首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Hydrogels of NIPA and MBDA were synthesized by free‐radical crosslinking copolymerization with different monomer ratios and with two concentrations of the crosslinking agent. The aim of this work was to study the swelling behavior of these gels that are both temperature and pH sensitive. PNIPA hydrogels are typical examples of thermo‐shrinking hydrogels with a LCST, TC, around 31–34 °C. MBDA is a weakly ionizable monomer which imparts a pH sensitiveness to the copolymer hydrogels. The pH influence on the swelling behavior of the studied hydrogels was analyzed using deionized water and aqueous HCl and NaOH as swelling media. According to the results found in deionized water, the swelling processes of P(NIPA‐MBDA) hydrogels follow second‐order kinetics at 22 and 37 °C. The equilibrium water content, W, and the rate constant, K, increased at greater concentrations of MBDA and decreased as the crosslinking agent concentration increased. As the MBDA content in the hydrogel increased, the collapsing of the hydrogels at higher temperatures than the LCST became of less importance. The degree of swelling of pure PNIPA hydrogels was not influenced by the pH of the swelling medium. However, this influence increased as the MBDA content increased. This was due to the fact that at low pH most of the MBDA units are in the protonated (neutral) form and at high pH in the ionized one.

Swelling isotherms of hydrogels with different copolymer compositions and with 1.5 wt.‐% of BIS at 22 °C in deionized water.  相似文献   


2.
Novel temperature and pH dual‐responsive dendritic polyoligomeric silsesquioxane (POSS)–poly(N‐isopropylacrylamide) (PNIPAm)–poly(2‐hydroxyethyl methacrylate) (PHEMA) copolymers are prepared via atom transfer radical polymerization and click reactions. The cloud points (Tc) decrease with decreasing pH from 10.0 to 5.0 due to the weakened inter‐molecular interactions and enhanced intra‐molecular hydrogen bonding, whereas the Tc exhibits a small increase from pH 5.0 to 4.0 because of the better solvation of PHEMA at highly acidic conditions. The above findings are corroborated by the different sizes of aggregates observed by dynamic light scattering. The encapsulation of a fluorescent dye and stimulated release by temperature and pH changes are also demonstrated.  相似文献   

3.
Summary: Novel hydrophobic comonomer (p‐methacrylamido)acetophenone thiosemicarbazone was synthesized and polymerized with N‐isopropylacrylamide to get a series of amphiphilic copolymers. The self‐aggregation behavior and thermo‐sensitive character of the (co)polymers were confirmed by TEM observation, fluorescence spectra, and cloud point measurement. Fluorescence emission of copolymer was significantly strengthened or switched off at an excitation wavelength of 320 nm upon the addition of acid or base, respectively. Thermo‐sensitivity, pH‐sensitivity, and pharmacologically versatile thiosemicarbazone groups were integrated into these novel fluorescent and amphiphilic copolymers, which will develop the novel applications of amphiphilic copolymer and environment‐responsive materials.

Fluorescence intensity at 393 nm of polymer 2 in water at 18 °C excited at 320 nm upon addition of acid and base.  相似文献   


4.
Summary: A novel double hydrophilic poly(N,N‐diethylacrylamide)‐poly(acrylic acid)‐poly(N,N‐diethylacrylamide) (PDEAAm‐PAA‐PDEAAm) triblock copolymer was synthesized by sequential anionic polymerization and modification of the poly(tert‐butyl acrylate) middle block by selective hydrolysis and neutralization to its ionic functions. Due to the pH‐sensitivity of the PAA central block and the thermo‐sensitivity of the PDEAAm end‐blocks, it exhibits responsive behavior in aqueous media. At low temperatures and high pH, it is molecularly dissolved while at temperatures above the LCST of the PDEAAm end‐blocks, a sol–gel transition was observed which should be ascribed to the formation of a three‐dimensional transient network comprising PDEAAm hydrophobic physical crosslinks interconnected by PAA negatively charged elastic chains. The sol–gel transition and the rheological properties of the physical gel are strongly influenced by the presence of salt.

Temperature induced sol–gel transition in PDEAAm‐PAA‐PDEAAm aqueous solutions.  相似文献   


5.
A graphene oxide hydrogel (GOH) is fabricated via suspending the graphene oxide (GO) in water without any additional processing steps. At the hydrogel/air interface, a well‐defined hydrogel membrane forms once the solvent is removed by vacuum drying. The microstructure of the resulting GOH film can be tailored by different dehydration approaches, as well as by varying the GO concentration in the hydrogel. This GOH exhibited pH‐responsiveness and good mechanical properties. Meanwhile, the GOH presented good adsorption capacity to the organic dye rhodamine B and anionic chromate Cr2O72?. This GOH may find great potential in many fields, such as wastewater treatment, biodetection, etc.  相似文献   

6.
A new type of ‘intelligent’ hydrogels has been developed in the form of organic/inorganic hybrid materials by making use of the sol‐gel technology. Poly(N‐vinylcaprolactam) (PVCL) has been incorporated in these materials for its thermo‐responsive properties. The synthesis of the hybrid hydrogels was achieved by the in situ formation of an inorganic silica phase in the presence of an aqueous solution of high molecular weight PVCL. This methodology results in the preparation of micro‐heterogeneous systems in which silica particles of nanometer dimensions act as physical cross‐links for the PVCL molecules. Hydrogen bonds between the remaining non‐condensed silanol groups and the PVCL carbonyl functions, together with physical entanglements, are responsible for the strong interactions between the organic and inorganic phases. Stress‐strain tests on highly swollen materials demonstrated that the unique structure of these thermo‐responsive hybrid hydrogels improves the mechanical stability to a great extent as compared to conventional hydrogels. Transmission measurements demonstrate that the presence of the inorganic phase does not influence the cloud point temperatures of PVCL significantly. On the other hand, the response of the reinforced hybrid hydrogels to temperature becomes less pronounced for increasing silica fractions. The reversibility of the swelling/deswelling process has been demonstrated by swelling experiments as a function of temperature.

PVCL/SiO2 hybrid hydrogels.  相似文献   


7.
Thermo‐responsive graft copolymers have been synthesized based on a poly(N‐vinylcaprolactam) (PVCL) backbone and either hydrophilic poly(ethylene oxide) (PEO) or hydrophobic poly(tetrahydrofuran) (PTHF) side chains. The phase separation behavior of the graft polymers in water was studied by transmittance measurements and compared to that of the corresponding swollen segmented polymer networks and aqueous solutions of both polymers. The influence of the concentration and length of the grafts on the cloud point temperature (TCP) has been demonstrated. PVCL‐g‐PTHF copolymers have been synthesized by using the macromonomer technique, i.e. the radical copolymerization of VCL with a PTHF macromonomer. A special feature of these amphiphilic graft copolymers is their ability to stabilize aqueous emulsions below the TCP and to suddenly break them above the TCP. PVCL‐g‐PEO copolymers were prepared by a grafting onto method. First, succinimide groups were introduced in the backbone, to which amino terminated PEO chains were grafted in the second step. This leads to di‐hydrophilic copolymers that become amphiphilic after heating their aqueous solutions above the TCP.

  相似文献   


8.
A series of linear poly(N‐ethylacrylamide) (PEA) samples varying in molar mass has been prepared by free radical polymerization in the absence and presence of a chain transfer agent and a hydrogel of PEA has been prepared using N,N‐methylenebisacrylamide (BIS) as crosslinker. The lower critical solution temperatures (LCST) of the linear polymers in water and aqueous media were determined turbidimetrically as a function of molecular weight, concentration, heating/cooling rate, and concentrations of KCl and anionic surfactant sodium dodecyl sulfate (SDS) in the aqueous solution. The corresponding LCST for the hydrogel was determined from the gravimetric swelling ratios (r). In pure water the values of LCST for linear polymer and hydrogel are 73 °C and 62 °C, respectively. The LCST of linear PEA increases with decreasing molecular weight. The swelling ratio for gels and the LCST for solutions and gels increased with the inclusion of SDS into water. The opposite effects prevailed on inclusion of KCl into water or incorporation of crosslinker. Additionally, the rates of heating/cooling play a significant role in the measured value of LCST. Hence the swelling ratio of hydrogel or the LCST can be adjusted via 1) addition of either SDS or KCl into water; 2) use of different molecular weight samples; 3) incorporation of crosslinker into polymer chain.

  相似文献   


9.
During characterization of a temperature‐responsive poly(N‐isopropylacrylamide) (PIPAAm) layer grafted onto a Si(100) substrate, atomic force microscopy (AFM) is able to probe the interactions between the microscope tip and the polymer. The modification of the AFM tip surface with octadecyltrichlorosilane (OTS) changes the interaction between the PIPAAm surface and the tip. Although a repulsive interaction is observed between a commercially available Si tip and the PIPAAm surface, a strong attractive interaction between the OTS‐modified Si tip and the surface is observed. Adhesion‐force analysis shows changes in the hydrophilic/hydrophobic character of ultrathin PIPAAm surfaces immediately after a change in temperature. The PIPAAm surface becomes hydrophobic less than 30 min after temperature increase, but requires 120 min to become hydrophilic after temperature reduction.

  相似文献   


10.
Conductive smart hydrogels with several virtues such as similar characters to biological tissues, sensitive response to ambient variations, have shown their excellent talents in the field of flexible electrical sensors, biomedical devices and directional transportation. However, complex preparing approaches or the instable inner structures have not only been time‐consuming, but also broken up the performance and reliability of the smart hydrogel‐based devices. In this work, a facile one‐step method is put forward to synthesize a kind of conductive poly(N‐isopropylacrylamide) (PNIPAM) hydrogel doped by a new green solvent of deep eutectic solvent (DES) containing choline chloride (ChCl) and acrylic acid (AA). Through the copolymerization of AA and NIPAM, the mechanical strength of the DES‐doped PNIPAM hydrogels is drastically improved compared to the pure PNIPAM gels, and some doped hydrogels lost the typical phase transition temperature of PNIPAM. Moreover, due to the ionic property of DES, the hybrid hydrogels also present the thermal‐depending conductivity as well as sensitive deformation response, which can be used as a smart switch in a circuit or a sensing element with environmental response ability. The cost‐effective preparation and the attractive performance of the DES‐doped hydrogels offer a new avenue to construct multi‐functional materials.  相似文献   

11.
The molecular characteristics of poly(N‐isopropylacrylamide) (PNIPA), prepared by free‐radical polymerization using an aqueous redox initiator and reaction conditions comparable to those used in the synthesis of nanocomposite gels, were investigated by altering the monomer concentration ([NIPA]) and the polymerization temperature (Tp) across the transition temperature (LCST). When Tp<LCST, there is a critical [NIPA] (=n*) above which PNIPA partially forms gels in the absence of a chemical crosslinker, and the gel fraction increases with increasing [NIPA] and decreasing Tp. In the range of n<n*, the molecular weight of soluble PNIPA correlated well with [NIPA]. When Tp>LCST, gels were not formed regardless of [NIPA]. The structure and mechanism of formation of self‐crosslinked PNIPA gels are discussed.

  相似文献   


12.
Four poly(N,N‐dimethylacrylamide)‐block‐poly(L ‐lysine) (PDMAM‐block‐PLL) hybrid diblock copolymers and two PLL homo‐polypeptides are prepared via ROP of ε‐trifluoroacetyl‐L ‐lysine N‐carboxyanhydride initiated by primary amino‐terminated PDMAM and n‐hexylamine respectively. The PLL blocks render the copolymers a multi‐responsive behavior in aqueous solution due to their conformational transitions from random coil to α‐helix with increasing pH, and from α‐helix to β‐sheet upon heating. The random coil‐to‐α‐helix transition is found to depend on the PLL length: the longer the peptide segment, the more readily the transition occurred. The same trend was observed for the α‐helix‐to‐β‐sheet transition, which was found to be inhibited for short polypeptides unless conjugated with the PDMAM block.

  相似文献   


13.
The preparation of stimuli‐responsive aminomethyl functionalized poly(p‐xylylene) coatings by chemical vapor deposition polymerization is reported. Modification of the paracyclophane precursor with ionizable aminomethyl groups leads to polymer coatings with pH‐responsive swelling properties. The swelling behavior is monitored in situ using spectroscopic ellipsometry and additional streaming potential measurements are performed. With decreasing pH‐value, the coating becomes increasingly charged and reversibly swells to several times its dry thickness. The swelling ratio is sensitive to the ionic strength of the solution. By using a mixture of unfunctionalized and functionalized precursors in the chemical vapor deposition process, the number of charges in the polymer layer can be tuned and with it the swelling ratio of the coating. As a proof‐of‐concept for possible applications, a commercial paper filter is coated. This results in a pH‐dependent wetting behavior and pH‐dependent transport through the capillaries of the paper.

  相似文献   


14.
The swelling of poly(acrylic acid) brushes in aqueous solutions is studied by neutron reflectivity. The brushes are synthesized on silicon wafers using a “grafting onto” approach and their stretching is investigated at various pH, grafting densities, and chain lengths. Neutron reflectivity provides the average thickness and, more interestingly, the density profile of the brushes. The profiles obtained experimentally are in good agreement with theory. The swelling ratio of the poly(acrylic acid) brushes is compared with that of other polymer brushes formerly investigated using classic scaling laws. Owing to a new representation with the normalized thickness, it is demonstrated that there is a general behavior for all polymer brushes with a master curve for neutral polymer brushes and for polyelectrolyte brushes.

  相似文献   


15.
Recently, it has been found that nonionic aliphatic and aromatic poly(ester sulfone)s show anode selective electrophoretic behavior, and it is shown that the electrophoresis is induced by a partial charge separation of the protic solvent at the dispersion interface. In this paper, the first example of temperature‐responsive electrophoretic deposition (EPD) is reported. Electrophoresis of a nonionic sulfone‐containing poly(N‐isopropylacrylamide) [poly(NIPAM)] is performed above the lower critical solution temperature. The poly(NIPAM) is prepared via reversible addition–fragmentation chain transfer radical copolymerization of NIPAM with a sulfone‐containing methacrylate. After EPD, adhesion of human umbilical vein endothelial cells on the deposited surfaces is also demonstrated, aiming at the subsequent temperature‐sensitive detachment.  相似文献   

16.
MRI and swelling experiments are used to probe the state of water and infer the microstructure of chitosan hydrogels. SEM reveals a porous open scaffold‐type structure for hydrogels that were equilibrated at 2 °C before freezing as compared to those equilibrated at 37 °C. ADC MRI measurements reveal an anisotropy in the microstructure of these gels. T1 relaxation MRI values were larger as the pH increased from 7.6 to 12.0, the result of a lower rate of exchange between protons of the hydration sphere of the polymer and bulk water. The thermosensitive and pH‐sensitive properties of these hydrogels can be utilized in the development of innovative materials for biotechnological and biomedical applications, including criobiocatalysis and bioremediation as well as in programmed drug delivery.

  相似文献   


17.
Abnormal physiological conditions provide an ideal stimulus for the design of responsive hydrogels which function as controlled and site‐specific release of drugs. Here, an injectable reactive oxygen species (ROS) responsive self‐healing hydrogel based on tetra‐poly(ethylene glycol)‐b‐oligo (l ‐methionine) (t‐PEG56b‐OMethn) synthesized by a novel and facile method is reported. The hydrophobic interactions between the side chains of l ‐methionine make the polymer chains crosslinked and lead to the formation of hydrogels which can be injected and self‐healed, meanwhile, the cross‐linker also provides a hydrophobic domain to encapsulate Dox. In presence of ROS, the side chain of l ‐methionine can be oxidized to methionine sulfoxide. The side chain of l ‐methionine is changed accordingly from hydrophobic to hydrophilic. As a result, both the hydrophobic domain and the hydrogel itself are destroyed. The controlled release of Dox by ROS at site‐specific is realized. The excellent biocompatibility of hydrogel based on t‐PEG56b‐OMethn indicates the door of the potential application in controlled release of drug in a truly physiological environment.  相似文献   

18.
A series of polymerizations of 3,6‐dibromo‐9‐(2‐ethylhexyl)carbazole was carried out in different monomer concentrations using standard Yamamoto reaction conditions. It was found that the molecular weight of the resulting poly(N‐(2‐ethylhexyl)carbazol‐3,6‐diyl) strongly depends on the monomer concentration in the reaction mixture. Matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) measurements confirmed the formation of low‐molar‐mass cyclic oligomers of the 3,6‐disubstituted carbazole. In this paper we describe, for the first time, the formation of large amounts of a cyclic tetramer and of higher macrocycles in the synthesis of poly(N‐alkyl‐3,6‐carbazoles) by the Yamamoto method. This seems to be a limiting factor in the synthesis of high molecular weight poly(N‐alkyl‐3,6‐carbazole)s. The optical, thermal, and electrochemical properties of poly(N‐(2‐ethylhexyl)carbazol‐3,6‐diyl) have been investigated. Poly(N‐(2‐ethylhexyl)carbazol‐3,6‐diyl) is thermally stable, with 5% weight loss at 460 °C in nitrogen. The polymer exhibits a weak blue fluorescence with a maximum at 425 nm. Poly(N‐(2‐ethylhexyl)carbazol‐3,6‐diyl) is electrochemically stable, its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are ?5.0 and ?1.6 eV, respectively.

  相似文献   


19.
20.
Stimuli‐responsive polymers in response to both low temperature and pH are of great potential for designing drug carriers to obtain a better therapeutic effect during cryotherapy of tumors. In this work, novel low‐temperature and pH dual‐responsive poly(N‐isopropylacrylamide‐co‐1H‐benzimidazolyl‐ethyl acrylate) (PNBM) linear copolymers are developed, which can undergo stretching/shrinking conformational transition at low temperature and mildly acidic conditions. The dual‐responsive properties of PNBM copolymers can be affected and regulated by the host–guest inclusion action between benzimidazole and hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) molecules. The critical response temperature of the copolymers can be flexibly adjusted when the benzimidazole groups in copolymer chains are captured by HP‐β‐CD. And the PNBM copolymers present a pH‐responsive stretching‐to‐shrinking‐to‐stretching conformational transition in a narrow pH range in HP‐β‐CD solution. The results provide valuable guidance for designing and applying PNBM‐based smart materials in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号