentially valuable tool during radiotherapy treatment planning for patients with lung cancer. The utilization of accurate nuclear medicine image reconstruction techniques and TCT may improve the treatment planning process.  相似文献   

20.
: Dose-escalation to intraprostatic tumor deposits detected by magnetic resonance spectroscopy (MRS) is an example of tumor-targeted radiation therapy. Because treatment planning for prostate brachytherapy is performed based on ultrasound (US)/computed tomography (CT) images, a sine qua non of this technique is the ability to map MRS-positive volumes (obtained in a gland deformed by the endorectal balloon coil) to the US/CT images. An empirical algorithm designed to perform this function, and its validation, are described.

: Mathematically, the problem of mapping points between the MR and US/CT domains comes to: (a) ascertaining that the position of any point in the interior of the prostate is uniquely determined by the shape of the gland, and (b) finding an algorithm that describes this relationship. The image registration algorithm described here is based on the assumption that points within the gland maintain the same relative position with respect to both the axial contours of the prostate and the center of the prostate along the superior-inferior direction. Relative positions of MRS-positive voxels are calculated with this method in both MR and US/CT space. For a particular voxel in the MR space, one obtains first the z coordinate in the US/CT space, that is, along the superior-inferior direction. This determines the axial slice in the US/CT frame of reference where the other two coordinates (x, y) will be calculated. The validity of this algorithm was examined with the aid of a pelvic phantom built to simulate realistically the prostate and its surrounding bony and tissue structures and with CT scans of implanted patients obtained, at several weeks’ intervals, as part of an edema-resolution study. Seventy-five “dummy” seeds were placed in the phantom, within the simulated prostate gland, in a quasi-regular pattern. The coordinates of these seeds were determined and thus served as markers of prostate deformation when an inflated rectal probe was introduced in the phantom. CT images of this phantom were taken for different volumes of the MR rectal probe and in each case the prostate outlines were contoured and seed coordinates calculated. Using these data, the predictions of the mapping algorithm could be directly verified.

: Absolute values of the 3D-positional errors in this algorithm were 2.2 mm ± 1.2 mm (average ± SD). Only 6 of 75 seeds had positional displacement of 4 mm or more. Similar results were obtained in the patient analysis.

: In comparison to the MRS voxel size (6.25 × 6.25 × 3.0 mm3), the present algorithm achieves the desired clinical accuracy. As well, with this 3D algorithm seed positions are reconstructed with an uncertainty that, along the z direction, is less than half the thickness of the typical US slice (0.5 cm).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号