首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horizontal vestibuloocular reflex (VOR) of Purkinje cell degeneration (pcd/pcd) mutant mice, which lack a functional cerebellar cortex, was compared in darkness to that of wild-type animals during constant velocity yaw rotations about an earth-horizontal axis and during sinusoidal yaw rotations about an earth-vertical axis. Both wild-type and pcd/pcd mice showed a compensatory average VOR eye velocity, or bias, during constant velocity horizontal axis rotations, evidence of central neural processing of otolith afferent signals to create a signal proportional to head angular velocity. Eye velocity bias was greater in pcd/pcd mice than in wild-type mice at a low rotational velocity (32 degrees/s), but less at higher velocities (128 and 200 degrees/s). Lesion of the medial nodulus severely attenuated eye velocity bias in two wild-type mice, without attenuating VOR during sinusoidal vertical axis yaw rotations at 0.2 Hz. These results show that while head velocity estimation in mice, as in primates, depends on the cerebellum, pcd/pcd mutant mice develop velocity estimation without a functional cerebellar cortex. We conclude that neural circuits that exclude cerebellar cortex are capable of the signal processing necessary for head angular velocity estimation, but that these circuits are insufficient for normal estimation at high velocities.  相似文献   

2.
Summary We measured the effect of static lateral tilt (roll) on the gain and time constant of the vestibulo-ocular reflex (VOR) in five normal subjects by recording both the horizontal and vertical components of eye velocity in space for rotation about an earth vertical axis with the head either upright or rolled to either side. The time constant of the VOR in the upright position was 19.6 ±3.2s (mean ± standard deviation). The time constant of the horizontal component with respect to the head decreased to 15.7±4.0s for 30° roll and to 12.7±2.7s for 60° roll. The time constant of the vertical component with respect to the head was 11.0±1.4 s for 30° roll and 7.5±1.6 s for 60° roll. The gain of the horizontal VOR with respect to space did not vary significantly with roll angle but a small space-vertical component to the VOR appeared during all rotations when the head was rolled away from upright. This non-compensatory nystagmus built up to a maximum of 2–3°/s at 17.0±4.7s after the onset of rotation and then decayed. These data suggest that static otolith input modulates the central storage of semicircular canal signals, and that head-horizontal and head-vertical components of the VOR can decay at different rates.  相似文献   

3.
The pitch vertical vestibulo-ocular reflex (VOR) is accurate and symmetrical when tested in the normal upright posture, where otolith organ and central velocity storage signals supplement the basic VOR mediated by the semicircular canals. However, when the animal and rotation axis are together repositioned by rolling 90° to one side, head forward pitch rotations that excite the anterior semicircular canals elicit a more accurately timed VOR than do oppositely directed rotations that excite the posterior canals. This suggests that velocity storage of posterior canal signals is lost when the head is placed on its side. We recorded from 47 VOR relay neurons, second-order vestibulo-ocular neurons, of alert cats to test whether asymmetries are evident in the responses of neurons in the medial and superior vestibular nuclei during earth-horizontal axis rotations in the normal upright posture. Neurons were identified by antidromic responses to oculomotor nucleus stimulation and orthodromic responses to labyrinth stimulation, and were classified as having primarily anterior, posterior, or horizontal canal input based on response directionality. Neuronal response gains and phases were recorded during 0.5 Hz and 0.05 Hz sinusoidal oscillations in darkness. During 0.5 Hz rotations, anterior canal second-order vestibulo-ocular neurons responded approximately in phase with head velocity (mean phase re head position, ±SE, 80°±3°, n=18), as did posterior canal second-order vestibulo-ocular neurons (mean phase 81°±1°, n=25). Lowering the rotation frequency to 0.05 Hz resulted in only slight advances in response phases of individual anterior canal second-order vestibulo-ocular neurons (mean phase 86°±6°, mean advance 7°±5°, n=12). In contrast, posterior canal second-order vestibulo-ocular neurons behaved more like semicircular canal afferents, with responses markedly phase-advanced (mean advance 28°±5°, n=14) by lowering rotation frequency to 0.05 Hz (mean phase 111°±5°, n=14). In summary, low frequency responses of anterior and posterior canal second-order vestibulo-ocular neurons recorded during horizontal axis pitch correspond to the VOR they excite during vertical axis pitch. These results show that velocity storage is evident at anterior but not posterior canal second-order vestibulo-ocular neurons. We conclude that responses of posterior canal second-order vestibulo-ocular neurons are insufficient to explain the accurate low frequency VOR phase observed during backward head pitch in the upright posture, and that velocity storage or otolith signals required for VOR accuracy are carried by other neurons. Electronic Publication  相似文献   

4.
We describe in detail the frequency response of the human three-dimensional angular vestibulo-ocular response (3-D aVOR) over a frequency range of 0.05-1 Hz. Gain and phase of the human aVOR were determined for passive head rotations in the dark, with the rotation axis either aligned with or perpendicular to the direction of gravity (earth-vertical or earth-horizontal). In the latter case, the oscillations dynamically stimulated both the otolith organs and the semi-circular canals. We conducted experiments in pitch and yaw, and compared the results with previously-published roll data. Regardless of the axis of rotation and the orientation of the subject, the gain in aVOR increased with frequency to about 0.3 Hz, and was approximately constant from 0.3 to 1 Hz. The aVOR gain during pitch and yaw rotations was larger than during roll rotations. Otolith and canal cues combined differently depending upon the axis of rotation: for torsional and pitch rotations, aVOR gain was higher with otolith input; for yaw rotations the aVOR was not affected by otolith stimulation. There was a phase lead in all three dimensions for frequencies below 0.3 Hz when only the canals were stimulated. For roll and pitch rotations this phase lead vanished with dynamic otolith stimulation. In contrast, the horizontal phase showed no improvement with additional otolith input during yaw rotations. The lack of a significant otolith contribution to the yaw aVOR was observed when subjects were supine, prone or lying on their sides. Our results confirm studies with less-natural stimuli (off-vertical axis rotation) that the otoliths contribute a head-rotation signal to the aVOR. However, the magnitude of the contribution depends on the axis of rotation, with the gain in otolith-canal cross-coupling being smallest for yaw axis rotations. This could be because, in humans, typical yaw head movements will stimulate the otoliths to a much lesser extent then typical pitch and roll head movements.  相似文献   

5.
In rhesus monkeys, the dynamic properties of the torsional vestibulo-ocular reflex (VOR) are modified by otolith input: compared with torsional oscillations about an earth-vertical axis (canal-only stimulation), the phase lead observed at frequencies below 0.1 Hz is cancelled when the animals are rotated about an earth-horizontal axis (canal-and-otolith stimulation); the gains of the torsional VOR, however, are nearly identical in both conditions. To test whether or not canal-otolith interaction in humans is similar to that in rhesus monkeys, we examined ten healthy human subjects on a three-axis servo-controlled motor-driven turntable. The subjects were oscillated in upright or supine position in complete darkness over a similarly wide range of frequencies (0.05-1.0 Hz) with peak velocities <40 degrees/s. Eye movements were recorded using the three-dimensional search coil technique. Compared with the torsional vestibulo-ocular gains during canal-stimulation only (earth-vertical axis), the gains obtained during combined canal-otolith-stimulation (earth-horizontal axis) were significantly higher throughout the entire frequency range (P<0.05). The gain increased by 0.100+/-0.074 (SD), independent of frequency. During the earth-horizontal axis stimulation, the phase remained always around zero, which is in contrast to the canal-stimulation only, during which one finds an increasing phase lead as frequency decreases. We conclude that, in healthy humans as in rhesus monkeys, the phase lead from the canal signals at low frequencies is effectively cancelled by the otolith input. In contrast to rhesus monkeys, however, otolith signals in healthy humans increase the gain of the torsional VOR at frequencies from 0.05 to 1.0 Hz. This normal database is crucial for the interpretation of results obtained in patients with vestibular disorders.  相似文献   

6.
If the rotational vestibuloocular reflex (VOR) were to achieve optimal retinal image stabilization during head rotations in three-dimensional space, it must turn the eye around the same axis as the head, with equal velocity but in the opposite direction. This optimal VOR strategy implies that the position of the eye in the orbit must not affect the VOR. However, if the VOR were to follow Listing's law, then the slow-phase eye rotation axis should tilt as a function of current eye position. We trained animals to fixate visual targets placed straight ahead or 20 degrees up, down, left or right while being oscillated in yaw, pitch, and roll at 0.5-4 Hz, either with or without a full-field visual background. Our main result was that the visually assisted VOR of normal monkeys invariantly rotated the eye around the same axis as the head during yaw, pitch, and roll (optimal VOR). In the absence of a visual background, eccentric eye positions evoked small axis tilts of slow phases in normal animals. Under the same visual condition, a prominent effect of eye position was found during roll but not during pitch or yaw in animals with low torsional and vertical gains following plugging of the vertical semicircular canals. This result was in accordance with a model incorporating a specific compromise between an optimal VOR and a VOR that perfectly obeys Listing's law. We conclude that the visually assisted VOR of the normal monkey optimally stabilizes foveal as well as peripheral retinal images. The finding of optimal VOR performance challenges a dominant role of plant mechanics and supports the notion of noncommutative operations in the oculomotor control system.  相似文献   

7.
This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.  相似文献   

8.
Growing experimental and theoretical evidence suggests a functional synergy in the processing of otolith and semicircular canal signals for the generation of the vestibulo-ocular reflexes (VORs). In this study we have further tested this functional interaction by quantifying the adaptive changes in the otolith-ocular system during both rotational and translational movements after surgical inactivation of the semicircular canals. For 0.1-0.5 Hz (stimuli for which there is no recovery of responses from the plugged canals), pitch and roll VOR gains recovered during earth-horizontal (but not earth-vertical) axis rotations. Corresponding changes were also observed in eye movements elicited by translational motion (0.1-5 Hz). Specifically, torsional eye movements increased during lateral motion, whereas vertical eye movements increased during fore-aft motion. The findings indicate that otolith signals can be adapted according to a compromised strategy that leads to improved gaze stabilization during motion. Because canal-plugged animals permanently lose the ability to discriminate gravitoinertial accelerations, adapted animals can use the presence of gravity through otolith-driven tilt responses to assist gaze stabilization during earth-horizontal axis rotations.  相似文献   

9.
The aim of this study was to determine if the angular vestibulo-ocular reflex (VOR) in response to pitch, roll, left anterior–right posterior (LARP), and right anterior–left posterior (RALP) head rotations exhibited the same linear and nonlinear characteristics as those found in the horizontal VOR. Three-dimensional eye movements were recorded with the scleral search coil technique. The VOR in response to rotations in five planes (horizontal, vertical, torsional, LARP, and RALP) was studied in three squirrel monkeys. The latency of the VOR evoked by steps of acceleration in darkness (3,000°/s2 reaching a velocity of 150°/s) was 5.8±1.7 ms and was the same in response to head rotations in all five planes of rotation. The gain of the reflex during the acceleration was 36.7±15.4% greater than that measured at the plateau of head velocity. Polynomial fits to the trajectory of the response show that eye velocity is proportional to the cube of head velocity in all five planes of rotation. For sinusoidal rotations of 0.5–15 Hz with a peak velocity of 20°/s, the VOR gain did not change with frequency (0.74±0.06, 0.74±0.07, 0.37±0.05, 0.69±0.06, and 0.64±0.06, for yaw, pitch, roll, LARP, and RALP respectively). The VOR gain increased with head velocity for sinusoidal rotations at frequencies 4 Hz. For rotational frequencies 4 Hz, we show that the vertical, torsional, LARP, and RALP VORs have the same linear and nonlinear characteristics as the horizontal VOR. In addition, we show that the gain, phase and axis of eye rotation during LARP and RALP head rotations can be predicted once the pitch and roll responses are characterized.This work was supported by NIH grant R01 DC02390  相似文献   

10.
 We employed binocular magnetic search coils to study the vestibulo-ocular reflex (VOR) and visually enhanced vestibulo-ocular reflex (VVOR) of 15 human subjects undergoing passive, whole-body rotations about a vertical (yaw) axis delivered as a series of pseudorandom transients and sinusoidal oscillations at frequencies from 0.8 to 2.0 Hz. Rotations were about a series of five axes ranging from 20 cm posterior to the eyes to 10 cm anterior to the eyes. Subjects were asked to regard visible or remembered targets 10 cm, 25 cm, and 600 cm distant from the right eye. During sinusoidal rotations, the gain and phase of the VOR and VVOR were found to be highly dependent on target distance and eccentricity of the rotational axis. For axes midway between or anterior to the eyes, sinusoidal gain decreased progressively with increasing target proximity, while, for axes posterior to the otolith organs, gain increased progressively with target proximity. These effects were large and highly significant. When targets were remote, rotational axis eccentricity nevertheless had a small but significant effect on sinusoidal gain. For sinusoidal rotational axes midway between or anterior to the eyes, a phase lead was present that increased with rotational frequency, while for axes posterior to the otolith organs phase lag increased with rotational frequency. Transient trials were analyzed during the first 25 ms and from 25 to 80 ms after the onset of the head rotation. During the initial 25 ms of transient head rotations, VOR and VVOR gains were not significantly influenced by rotational eccentricity or target distance. Later in the transient responses, 25–80 ms from movement onset, both target distance and eccentricity significantly influenced gain in a manner similar to the behavior during sinusoidal rotation. Vergence angle generally remained near the theoretically ideal value during illuminated test conditions (VVOR), while in darkness vergence often varied modestly from the ideal value. Regression analysis of instantaneous VOR gain as a function of vergence demonstrated only a weak correlation, indicating that instantaneous gain is not likely to be directly dependent on vergence. A model was proposed in which linear acceleration as sensed by the otoliths is scaled by target distance and summed with angular acceleration as sensed by the semicircular canals to control eye movements. The model was fit to the sinusoidal VOR data collected in darkness and was found to describe the major trends observed in the data. The results of the model suggest that a linear interaction exists between the canal and otolithic inputs to the VOR. Received: 1 April 1996 / Accepted: 15 October 1996  相似文献   

11.
During sustained constant velocity and low-frequency off-vertical axis rotations (OVAR), otolith signals contribute significantly to slow-phase eye velocity. The adaptive plasticity of these responses was investigated here after semicircular canal plugging. Inactivation of semicircular canals results in a highly compromised and deficient vestibulo-ocular reflex (VOR). Based on the VOR enhancement hypothesis, one could expect an adaptive increase of otolith-borne angular velocity signals due to combined otolith/canal inputs after inactivation of the semicircular canals. Contrary to expectations, however, the steady-state slow-phase velocity during constant velocity OVAR decreased in amplitude over time. A similar progressive decrease in VOR gain was also observed during low-frequency off-vertical axis oscillations. This response deterioration was present in animals with either lateral or vertical semicircular canals inactivated and was limited to the plane(s) of the plugged canals. The results are consistent with the idea that the low-frequency otolith signals do not simply enhance VOR responses. Rather, the nervous system appears to correlate vestibular sensory information from the otoliths and the semicircular canals to generate an integral response to head motion.  相似文献   

12.
Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.  相似文献   

13.
To investigate the role of noncommutative computations in the oculomotor system, three-dimensional (3D) eye movements were measured in seven healthy subjects using a memory-contingent vestibulooculomotor paradigm. Subjects had to fixate a luminous point target that appeared briefly at an eccentricity of 20 degrees in one of four diagonal directions in otherwise complete darkness. After a fixation period of approximately 1 s, the subject was moved through a sequence of two rotations about mutually orthogonal axes in one of two orders (30 degrees yaw followed by 30 degrees pitch and vice versa in upright and 30 degrees yaw followed by 20 degrees roll and vice versa in both upright and supine orientations). We found that the change in ocular torsion induced by consecutive rotations about the yaw and the pitch axis depended on the order of rotations as predicted by 3D rotation kinematics. Similarly, after rotations about the yaw and roll axis, torsion depended on the order of rotations but now due to the change in final head orientation relative to gravity. Quantitative analyses of these ocular responses revealed that the rotational vestibuloocular reflexes (VORs) in far vision closely matched the predictions of 3D rotation kinematics. We conclude that the brain uses an optimal VOR strategy with the restriction of a reduced torsional position gain. This restriction implies a limited oculomotor range in torsion and systematic tilts of the angular eye velocity as a function of gaze direction.  相似文献   

14.
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in ten normal human subjects by applying fast, short-lasting, passive head and body tilts (15, 30, 45, or 90° in the roll or pitch plane) 2 s after sudden stop from a constant-velocity rotation (100°/s) about the earth-vertical axis in yaw. Eye movements were measured with three-dimensional magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates) for large head tilts (90°) and also for small head tilts (15–45°) for reorientations in the pitch plane. Only for small head tilts (15–45°) in the roll plane was there a reorientation of the eye rotation axis toward the gravitational vector. This reorientation was approximately compensatory for 15° head tilts. For 30° and 45° head tilts the eye rotation axis tilted toward the gravitational vector by about the same amount as for 15° head tilts. These results suggest that, with the exception of small head tilts in the roll plane, there was no compelling data showing a relationship between the eye rotation axis and head tilt and that postrotatory nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans. This indicates a rudimentary, nonlinear, and direction-specific interaction of semicircular canal and otolith signals in the central vestibular system in humans.  相似文献   

15.
Summary We studied the vertical vestibulo-ocular reflex (VOR) and vertical visual-vestibular interaction induced by voluntary pitch in the upright and onside positions in eight normal human subjects. Subjects were trained to produce sinusoidal (0.4 to 1.6 Hz) pitch head movements guided by a frequency modulated sound signal. Eye and head movements were recorded with a magnetic search coil. There was no significant difference between the pooled average gain (eye velocity/head velocity) of the vertical VOR in the upright and onside positions. Vertical VOR gain in any position could be more or less than 1.0 for individual subjects. By contrast, gain with an earth-fixed visual target was always near 1.0. Asymmetries in the gain of upward and downward VOR, pursuit and fixation suppression of the VOR were found in individual subjects, but in the group of normal subjects there was no significant difference between gain of up and down eye movements induced by vestibular, visual or visual-vestibular stimulation in any position. We conclude that during voluntary pitch otolith signals are not critical for normal functioning of the vertical VOR.  相似文献   

16.
To investigate the characteristics of eye movements produced by electrical stimulation of semicircular canal afferents, we studied the spatial and temporal features of eye movements elicited by short-term lateral canal stimulation in two squirrel monkeys with plugged lateral canals, with the head upright or statically tilted in the roll plane. The electrically induced vestibuloocular reflex (eVOR) evoked with the head upright decayed more quickly than the stimulation signal provided by the electrode, demonstrating an absence of the classic velocity storage effect that improves the dynamics of the low-frequency VOR. When stimulation was provided with the head tilted in roll, however, the eVOR decayed more rapidly than when the head was upright, and a cross-coupled vertical response developed that shifted the eye's rotational axis toward alignment with gravity. These results demonstrate that rotational information provided by electrical stimulation of canal afferents interacts with otolith inputs (or other graviceptive cues) in a qualitatively normal manner, a process that is thought to be mediated by the velocity storage network. The observed interaction between the eVOR and graviceptive cues is of critical importance for the development of a functionally useful vestibular prosthesis. Furthermore, the presence of gravity-dependent effects (dumping, spatial orientation) despite an absence of low-frequency augmentation of the eVOR has not been previously described in any experimental preparation.  相似文献   

17.
Summary The horizontal vestibulo-ocular reflex was measured electrooculographically in four cats during sinusoidal rotations in the dark at frequencies from 0.01 Hz to 1.0 Hz in five body orientations. Vertical axis rotations in the prone and supine positions were used to stimulate horizontal canals only. Horizontal axis rotations, with the cat on the left or right side or nose down (pitched 90° from prone) were used to stimulate horizontal canal plus otolith organs. At frequencies below 0.05 Hz the horizontal vestibulo-ocular reflex produced by horizontal canal plus otolith stimulation showed a more accurately compensatory response than the horizontal vestibuloocular reflex produced by horizontal canal stimulation alone. Canal plus otolith horizontal vestibulo-ocular reflex gain and phase remained relatively constant across all frequencies, while the horizontal vestibulo-ocular reflex gain and phase from orientations involving canal stimulation alone changed dramatically as rotation frequency decreased. In addition, the reflex in the supine position showed gain decreases and phase advances at higher frequencies than in the prone position.  相似文献   

18.
In healthy human subjects, a head tilt about its roll axis evokes a dynamic counterroll that is mediated by both semicircular canal and otolith stimulation, and a static counterroll that is mediated by otolith stimulation only. The vertical ocular divergence associated with the static counterroll too is otolith-mediated. A previous study has shown that, in humans, there is also a vertical divergence during dynamic head roll, but this report was not conclusive on whether this response was mediated by the semicircular canals only or whether the otoliths made a significant contribution. To clarify this issue, we applied torsional whole-body position steps (amplitude 10 degrees, peak acceleration of 90 degrees /s(2), duration 650 ms) about the earth-vertical (supine body position) and earth-horizontal (upright body position) axis to healthy human subjects who were monocularly fixating a straight-ahead target. Eye movements were recorded binocularly with dual search coils in three dimensions. The dynamic parameters were determined 120 ms after the beginning of the turntable movement, i.e., before the first fast phase of nystagmus. The static parameters were measured 4 s after the beginning of the turntable movement. The dynamic gain of the counterroll was larger in upright (average gain: 0.48 +/- 0.10 SD) than in supine (0.36 +/- 0.10) position. The static gain of the counterroll in the upright position (0.21 +/- 0.06) was smaller than the dynamic gain. Divergent eye movements (intorting eye hypertropic) evoked during the dynamic phase were not significantly different between supine (average vergence velocity: 0.87 +/- 0.51 degrees /s) and upright (0.84 +/- 0.64 degrees /s) positions. The static vertical divergence in upright position was 0.32 +/- 0.14 degrees. The results indicate that the dynamic vertical divergence in contrast to the dynamic ocular counterroll is not enhanced by otolith input. These results can be explained through the different patterns of connectivity between semicircular canals and utricles to the eye muscles. Alternatively, we hypothesize that the small dynamic vertical divergence represents the remaining vertical error necessary to drive an adaptive control mechanism that normally maintains a vertical eye alignment.  相似文献   

19.
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.  相似文献   

20.
The vestibulo-ocular reflex (VOR) was studied in nine human subjects 2–15 months after permanent surgical occlusion of one posterior semicircular canal. The stimuli used were rapid, passive, unpredictable, low-amplitude (10–20°), high-acceleration (3000–4000°/s2) head rotations in pitch and yaw planes. The responses measured were vertical and horizontal eye rotations, and the results were compared with those from 19 normal subjects. After unilateral occlusion of the posterior semi-circular canal, the gain of the head-up pitch vertical VOR — the vertical VOR generated by excitation from only one and disfacilitation from two vertical semicircular canals — was reduced to 0.61±0.06 (normal 0.92±0.06) at a head velocity of 200°/s. In contrast the gain of the head-down pitch vertical VOR — the VOR still generated by excitation from two, but disfacilitation from only one vertical semicircular canal — was within normal limits: 0.86±0.11 (normal 0.96±0.04). The gain of the horizontal VOR in response to yaw head rotations — ipsilesion 0.81±0.06 (normal 0.88±0.05) and contralesion 0.80±0.11 (normal 0.92±0.11) — was within normal limits in both directions (group means ± two-tailed 95% confidence intervals given in each case). These results show that occlusion of just one vertical semicircular canal produces a permanent deficit of about 30% in the vertical VOR gain in response to rapid pitch head rotations in the excitatory direction of the occluded canal. This observation indicates that, in response to a stimulus in the higher dynamic range, compensation of the human VOR for the loss of excitatory input from even one vertical semicircular canal is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号