首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The temporal synchrony of auditory and visual signals is known to affect the perception of an external event, yet it is unclear what neural mechanisms underlie the influence of temporal synchrony on perception. Using parametrically varied levels of stimulus asynchrony in combination with BOLD fMRI, we identified two anatomically distinct subregions of multisensory superior temporal cortex (mSTC) that showed qualitatively distinct BOLD activation patterns. A synchrony-defined subregion of mSTC (synchronous > asynchronous) responded only when auditory and visual stimuli were synchronous, whereas a bimodal subregion of mSTC (auditory > baseline and visual > baseline) showed significant activation to all presentations, but showed monotonically increasing activation with increasing levels of asynchrony. The presence of two distinct activation patterns suggests that the two subregions of mSTC may rely on different neural mechanisms to integrate audiovisual sensory signals. An additional whole-brain analysis revealed a network of regions responding more with synchronous than asynchronous speech, including right mSTC, and bilateral superior colliculus, fusiform gyrus, lateral occipital cortex, and extrastriate visual cortex. The spatial location of individual mSTC ROIs was much more variable in the left than right hemisphere, suggesting that individual differences may contribute to the right lateralization of mSTC in a group SPM. These findings suggest that bilateral mSTC is composed of distinct multisensory subregions that integrate audiovisual speech signals through qualitatively different mechanisms, and may be differentially sensitive to stimulus properties including, but not limited to, temporal synchrony.  相似文献   

2.
Electrophysiological studies in nonhuman primates and other mammals have shown that sensory cues from different modalities that appear at the same time and in the same location can increase the firing rate of multisensory cells in the superior colliculus to a level exceeding that predicted by summing the responses to the unimodal inputs. In contrast, spatially disparate multisensory cues can induce a profound response depression. We have previously demonstrated using functional magnetic resonance imaging (fMRI) that similar indices of crossmodal facilitation and inhibition are detectable in human cortex when subjects listen to speech while viewing visually congruent and incongruent lip and mouth movements. Here, we have used fMRI to investigate whether similar BOLD signal changes are observable during the crossmodal integration of nonspeech auditory and visual stimuli, matched or mismatched solely on the basis of their temporal synchrony, and if so, whether these crossmodal effects occur in similar brain areas as those identified during the integration of audio-visual speech. Subjects were exposed to synchronous and asynchronous auditory (white noise bursts) and visual (B/W alternating checkerboard) stimuli and to each modality in isolation. Synchronous and asynchronous bimodal inputs produced superadditive BOLD response enhancement and response depression across a large network of polysensory areas. The most highly significant of these crossmodal gains and decrements were observed in the superior colliculi. Other regions exhibiting these crossmodal interactions included cortex within the superior temporal sulcus, intraparietal sulcus, insula, and several foci in the frontal lobe, including within the superior and ventromedial frontal gyri. These data demonstrate the efficacy of using an analytic approach informed by electrophysiology to identify multisensory integration sites in humans and suggest that the particular network of brain areas implicated in these crossmodal integrative processes are dependent on the nature of the correspondence between the different sensory inputs (e.g. space, time, and/or form).  相似文献   

3.
Human brain activity associated with audiovisual perception and attention   总被引:1,自引:0,他引:1  
Coherent perception of objects in our environment often requires perceptual integration of auditory and visual information. Recent behavioral data suggest that audiovisual integration depends on attention. The current study investigated the neural basis of audiovisual integration using 3-Tesla functional magnetic resonance imaging (fMRI) in 12 healthy volunteers during attention to auditory or visual features, or audiovisual feature combinations of abstract stimuli (simultaneous harmonic sounds and colored circles). Audiovisual attention was found to modulate activity in the same frontal, temporal, parietal and occipital cortical regions as auditory and visual attention. In addition, attention to audiovisual feature combinations produced stronger activity in the superior temporal cortices than attention to only auditory or visual features. These modality-specific areas might be involved in attention-dependent perceptual binding of synchronous auditory and visual events into coherent audiovisual objects. Furthermore, the modality-specific temporal auditory and occipital visual cortical areas showed attention-related modulations during both auditory and visual attention tasks. This result supports the proposal that attention to stimuli in one modality can spread to encompass synchronously presented stimuli in another modality.  相似文献   

4.
Stevenson RA  James TW 《NeuroImage》2009,44(3):1210-1223
The superior temporal sulcus (STS) is a region involved in audiovisual integration. In non-human primates, multisensory neurons in STS display inverse effectiveness. In two fMRI studies using multisensory tool and speech stimuli presented at parametrically varied levels of signal strength, we show that the pattern of neural activation in human STS is also inversely effective. Although multisensory tool-defined and speech-defined regions of interest were non-overlapping, the pattern of inverse effectiveness was the same for tools and speech across regions. The findings suggest that, even though there are sub-regions in STS that are speech-selective, the manner in which visual and auditory signals are integrated in multisensory STS is not specific to speech.  相似文献   

5.
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech.  相似文献   

6.
During object manipulation the brain integrates the visual, auditory, and haptic experience of an object into a unified percept. Previous brain imaging studies have implicated for instance the dorsal part of the lateral occipital complex in visuo-tactile and the posterior superior temporal sulcus in audio-visual integration of object-related inputs (Amedi et al., 2005). Yet it is still unclear which brain regions represent object-specific information of all three sensory modalities. To address this question, we performed two complementary functional magnetic resonance imaging experiments. In the first experiment, we identified brain regions which were consistently activated by unimodal visual, auditory, and haptic processing of manipulable objects relative to non-object control stimuli presented in the same modality. In the second experiment, we assessed regional brain activations when participants had to match object-related information that was presented simultaneously in two or all three modalities. Only a well-defined region in left fusiform gyrus (FG) showed an object-specific activation during unisensory processing in the visual, auditory, and tactile modalities. The same region was also consistently activated during multisensory matching of object-related information across all three senses. Taken together, our results suggest that this region is central to the recognition of manipulable objects. A putative role of this FG region is to unify object-specific information provided by the visual, auditory, and tactile modalities into trisensory object representations.  相似文献   

7.
8.
The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatiotemporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual/ba/, incongruent auditory/ba/synchronized with visual/ga/, auditory-only/ba/, and visual-only/ba/and/ga/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 ms. The CDRs demonstrated complex spatiotemporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area [Miller, L.M., d'Esposito, M., 2005. Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. Journal of Neuroscience 25, 5884-5893]. The importance of spatiotemporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (<100 ms) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 ms. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response.  相似文献   

9.
Functional topography of working memory for face or voice identity   总被引:3,自引:0,他引:3  
Rämä P  Courtney SM 《NeuroImage》2005,24(1):224-234
We used functional magnetic resonance imaging (fMRI) to investigate whether the neural systems for nonspatial visual and auditory working memory exhibits a functional dissociation. The subjects performed a delayed recognition task for previously unfamiliar faces and voices and an audiovisual sensorimotor control task. During the initial sample and subsequent test stimulus presentations, activation was greater for the face than for the voice identity task bilaterally in the occipitotemporal cortex and, conversely, greater for voices than for faces bilaterally in the superior temporal sulcus/gyrus (STS/STG). Ventral prefrontal regions were activated by both memory delays in comparison with the control delays, and there was no significant difference in direct voxelwise comparisons between the tasks. However, further analyses showed that there was a subtle difference in the functional topography for two delay types within the ventral prefrontal cortex. Face delays preferentially activate the dorsal part of the ventral prefrontal cortex (BA 44/45) while voice delays preferentially activate the inferior part (BA 45/47), indicating a ventral/dorsal auditory/visual topography within the ventral prefrontal cortex. The results confirm that there is a modality-specific attentional modulation of activity in visual and auditory sensory areas during stimulus presentation. Moreover, within the nonspatial information-type domain, there is a subtle across-modality dissociation within the ventral prefrontal cortex during working memory maintenance of faces and voices.  相似文献   

10.
Nath AR  Beauchamp MS 《NeuroImage》2012,59(1):781-787
The McGurk effect is a compelling illusion in which humans perceive mismatched audiovisual speech as a completely different syllable. However, some normal individuals do not experience the illusion, reporting that the stimulus sounds the same with or without visual input. Converging evidence suggests that the left superior temporal sulcus (STS) is critical for audiovisual integration during speech perception. We used blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) to measure brain activity as McGurk perceivers and non-perceivers were presented with congruent audiovisual syllables, McGurk audiovisual syllables, and non-McGurk incongruent syllables. The inferior frontal gyrus showed an effect of stimulus condition (greater responses for incongruent stimuli) but not susceptibility group, while the left auditory cortex showed an effect of susceptibility group (greater response in susceptible individuals) but not stimulus condition. Only one brain region, the left STS, showed a significant effect of both susceptibility and stimulus condition. The amplitude of the response in the left STS was significantly correlated with the likelihood of perceiving the McGurk effect: a weak STS response meant that a subject was less likely to perceive the McGurk effect, while a strong response meant that a subject was more likely to perceive it. These results suggest that the left STS is a key locus for interindividual differences in speech perception.  相似文献   

11.
Kang E  Lee DS  Kang H  Hwang CH  Oh SH  Kim CS  Chung JK  Lee MC 《NeuroImage》2006,32(1):423-431
Speech perception in face-to-face conversation involves processing of speech sounds (auditory) and speech-associated mouth/lip movements (visual) from a speaker. Using PET where no scanner noise was present, brain regions involved in speech cue processing were investigated with the normal hearing subjects with no previous lip-reading training (N = 17) carrying out a semantic plausibility decision on spoken sentences delivered in a movie file. Multimodality was ensured at the sensory level in all four conditions. Sensory-specific speech cue of one sensory modality, i.e., auditory speech (A condition) or mouth movement (V condition), was delivered with a control stimulus of the other modality whereas speech cues of both sensory modalities (AV condition) were delivered during bimodal condition. In comparison to the control condition, extensive activations in the superior temporal regions were observed bilaterally during the A condition but these activations were reduced in extent and left lateralized during the AV condition. Polymodal region such as left posterior superior temporal sulcus (pSTS) involved in cross-modal interaction/integration of audiovisual speech was found to be activated during the A and more so during the AV conditions but not during the V condition. Activations were observed in Broca's (BA 44), medial frontal (BA 8), and anterior ventrolateral prefrontal (BA 47) regions in the left during the V condition, where lip-reading performance was less successful. Results indicated that the speech-associated lip movements (visual speech cue) rendered suppression on the activity in the right auditory temporal regions. Overadditivity (AV > A + V) observed in the right postcentral region during the bimodal condition relative to the sum of unimodal speech conditions was also associated with reduced activity during the V condition. These findings suggested that visual speech cue could exert an inhibitory modulatory effect on the brain activities in the right hemisphere during the cross-modal interaction of audiovisual speech perception.  相似文献   

12.
Temporal congruency promotes perceptual binding of multisensory inputs. Here, we used EEG frequency-tagging to track cortical activities elicited by auditory and visual inputs separately, in the form of steady-state evoked potentials (SS-EPs). We tested whether SS-EPs could reveal a dynamic coupling of cortical activities related to the binding of auditory and visual inputs conveying synchronous vs. non-synchronous temporal periodicities, or beats. The temporally congruent audiovisual condition elicited markedly enhanced auditory and visual SS-EPs, as compared to the incongruent condition. Furthermore, an increased inter-trial phase coherence of both SS-EPs was observed in that condition. Taken together, these observations indicate that temporal congruency enhances the processing of multisensory inputs at sensory-specific stages of cortical processing, possibly through a dynamic binding by synchrony of the elicited activities and/or improved dynamic attending. Moreover, we show that EEG frequency-tagging with SS-EPs constitutes an effective tool to explore the neural dynamics of multisensory integration in the human brain.  相似文献   

13.
Neurophysiological research suggests that understanding the actions of others harnesses neural circuits that would be used to produce those actions directly. We used fMRI to examine brain areas active during language comprehension in which the speaker was seen and heard while talking (audiovisual) or heard but not seen (audio-alone) or when the speaker was seen talking with the audio track removed (video-alone). We found that audiovisual speech perception activated a network of brain regions that included cortical motor areas involved in planning and executing speech production and areas subserving proprioception related to speech production. These regions included the posterior part of the superior temporal gyrus and sulcus, the pars opercularis, premotor cortex, adjacent primary motor cortex, somatosensory cortex, and the cerebellum. Activity in premotor cortex and posterior superior temporal gyrus and sulcus was modulated by the amount of visually distinguishable phonemes in the stories. None of these regions was activated to the same extent in the audio- or video-alone conditions. These results suggest that integrating observed facial movements into the speech perception process involves a network of multimodal brain regions associated with speech production and that these areas contribute less to speech perception when only auditory signals are present. This distributed network could participate in recognition processing by interpreting visual information about mouth movements as phonetic information based on motor commands that could have generated those movements.  相似文献   

14.
Beauchamp MS  Yasar NE  Frye RE  Ro T 《NeuroImage》2008,41(3):1011-1020
Human superior temporal sulcus (STS) is thought to be a key brain area for multisensory integration. Many neuroimaging studies have reported integration of auditory and visual information in STS but less is known about the role of STS in integrating other sensory modalities. In macaque STS, the superior temporal polysensory area (STP) responds to somatosensory, auditory and visual stimulation. To determine if human STS contains a similar area, we measured brain responses to somatosensory, auditory and visual stimuli using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). An area in human posterior STS, STSms (multisensory), responded to stimulation in all three modalities. STSms responded during both active and passive presentation of unisensory somatosensory stimuli and showed larger responses for more intense vs. less intense tactile stimuli, hand vs. foot, and contralateral vs. ipsilateral tactile stimulation. STSms showed responses of similar magnitude for unisensory tactile and auditory stimulation, with an enhanced response to simultaneous auditory-tactile stimulation. We conclude that STSms is important for integrating information from the somatosensory as well as the auditory and visual modalities, and could be the human homolog of macaque STP.  相似文献   

15.
In a natural environment, non-verbal emotional communication is multimodal (i.e. speech melody, facial expression) and multifaceted concerning the variety of expressed emotions. Understanding these communicative signals and integrating them into a common percept is paramount to successful social behaviour. While many previous studies have focused on the neurobiology of emotional communication in the auditory or visual modality alone, far less is known about multimodal integration of auditory and visual non-verbal emotional information. The present study investigated this process using event-related fMRI. Behavioural data revealed that audiovisual presentation of non-verbal emotional information resulted in a significant increase in correctly classified stimuli when compared with visual and auditory stimulation. This behavioural gain was paralleled by enhanced activation in bilateral posterior superior temporal gyrus (pSTG) and right thalamus, when contrasting audiovisual to auditory and visual conditions. Further, a characteristic of these brain regions, substantiating their role in the emotional integration process, is a linear relationship between the gain in classification accuracy and the strength of the BOLD response during the bimodal condition. Additionally, enhanced effective connectivity between audiovisual integration areas and associative auditory and visual cortices was observed during audiovisual stimulation, offering further insight into the neural process accomplishing multimodal integration. Finally, we were able to document an enhanced sensitivity of the putative integration sites to stimuli with emotional non-verbal content as compared to neutral stimuli.  相似文献   

16.
In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment.  相似文献   

17.
Watkins S  Shams L  Tanaka S  Haynes JD  Rees G 《NeuroImage》2006,31(3):1247-1256
When a single brief visual flash is accompanied by two auditory bleeps, it is frequently perceived incorrectly as two flashes. Here, we used high field functional MRI in humans to examine the neural basis of this multisensory perceptual illusion. We show that activity in retinotopic visual cortex is increased by the presence of concurrent auditory stimulation, irrespective of any illusory perception. However, when concurrent auditory stimulation gave rise to illusory visual perception, activity in V1 was enhanced, despite auditory and visual stimulation being unchanged. These findings confirm that responses in human V1 can be altered by sound and show that they reflect subjective perception rather than the physically present visual stimulus. Moreover, as the right superior temporal sulcus and superior colliculus were also activated by illusory visual perception, together with V1, they provide a potential neural substrate for the generation of this multisensory illusion.  相似文献   

18.
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.  相似文献   

19.
Malinen S  Hlushchuk Y  Hari R 《NeuroImage》2007,35(1):131-139
In search for suitable tools to study brain activation in natural environments, where the stimuli are multimodal, poorly predictable and irregularly varying, we collected functional magnetic resonance imaging data from 6 subjects during a continuous 8-min stimulus sequence that comprised auditory (speech or tone pips), visual (video clips dominated by faces, hands, or buildings), and tactile finger stimuli in blocks of 6-33 s. Results obtained by independent component analysis (ICA) and general-linear-model-based analysis (GLM) were compared. ICA separated in the superior temporal gyrus one independent component (IC) that reacted to all auditory stimuli and in the superior temporal sulcus another IC responding only to speech. Several distinct and rather symmetric vision-sensitive ICs were found in the posterior brain. An IC in the V5/MT region reacted to videos depicting faces or hands, whereas ICs in the V1/V2 region reacted to all video clips, including buildings. The corresponding GLM-derived activations in the auditory and early visual cortices comprised sub-areas of the ICA-revealed activations. ICA separated a prominent IC in the primary somatosensory cortex whereas the GLM-based analysis failed to show any touch-related activation. "Intrinsic" components, unrelated to the stimuli but spatially consistent across subjects, were discerned as well. The individual time courses were highly consistent in sensory projection cortices and more variable elsewhere. The ability to differentiate functionally meaningful composites of activated brain areas and to straightforwardly reveal their temporal dynamics renders ICA a sensitive tool to study brain responses to complex natural stimuli.  相似文献   

20.
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号