首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aptamers have been introduced to analytical applications, target validation, and drug discovery processes and, recently, applied directly as therapeutic agents. Aptamers can be generated by a method called SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This is quite remarkable for such a young technology, which is only created in the early 1990s. This paper reviews recent new applications of aptamers in stem cell research and tissue engineering.  相似文献   

2.
Aptamers are oligonucleotides (ssDNA or RNA) with an appropriate size of 100 bps that bind with high affinity and specificity to a wide range of target molecules, including virtually any class of protein, drugs or small organic/inorganic molecules. The in vitro selection process referred to as SELEX provides a powerful tool to identify specific aptamers with high affinity and even discriminate between closely related targets. Aptamers have various applications such as analytical tools, disease diagnosis and prediction, pharmaceutical research, drug development, therapy and even for environmental monitoring. Nowadays, with the development of SELEX methods, generation of aptamer becomes more efficient, less time consuming and even automatically. The whole SELEX process includes binding, separation, and nucleic acid amplification. As amplification of nucleotides is an important process in successive SELEX, we will compare several methods for generation of aptamer in this report.  相似文献   

3.
Liu J  You M  Pu Y  Liu H  Ye M  Tan W 《Current medicinal chemistry》2011,18(27):4117-4125
Because of their easily modified chemical structures and wide range of targets, aptamers are ideal candidates for various applications, such as biomarker discovery, target diagnosis, molecular imaging, and drug delivery. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. Usually, aptamers are obtained from repeated rounds of in vitro or in vivo selection termed SELEX (Systematic Evolution of Ligands by EXponential enrichment), which can generate aptamers with high affinity and specificity for many kinds of targets, such as biomedically important proteins and even cancer cells. In this review, some basic principles and recent developments in the design of SELEX process are discussed, hopefully to provide some guidelines towards performing more efficient aptamer isolation procedures. Moreover, the biomedical and bioanalytical applications of aptamers are further reviewed, based on some smart biochemical modifications of these oligonucleotide structures.  相似文献   

4.
There is an unquestionable need for more effective therapies for pancreatic cancer. Aptamers are single-stranded DNA or RNA oligonucleotide ligands whose 3-dimensional structures are dictated by their sequences. Aptamers have been generated against numerous purified protein targets using an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Several biochemical properties make them attractive tools for use in an array of biological research applications and as potential pharmacologic agents. Isolated aptamers may directly affect target protein function, or they may also be modified for use as delivery agents for other therapeutic cargo or as imaging agents. More complex selections, using whole cancer cells or tumor tissue, may simultaneously identify novel or unexpected targets and aptamers to inhibit them. This review summarizes recent advances in the field of aptamers and discusses aptamer targets that have relevance to pancreatic cancer.  相似文献   

5.
Chloramphenicol is an antibacterial antibiotic which interferes with the protein synthesis of microorganisms. However, the use of chloramphenicol should be limited in humans and food products, because it is known to have side effects such as genotoxicity and aplastic anemia in humans. Therefore, it is important to monitor the amount of chloramphenicol in food products. Instead of using conventional analytical methods or antibodies, using aptamers can be a good alternative for measuring the amount of chloramphenicol in food. Aptamers are nucleic acids within 100 base pairs that can bind to target with high specificities and sensitivities, and are derived through a process called SELEX. Here, we report that the immobilization efficiency of chloramphenicol is low with SELEX, which can lead to the low amount of active chloramphenicol immobilized to epoxy resin. This result may be applicable to general SELEX process, especially for negative SELEX during which aptamers that are not bound to targets are removed to increase the amount of aptamers that can bind specifically to targets.  相似文献   

6.
The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex threedimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.  相似文献   

7.
Aptamers, as a novel class of molecular probes for diagnosis, imaging and targeting therapy, have attracted increasing attention in recent years. Aptamers are generated from libraries of single-stranded nucleic acids against different molecules via the “systematic evolution of ligands by exponential enrichment” (SELEX) method. SELEX is a repetitive process of a sequential selection procedure in which a DNA or RNA library pool is incubated separately with target and control molecules to select specific oligonucleotide aptamers with high affinities and specificities. Cell-SELEX is a modified version of the SELEX process in which whole living cells are used as targets for the aptamers. Dendritic cell (DC) targeting, as a new therapeutic approach, can improve the efficiency of immunotherapy in the treatment of allergies and cancers. DCs use various receptors to continuously induce adaptive immunity via capture and presentation of antigens to naïve T cells. DCs are considered as the best targets in modulating immune responses against cancer, autoimmunity, allergy and transplantation. Aptamers, as a new agent, can be applied in DC targeting. The purpose of this review is to present some general concepts of aptamer production and DC targeting by aptamer molecules.  相似文献   

8.
核酸适配体是通过指数级富集的配体系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)从合成的大容量单链随机寡核苷酸文库中筛选并富集的对某些靶点具有高特异性和高结合率的小分子DNA或RNA片段.核酸适配体具有直接抑制肿瘤细胞增殖的作用,通过结构修饰可增强在体内的稳定性.此外,它可与载药纳米结构键合,用于肿瘤诊断和治疗.本文综述了核酸适配体的肿瘤靶点、筛选方法及其在肿瘤诊断和治疗中的应用.  相似文献   

9.
Deregulation of kinase function has been implicated in several important diseases, including cancer, neurological and metabolic disorders. Because of their key role in causing disease, kinases have become one of the most intensively pursued classes of drug targets. To date, several monoclonal antibodies (mAbs) and small-molecule inhibitors have been approved for the treatment of cancer. Aptamers are short structured single stranded RNA or DNA ligands that bind at high affinity to their target molecules and are now emerging as promising molecules to target specific cancer epitopes in clinical diagnosis and therapy. Further, because of their high specificity and low toxicity aptamers will likely reveal among the most promising molecules for in vivo targeted recognition as therapeutics or delivery agents for nanoparticles, small interfering RNAs bioconjugates, chemotherapeutic cargos and molecular imaging probes. In this article, we discuss recent advances in the development of aptamers targeting kinase proteins.  相似文献   

10.
Abstract

Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.  相似文献   

11.
生物标志物(Biomarker)是指可以标记生物体结构或功能改变的生化指标.在疾病研究中,生物标志物可供客观测定和评价机体所处的生理或病理状态,为疾病的诊断、鉴定提供辅助手段.指数富集的配体系统进化(Systematic evolution of ligands by exponential enrichment,SE...  相似文献   

12.
With many advantages over other therapeutic agents such as monoclonal antibodies, aptamers have recently emerged as a novel and powerful class of ligands with excellent potential for diagnostic and therapeutic applications. Typically generated through Systematic Evolution of Ligands by EXponential enrichment (SELEX), aptamers have been selected against a wide range of targets such as proteins, phospholipids, sugars, nucleic acids, as well as whole cells. DNA/RNA aptamers are single-stranded DNA/RNA oligonucleotides (with a molecular weight of 5-40 kDa) that can fold into well-defined 3D structures and bind to their target molecules with high affinity and specificity. A number of strategies have been adopted to synthesize aptamers with enhanced in vitro/in vivo stability, aiming at potential therapeutic/diagnostic applications in the clinic. In cardiovascular diseases, aptamers can be developed into therapeutic agents as anti-thrombotics, anti-coagulants, among others. This review focuses on aptamers that were selected against various molecular targets involved in cardiovascular diseases: von Willebrand factor (vWF), thrombin, factor IX, phospholamban, P-selectin, platelet-derived growth factor, integrin α(v)β(3), CXCL10, vasopressin, among others. With continued effort in the development of aptamer-based therapeutics, aptamers will find their niches in cardiovascular diseases and significantly impact clinical patient management.  相似文献   

13.
Introduction: Aptamers are short, single-stranded DNA or RNA sequences that can fold into complex secondary and tertiary structures and bind to various target molecules with high affinity and specificity. These properties, as well as rapid tissue penetration and ease of chemical modification, make aptamers ideal recognition elements for in vivo targeted drug delivery and attractive molecules for use in disease diagnosis and therapy.

Areas covered: The general properties of aptamers as well as advantages over their counterpart antibodies are briefly discussed. Next, aptamer selection by cell- systematic evolution of ligands by exponential enrichment is described in detail. Finally, the review summarizes recent progress in the field of targeted drug delivery based on aptamers and their conjugation to liposomes, micelles and other nanomaterials.

Expert opinion: Advances in nanotechnology have led to new and improved nanomaterials for biomedical applications. Conjugation of nanoparticles (NPs) with aptamers exploits both technologies, making aptamer-NP conjugates ideal agents for drug delivery with proven therapeutic effects and the reduction of toxicity to normal tissue. The use of multivalent aptamer-conjugated nanomaterials represents one of the new directions for drug development in the future; as such, continuing studies of these multivalent aptamers and bioconjugates should result in important clinical applications in targeted drug delivery.  相似文献   

14.
Aptamer-based fluorescent biosensors   总被引:1,自引:0,他引:1  
Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into "signal-on" and "signal-off" sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics.  相似文献   

15.
The SELEX technique (systematic evolution of ligands by exponential enrichment) provides a powerful tool for the in vitro selection of nucleic acid ligands (aptamers) from combinatorial oligonucleotide libraries against a target molecule. In the beginning of the technique's use, RNA molecules were identified that bind to proteins that naturally interact with nucleic acids or to small organic molecules. In the following years, the use of the SELEX technique was extended to isolate oligonucleotide ligands (aptamers) for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. These oligonucleotides bind their targets with similar affinities and specificities as antibodies do. The in vitro selection of oligonucleotides with enzymatic activity, denominated aptazymes, allows the direct transduction of molecular recognition to catalysis. Recently, the use of in vitro selection methods to isolate protein inhibitors has been extended to complex targets, such as membrane-bound receptors, and even entire cells. RNA aptamers have also been expressed in living cells. These aptamers, also called intramers, can be used to dissect intracellular signal transduction pathways. The utility of RNA aptamers for in vivo experiments, as well as for diagnostic and therapeutic purposes, is considerably enhanced by chemical modifications, such as substitutions of the 2'-OH groups of the ribose backbone in order to provide resistance against enzymatic degradation in biological fluids. In an alternative approach, Spiegelmers are identified through in vitro selection of an unmodified D-RNA molecule against a mirror-image (i.e. a D-peptide) of a selection target, followed by synthesis of the unnatural nuclease-resistant L-configuration of the RNA aptamer that recognizes the natural configuration of its selection target (i.e. a L-peptide). Recently, nuclease-resistant inhibitory RNA aptamers have been developed against a great variety of targets implicated in disease. Some results have already been obtained in animal models and in clinical trials.  相似文献   

16.
Targeted drug delivery technologies can provide physicians with new approaches to treat and manage patients with cancer. Nucleic acid ligands (aptamers) are a novel class of targeting molecules that can be used in a similar manner to antibodies. Beyond use as drugs themselves, aptamers have the potential to serve as targeting ligands to deliver drugs, imaging agents, or other bioactive agents to the intended site of action. Bioconjugates of nanoparticles and aptamers can selectively bind and be taken up by cancer cells. In this article we review progress to date for antineoplastic drug delivery using nanoparticle-aptamer bioconjugates. Aptamers are isolated through a process of in vitro selection, also referred to as systematic evolution of ligands by exponential enrichment (SELEX). There is an increasing numbers of aptamers for cancer targeting being reported in the literature. These aptamers often interact with antigens that are overexpressed exclusively, or preferentially, on cancer cells or in the cancer microenvironment. As novel drug delivery vehicles, nanoparticle-aptamer bioconjugates may be developed to target a myriad of diseases including many cancers by delivering a variety of therapeutic agents specifically to the site of interest. The first in vivo study of antineoplastic drug delivery by a bioconjugate employed nanoparticle encapsulating docetaxel and aptamers that bind certain prostate cancer cells. In this study using a xenograft murine model of prostate cancer, these bioconjugates were shown to significantly improve tumor reduction after intratumoral injection compared with all controls. Furthermore, the docetaxel-loaded nanoparticle-aptamer bioconjugates demonstrated reduced toxicity in terms of acute bodyweight loss compared with the controls. In vitro, the efficacy of the docetaxel-loaded nanoparticle-aptamer bioconjugate was shown to be due to intracellular delivery of the drug to the cancer cells, and the bioconjugate without the drug had no cytotoxicity. Nanoparticle-aptamer bioconjugates may prove to be useful not only for management of cancer but also various other indications. New aptamers, multivalent targeting strategies, and multimodal treatments such as simultaneous radio- and chemotherapy may further increase the efficacy of these bioconjugates and facilitate their clinical translation for therapeutic and diagnostic applications.  相似文献   

17.
Protozoal pathogens cause symptomatic as well as asymptomatic infections. They have a worldwide impact, which in part is reflected in the long-standing search for antiprotozoal chemotherapy. Unfortunately, effective treatments for the different diseases are by and large not available. This is especially true for African trypanosomiasis, also known as sleeping sickness. The disease is an increasing problem in many parts of sub-Saharan Africa, which is due to the lack of new therapeutics and the increasing resistance against traditional drugs such as melarsoprol, berenil and isometamidium. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for "systematic evolution of ligands by exponential enrichment". The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions, and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognize ligands of different chemical origin. Aptamers typically bind their target with high affinity and high specificity and have successfully been converted into pharmaceutically active compounds. Here we summarize the recent examples of the SELEX technique within the context of identifying high-affinity RNA ligands against the surface of the protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness.  相似文献   

18.
Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development.  相似文献   

19.
Nucleic acids that can bind with high affinity and specificity to target molecules are called "apta mers". Aptamers recognise a large variety of different molecule classes. The main focus of this chapter is small molecules as targets. Aptamers are applied complementarily to antibody technologies and can substitute antibodies or small molecules wherever their different properties, such as biochemical nature or highly discriminating capacities, are advantageous. Examples of promising applications of these versatile molecules are discussed in the field of therapeutics and biotechnology with a special view to small-molecule detection.  相似文献   

20.
Aptamers are synthetic oligonucleotides selected from pools of random-sequence oligonucleotides which bind to a wide range of biomolecular targets with high affinity and specificity. Compared with antibodies, aptamers exhibit significant advantages including small size, easy synthesis and modification, as well as low immunogenicity. Many of the aptamers also show inhibition of their targets, making them potential therapeutic and targeting reagents in clinical applications. Compared with aptamers against intracellular proteins and molecules, however, the identification of aptamers against cell-surface receptors and receptor-related antigens is more difficult, due to the complex cellular environment in which receptors are located, and also the unique conformations and compositions of receptors to keep their activity. In this review, we will introduce the identification, modification and working mechanism of aptamers against cell-surface receptors. Based on the different characteristics of target receptors and selection strategies used, the identified aptamers show distinct binding affinity with recombinant targets or specific cell lines which express receptors on the surface in vitro. Some of the in vivo experiments also indicate that aptamers have the capability of inhibiting the overexpressing receptor-related tumor growth, working as potential anti-tumor therapeutic drugs. Despite of the difficulties during the selection of receptor aptamers and the study of their working mechanism during the present time, it is possible that in the future aptamers will increasingly exhibit therapeutic and diagnostic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号