首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrophic changes of the hippocampus are typically regarded as an early sign of Alzheimer's dementia (AD). Using the radial distance atrophy mapping approach, we compared the longitudinal MRI data of 10 cognitively normal elderly subjects who remained normal at 3-year and 6-year follow-up (NL-NL) and 7 cognitively normal elderly subjects who were diagnosed with mild cognitive impairment (MCI) 2.8 (range 2.0-3.9) and with AD 6.8 years (range 6.1-8.2) after baseline (NL-MCI(AD)). 3D statistical maps revealed greater hippocampal atrophy in the NL-MCI(AD) relative to the NL-NL group at baseline (left p=0.05; right p=0.06) corresponding to 10-15% CA1, and 10-25% subicular atrophy, and bilateral differences at 3-year follow-up (left p=0.001, right p<0.02) corresponding to 10-30% subicular, 10-20% CA1, and 10-20% newly developed CA2-3 atrophy. This preliminary study suggests that excess CA1 and subicular atrophy is present in cognitively normal individuals predestined to decline to amnestic MCI, while progressive involvement of the CA1 and subiculum, and atrophy spreading to the CA2-3 subfield in amnestic MCI, suggests future diagnosis of AD.  相似文献   

2.
Our aim was to compare the predictive accuracy of 4 different medial temporal lobe measurements for Alzheimer's disease (AD) in subjects with mild cognitive impairment (MCI). Manual hippocampal measurement, automated atlas-based hippocampal measurement, a visual rating scale (MTA-score), and lateral ventricle measurement were compared. Predictive accuracy for AD 2 years after baseline was assessed by receiver operating characteristics analyses with area under the curve as outcome. Annual cognitive decline was assessed by slope analyses up to 5 years after baseline. Correlations with biomarkers in cerebrospinal fluid (CSF) were investigated. Subjects with MCI were selected from the Development of Screening Guidelines and Clinical Criteria for Predementia AD (DESCRIPA) multicenter study (n = 156) and the single-center VU medical center (n = 172). At follow-up, area under the curve was highest for automated atlas-based hippocampal measurement (0.71) and manual hippocampal measurement (0.71), and lower for MTA-score (0.65) and lateral ventricle (0.60). Slope analysis yielded similar results. Hippocampal measurements correlated with CSF total tau and phosphorylated tau, not with beta-amyloid 1–42. MTA-score and lateral ventricle volume correlated with CSF beta-amyloid 1–42. We can conclude that volumetric hippocampal measurements are the best predictors of AD conversion in subjects with MCI.  相似文献   

3.
Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status—(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls—and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.  相似文献   

4.
The concept of mild cognitive impairment (MCI) has been proposed to represent a transitional stage between normal aging and dementia. We studied the predictive value of the MRI-derived volumes of medial temporal lobe (MTL) structures, white matter lesions (WML), neuropsychological tests, and Apolipoprotein E (APOE) genotype on conversion of MCI to dementia and AD. The study included 60 subjects with MCI identified from population cohorts. During the mean follow-up period of 34 months, 13 patients had progressed to dementia (9 to Alzheimer's disease (AD)). In Cox regression analysis the baseline volumes of the right hippocampus, the right entorhinal cortex and CDR sum of boxes predicted the progression of MCI to dementia during the follow-up. In a bivariate analysis, only the baseline volumes of entorhinal cortex predicted conversion of MCI to AD. The Mini-Mental State Examination (MMSE) score at baseline, WML load, or APOE genotype were not significant predictors of progression. The MTL volumetry helps in identifying among the MCI subjects a group, which is at high risk for developing AD.  相似文献   

5.
Mild cognitive impairment (MCI) is a nosological entity proposed as an intermediate state between normal aging and dementia. MCI seems to represent an early stage of Alzheimer's disease (AD) and there is a great interest in the relationship between MCI and the progression to AD. Some studies have demonstrated an accumulation of products of free radical damage in the central nervous system and in the peripheral tissues of subjects with AD or mild cognitive impairment. The aim of the present work was to evaluate the serum levels of some enzymatic antioxidant defences like superoxide dismutase (SOD) and glutathione peroxidase (GPX), as well as lipid peroxidation markers like MDA (malondialdehyde), in MCI and AD patients, compared with age-matched healthy controls. The subjects of this study (45 patients) consisted of 15 individuals with mild cognitive impairment (MCI), 15 with Alzheimer's disease (AD) and 15 healthy age-matched controls. Biochemical analyses showed a similar decrease of the main enzymatic antioxidant defences (SOD and GPX) and increased production of lipid peroxidation marker (MDA) in the serum of the MCI and AD patients, compared to age-matched control group. This study clearly demonstrates that oxidative stress damage occurs in patients with MCI and AD. Moreover, some enzymatic markers of oxidative stress are similar in MCI and AD patients, suggesting that oxidative damage could be one important aspect for the onset of AD.  相似文献   

6.
In the present study, as part of a more extensive longitudinal investigation of the in vivo anatomical markers of early and incipient AD in our laboratory, three groups of elderly participants were followed with yearly clinical evaluations and high resolution MRI scans over a 6-year period (baseline and 5 years of follow-up). At baseline, participants consisted of: (1) 35 old subjects with no cognitive impairment (controls); (2) 33 participants with amnestic mild cognitive impairment (MCI); and (3) 14 patients with very mild AD. 11 participants with amnestic MCI received a diagnosis of AD over the follow-up period and 9 controls declined in cognitive function. T1 weighted MRI scans were acquired using a 3D SPGR pulse sequence. At baseline, both the amnestic MCI and mild AD groups differed from the controls in hippocampal and entorhinal cortex volume, but not from each other. Longitudinal analyses showed that the rate of atrophy of the entorhinal cortex and hippocampus for the stable controls differed significantly from MCI participants who converted to AD and the AD groups. Furthermore, longitudinal decreases in hippocampal and entorhinal volume were related to longitudinal decline in declarative memory performance. These findings suggest that the rate of atrophy of mesial temporal lobe structures can differentiate healthy from pathological aging.  相似文献   

7.
Elevated cerebral ventricular volume may be associated with dementia risk and progression. A fully-automated technique that agreed highly with radiological readings was used to estimate lateral ventricle volume on MR scans done at baseline in 1997-99 of 377 subjects in the Cardiovascular Health Study (CHS) from the Pittsburgh Center. 327 subjects were normal or diagnosed with mild cognitive impairment (MCI) at baseline and were evaluated 4 years later. Baseline ventricular volume was analyzed in multivariate models with age, gender, education level, presence and incidence of cerebral infarcts, and dementia category (normal, MCI, or dementia) at baseline and follow-up as fixed effects. Ventricular volume at baseline was significantly higher among subjects normal at baseline and demented 4 years later. Age, gender, education level, and dementia progression were significant factors affecting ventricular volume. Ventricular volume was higher in dementia compared to MCI, higher in MCI compared to controls, and higher in Possible-Alzheimer's-disease (AD) dementia compared to Probable-AD. Larger ventricles in healthy subjects may indicate susceptibility to, or progression of, dementia-related pathology.  相似文献   

8.
The vitamin E and donepezil trial for the treatment of amnestic mild cognitive impairment (MCI) was conducted at 69 centers in North America; 24 centers participated in an MRI sub study. The objective of this study was to evaluate the effect of treatment on MRI atrophy rates; and validate rate measures from serial MRI as indicators of disease progression in multi center therapeutic trials for MCI. Annual percent change (APC) from baseline to follow-up was measured for hippocampus, entorhinal cortex, whole brain, and ventricle in the 131 subjects who remained in the treatment study and completed technically satisfactory baseline and follow-up scans. Although a non-significant trend toward slowing of hippocampal atrophy rates was seen in APOE is an element of 4 carriers treated with donepezil; no treatment effect was confirmed for any MRI measure in either treatment group. For each of the four brain atrophy rate measures, APCs were greater in subjects who converted to AD than non-converters, and were greater in APOE is an element of 4 carriers than non-carriers. MRI APCs and changes in cognitive test performance were uniformly correlated in the expected direction (all p<0.000). Results of this study support the feasibility of using MRI as an outcome measure of disease progression in multi center therapeutic trials for MCI.  相似文献   

9.
This study aimed to investigate cross-sectional and longitudinal changes of regional cerebral blood flow (rCBF) in preclinical dementia using single photon emission computed tomography (SPECT). SPECT and cognitive function were investigated in 39 mild cognitive impairment (MCI) subjects and 20 age-matched controls. All subjects were followed longitudinally 19 months on average, 16 MCI subjects progressed to Alzheimer's disease (AD), who were retrospectively defined as progressive mild cognitive impairment (PMCI) at baseline and 23 MCI subjects remained stable and were defined as stable mild cognitive impairment (SMCI) at baseline. SPECT was performed both at the initial investigation and at follow-up. Image data were analyzed using multivariate analysis, SPM and volume of interest (VOI)-based analysis. Significant covariate patterns were derived, which differentiate among PMCI, SMCI and controls at baseline as well as describe the longitudinal progression of PMCI. The combined SPECT and neuropsychology increased the diagnostic accuracy of PMCI at baseline. SPECT and neuropsychological testing can be used objectively for both baseline diagnosis and to monitor changes in brain function during very early AD.  相似文献   

10.
This study focuses on the morphometric changes of neurons in asymptomatic Alzheimer's disease (AD), a state characterized by the presence of AD lesions in subjects without cognitive impairment. In autopsy brains, we used stereological methods to compare the cell body and nuclear volumes of anterior cingulate gyrus (ACG) and CA1 hippocampal neurons in asymptomatic AD subjects (n=9), subjects with AD dementia (AD, n=8), mild cognitive impairment (MCI, n=9), and age-matched controls (controls, n=9). In ACG, we observed a significant decrease in the neuronal volume of MCI and AD compared to controls; by contrast, no atrophy was present in asymptomatic AD. Moreover, we found a significant increase in nuclear volume in asymptomatic AD compared to controls (P<0.001), MCI (P<0.01) and AD (P<0.001) brains. Similar results were found in the CA1 region of the hippocampus. This nuclear hypertrophy may represent an early neuronal reaction to Abeta or Tau, or a compensatory mechanism which forestalls the progression of AD and allows the brain to resist the development of dementia.  相似文献   

11.
The purpose of this article is to present a selective and concise summary of fluorodeoxyglucose (FDG) positron emission tomography (PET) in dementia imaging. FDG PET is used to visualize a downstream topographical marker that indicates the distribution of neural injury or synaptic dysfunction, and can identify distinct phenotypes of dementia due to Alzheimer's disease (AD), Lewy bodies, and frontotemporal lobar degeneration. AD dementia shows hypometabolism in the parietotemporal association area, posterior cingulate, and precuneus. Hypometabolism in the inferior parietal lobe and posterior cingulate/precuneus is a predictor of cognitive decline from mild cognitive impairment (MCI) to AD dementia. FDG PET may also predict conversion of cognitively normal individuals to those with MCI. Age-related hypometabolism is observed mainly in the anterior cingulate and anterior temporal lobe, along with regional atrophy. Voxel-based statistical analyses, such as statistical parametric mapping or three-dimensional stereotactic surface projection, improve the diagnostic performance of imaging of dementias. The potential of FDG PET in future clinical and methodological studies should be exploited further.  相似文献   

12.
Magnetic resonance imaging (MRI) patterns were examined together with cerebrospinal fluid (CSF) biomarkers in serial scans of Alzheimer's Disease Neuroimaging Initiative (ADNI) participants with mild cognitive impairment (MCI). The SPARE-AD score, summarizing brain atrophy patterns, was tested as a predictor of short-term conversion to Alzheimer's disease (AD). MCI individuals that converted to AD (MCI-C) had mostly positive baseline SPARE-AD (Spatial Pattern of Abnormalities for Recognition of Early AD) and atrophy in temporal lobe gray matter (GM) and white matter (WM), posterior cingulate/precuneous, and insula. MCI individuals that converted to AD had mostly AD-like baseline CSF biomarkers. MCI nonconverters (MCI-NC) had mixed baseline SPARE-AD and CSF values, suggesting that some MCI-NC subjects may later convert. Those MCI-NC with most negative baseline SPARE-AD scores (normal brain structure) had significantly higher baseline Mini Mental State Examination (MMSE) scores (28.67) than others, and relatively low annual rate of Mini Mental State Examination decrease (−0.25). MCI-NC with midlevel baseline SPARE-AD displayed faster annual rates of SPARE-AD increase (indicating progressing atrophy). SPARE-AD and CSF combination improved prediction over individual values. In summary, both SPARE-AD and CSF biomarkers showed high baseline sensitivity, however, many MCI-NC had abnormal baseline SPARE-AD and CSF biomarkers. Longer follow-up will elucidate the specificity of baseline measurements.  相似文献   

13.
We compared the predictive ability of the various neuroimaging tools and determined the most cost-effective, non-invasive Alzheimer''s disease (AD) prediction model in mild cognitive impairment (MCI) individuals. Thirty-two MCI subjects were evaluated at baseline with [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET), MRI, diffusion tensor imaging (DTI), and neuropsychological tests, and then followed up for 2 yr. After a follow up period, 12 MCI subjects converted to AD (MCIc) and 20 did not (MCInc). Of the voxel-based statistical comparisons of baseline neuroimaging data, the MCIc showed reduced cerebral glucose metabolism (CMgl) in the temporo-parietal, posterior cingulate, precuneus, and frontal regions, and gray matter (GM) density in multiple cortical areas including the frontal, temporal and parietal regions compared to the MCInc, whereas regional fractional anisotropy derived from DTI were not significantly different between the two groups. The MCIc also had lower Mini-Mental State Examination (MMSE) score than the MCInc. Through a series of model selection steps, the MMSE combined with CMgl model was selected as a final model (classification accuracy 93.8%). In conclusion, the combination of MMSE with regional CMgl measurement based on FDG-PET is probably the most efficient, non-invasive method to predict AD in MCI individuals after a two-year follow-up period.

Graphical Abstract

相似文献   

14.
Cortical sources of resting state electroencephalographic (EEG) rhythms are abnormal in subjects with mild cognitive impairment (MCI). Here, we tested the hypothesis that these sources in amnesic MCI subjects further deteriorate over 1 year. To this aim, the resting state eyes-closed EEG data were recorded in 54 MCI subjects at baseline (Mini Mental State Examination I = 26.9; standard error [SE], 0.2) and at approximately 1-year follow-up (13.8 months; SE, 0.5; Mini Mental State Examination II = 25.8; SE, 0.2). As a control, EEG recordings were also performed in 45 normal elderly and in 50 mild Alzheimer's disease subjects. EEG rhythms of interest were delta (2–4 Hz), theta (4–8 Hz), alpha1 (8–10.5 Hz), alpha2 (10.5–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz). Cortical EEG sources were estimated using low-resolution brain electromagnetic tomography. Compared with the normal elderly and mild Alzheimer's disease subjects, the MCI subjects were characterized by an intermediate power of posterior alpha1 sources. In the MCI subjects, the follow-up EEG recordings showed a decreased power of posterior alpha1 and alpha2 sources. These results suggest that the resting state EEG alpha sources were sensitive—at least at the group level—to the cognitive decline occurring in the amnesic MCI group over 1 year, and might represent cost-effective, noninvasive and widely available markers to follow amnesic MCI populations in large clinical trials.  相似文献   

15.
Cerebrospinal fluid (CSF) may be of valuable for exploring protein markers for the diagnosis of Alzheimer's disease (AD). The prospect of early detection and treatment, to slow progression, holds hope for aging populations with increased average lifespan. The aim of the present study was to investigate candidate CSF biological markers in patients with mild cognitive impairment (MCI) and AD and compare them with age-matched normal control subjects. In this report, we applied proteomics approaches to analyze 60 CSF samples derived from patients with neurodegenerative diseases such as MCI and AD. We classified patients by three groups: normal controls without cognitive dysfunction, MCI and AD. The AD group was subdivided into three groups by clinical severity according to clinical dementia rating (CDR), a well known clinical scale for dementia. We demonstrated a gradual decrease or absent of plasma retinol-binding protein (RBP) and haptoglobin precursor allele 1 in CSF from patients with MCI and AD compared to the age-matched normal subjects. Moreover, expression levels of both RBP and haptoglobin precursor allele 1 were observed to be very high in age-matched normal subjects. In contrast, the RBP and haptoglobin precursor allele 1 were much decreased in the MCI group; those expressions were more weak or absent in AD group, and correlated with disease severity and progression. These findings suggest that the CSF levels of both RBP and haptoglobin precursor allele 1 may be candidate biomarkers for the progression of normal to MCI to AD.  相似文献   

16.
Hippocampus and entorhinal cortex in mild cognitive impairment and early AD   总被引:14,自引:0,他引:14  
Magnetic resonance imaging (MRI) has been suggested as a useful tool in early diagnosis of Alzheimer's disease (AD). Based on MRI-derived volumes, we studied the hippocampus and entorhinal cortex (ERC) in 59 controls, 65 individuals with mild cognitive impairment (MCI) and 48 patients with AD. The controls and individuals with MCI were derived from population-based cohorts. Volumes of the hippocampus and ERC were significantly reduced in the following order: control > MCI > AD. Stepwise discriminant function analysis showed that the most efficient overall classification between controls and individuals with MCI subjects was achieved with ERC measurements (65.9%). However, the best overall classification between controls and AD patients (90.7%), and between individuals with MCI and AD patients (82.3%) was achieved with hippocampal volumes. Our results suggest that the ERC atrophy precedes hippocampal atrophy in AD. The ERC volume loss is dominant over the hippocampal volume loss in MCI, whereas more pronounced hippocampal volume loss appears in mild AD.  相似文献   

17.
The present study evaluated the clinical course of patients with mild cognitive impairment (MCI), the pattern of electroencephalography (EEG) changes following cognitive deterioration, as well as the potential of neurophysiological measures in predicting dementia. Twenty-seven subjects with MCI were followed for a mean follow up period of 21 months. Fourteen subjects (52%) progressed (P MCI) to clinically manifest Alzheimer's disease (AD), and 13 (48%) remained stable (S MCI). The two MCI subgroups did not differ in baseline EEG measures between each other and the healthy controls (n = 16), but had significantly lower theta relative power at left temporal, temporo-occipital, centro-parietal, and right temporo-occipital derivation when compared to the reference AD group (n = 15). The P MCI baseline alpha band temporo-parietal coherence, alpha relative power values at left temporal and temporo-occipital derivations, theta relative power values at frontal derivations, and the mean frequency at centro-parietal and temporo-occipital derivations overlapped with those for AD and control groups. After the follow-up, the P MCI patients had significantly higher theta relative power and lower beta relative power and mean frequency at the temporal and temporo-occipital derivations. A logistic regression model of baseline EEG values adjusted for baseline Mini-Mental Test Examination showed that the important predictors were alpha and theta relative power and mean frequency from left temporo-occipital derivation (T5-O1), which classified 85% of MCI subjects correctly.  相似文献   

18.
To determine the relationship between amyloid burden and neural function in healthy adults at risk for Alzheimer's Disease (AD), we used multimodal imaging with [C-11]Pittsburgh compound B positron emission tomography, [F-18]fluorodeoxyglucose, positron emission tomography , and magnetic resonance imaging, together with cognitive measurement in 201 subjects (mean age, 60.1 years; range, 46–73 years) from the Wisconsin Registry for Alzheimer's Prevention. Using a qualitative rating, 18% of the samples were strongly positive Beta-amyloid (Aβ+), 41% indeterminate (Aβi), and 41% negative (Aβ−). Aβ+ was associated with older age, female sex, and showed trends for maternal family history of AD and APOE4. Relative to the Aβ− group, Aβ+ and Aβi participants had increased glucose metabolism in the bilateral thalamus; Aβ+ participants also had increased metabolism in the bilateral superior temporal gyrus. Aβ+ participants exhibited increased gray matter in the lateral parietal lobe bilaterally relative to the Aβ− group, and no areas of significant atrophy. Cognitive performance and self report cognitive and affective symptoms did not differ between groups. Amyloid burden can be identified in adults at a mean age of 60 years and is accompanied by glucometabolic increases in specific areas, but not atrophy or cognitive loss. This asymptomatic stage may be an opportune window for intervention to prevent progression to symptomatic AD.  相似文献   

19.
Structural brain changes have been described in both mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, less is known about whether structural changes are detectable earlier, in the asymptomatic phase. Using voxel-based morphometry (VBM) and shape analyses of magnetic resonance imaging (MRI) data, we investigated structural brain differences between groups of healthy subjects, stratified by subsequent diagnoses of MCI or AD during a 10-year follow-up. Images taken at baseline, at least 4 years before any cognitive symptoms, showed that subjects with future cognitive impairment (preclinical AD and MCI) had reduced brain volume in medial temporal lobes, posterior cingulate/precuneus, and orbitofrontal cortex, compared with matched subjects who remained cognitively healthy for 10 years (HC). For only those subjects later diagnosed as AD, significantly greater atrophy at baseline was detected in the right medial temporal lobe, which was also confirmed by shape analysis of the right hippocampus in these subjects. Our results demonstrate that structural brain changes occur years before clinical cognitive decline in AD and are localized to regions affected by AD neuropathology.  相似文献   

20.
The aim of this study was to examine correlations between acquisition and short-delay consolidation and brain metabolism at rest measured by fluorodeoxyglucose positron emission tomography (FDG-PET) in 44 Alzheimer's disease (AD) patients, 16 patients with mild cognitive impairment (MCI) who progressed to dementia (MCI-AD), 15 MCI patients who remained stable (MCI-S, 4–8 years of follow-up), and 20 healthy older participants. Acquisition and short-delay consolidation were calculated respectively as mean gained (MG) and lost (ML) access to items of the California Verbal Learning Task. MG performance suggests that acquisition is impaired in AD patients even at predementia stage (MCI-AD). ML performance suggests that short-delay consolidation is deficient only in confirmed AD patients. Variations in acquisition performance in control participants are related to metabolic activity in the anterior parietal cortex, an area supporting task-positive attentional processes. In contrast, the acquisition deficit is related to decreased activity in the lateral temporal cortex, an area supporting semantic processes, in patients at an early stage of AD and is related to metabolic activity in the hippocampus, an area supporting associative processes, in confirmed AD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号