首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase C (PKC)-mediated desensitization of the corticotropin releasing factor type 1 (CRF1) receptor was investigated in human retinoblastoma Y79 and transfected COS-7 cells. Because stimulation of Y79 cells with CRF resulted in large ( approximately 30-fold) increases in intracellular cAMP accumulation without changing inositol phosphate levels, the CRF1 receptor expressed in retinoblastoma cells couples to Gs, but not to Gq, and predominantly signals via the protein kinase A cascade. Direct activation of PKC by treatment with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-sn-glycerol (DOG) desensitized CRF1 receptors in Y79 cells, reducing the maximum for CRF- (but not forskolin)-stimulated cAMP accumulation by 56.3 +/- 1.2% and 40.4 +/- 2.1%, respectively (p < 0.001). Pretreating Y79 cells with the PKC inhibitor bisindolylmaleimide I (BIM) markedly inhibited PMA's desensitizing action on CRF-stimulated cAMP accumulation, but did not affect homologous CRF1 receptor desensitization. Retinoblastoma cells were found to express PKCalpha, betaI, betaII, delta, lambda, and RACK1. When alpha and beta isoforms of PKC were down-regulated 80 to 90% by a 48-h PMA exposure, PMA-induced CRF1 receptor desensitization was abolished. In transfected COS-7 cells the magnitude of CRF1 receptor phosphorylation after a 5-min exposure to PMA was 2.32 +/- 0.21-fold greater compared with the basal level. Pretreating COS-7 cells with BIM abolished PMA-induced CRF1 receptor phosphorylation. These studies demonstrate that protein kinase C (possibly alpha and beta isoforms) has an important role in the phosphorylation and heterologous desensitization of the CRF1 receptor.  相似文献   

2.
We have previously shown that stretching cardiac myocytes evokes activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and 90-kD ribosomal S6 kinase (p90rsk). To clarify the signal transduction pathways from external mechanical stress to nuclear gene expression in stretch-induced cardiac hypertrophy, we have elucidated protein kinase cascade of phosphorylation by examining the time course of activation of MAP kinase kinase kinases (MAPKKKs), MAP kinase kinase (MAPKK), MAPKs, and p90rsk in neonatal rat cardiac myocytes. Mechanical stretch transiently increased the activity of MAPKKKs. An increase in MAPKKKs activity was first detected at 1 min and maximal activation was observed at 2 min after stretch. The activity of MAPKK was increased by stretch from 1-2 min, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10 approximately 30 min after stretch, respectively. Raf-1 kinase (Raf-1) and (MAPK/extracellular signal-regulated kinase) kinase kinase (MEKK), both of which have MAPKKK activity, were also activated by stretching cardiac myocytes for 2 min. The angiotensin II receptor antagonist partially suppressed activation of Raf-1 and MAPKs by stretch. The stretch-induced hypertrophic responses such as activation of Raf-1 and MAPKs and an increase in amino acid uptake was partially dependent on PKC, while a PKC inhibitor completely abolished MAPK activation by angiotensin II. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1 and MEKK, MAPKK, MAPKs and p90rsk, and that angiotensin II, which may be secreted from stretched myocytes, may be partly involved in stretch-induced hypertrophic responses by activating PKC.  相似文献   

3.
4.
It has been suggested that the cannabinoid receptor type 1 (CB1), a G protein-coupled receptor, is internalized after agonist binding and activation of the second messenger pathways. It is proposed that phosphorylation enhances the down-regulation of the CB1 receptor, thus contributing to tolerance. Alterations in phosphorylation of proteins in the signal transduction cascade after CB1receptor activation could also alter tolerance to cannabinoids. We addressed our hypothesis by evaluating the role of several kinases in antinociceptive tolerance to Delta(9)-tetrahydrocannabinol (THC). We evaluated cAMP-dependent protein kinase (PKA) using KT5720, a PKA inhibitor; protein kinase C (PKC) using bisindolylmaleimide I, HCl (bis), a PKC inhibitor; cGMP-dependent protein kinase (PKG) using KT5823, a PKG inhibitor; beta-adrenergic receptor kinase (beta-ARK) using low molecular weight heparin (LMWH), a beta-ARK inhibitor; and phosphatidylinositol-3 kinase (PI3-K) using 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a PI3-K inhibitor and PP1, a Src family tyrosine kinase inhibitor. The cAMP analog used was dibutyryl-cAMP and the cGMP analog used was dibutyryl-cGMP. Our data indicate that selective kinases may be involved in cannabinoid tolerance. Mice and rats were rendered tolerant to Delta(9)-THC. The PKG inhibitor KT5823, the beta-ARK inhibitor LMWH, the PI3-K inhibitor LY294002, and inhibition of PKC by bis had no effect on tolerance. At a higher dose, bis attenuated the antinociceptive effect of delta(9)-THC in nontolerant mice. PP1, the Src family tyrosine kinase inhibitor, and KT5720, the PKA inhibitor, reversed THC-induced tolerance. In addition, inhibition of PKA reversed a decrease in dynorphin release shown to accompany THC tolerance in rats. These data support a role for PKA and Src tyrosine kinase in phosphorylation events in delta(9)-THC-tolerant mice.  相似文献   

5.
Elevated glucose concentrations have been reported to inhibit insulin receptor kinase activity. We studied the effects of high glucose on insulin action in Rat1 fibroblasts transfected with wild-type human insulin receptor (HIRcB) and a truncated receptor lacking the COOH-terminal 43 amino acids (delta CT). In both cell lines, 25 mM glucose impaired receptor and insulin receptor substrate-1 phosphorylation by 34%, but IGF-1 receptor phosphorylation was unaffected. Phosphatidylinositol 3-kinase activity and bromodeoxyuridine uptake were decreased by 85 and 35%, respectively. This was reversed by coincubation with a protein kinase C (PKC) inhibitor or microinjection of a PKC inhibitor peptide. Phosphopeptide mapping revealed that high glucose or PMA led to serine/threonine phosphorylation of similar peptides. Inhibition of the microtubule-associated protein (MAP) kinase cascade by the MAP kinase kinase inhibitor PD98059 did not reverse the impaired phosphorylation. We conclude that high glucose inhibits insulin action by inducing serine phosphorylation through a PKC-mediated mechanism at the level of the receptor at sites proximal to the COOH-terminal 43 amino acids. This effect is independent of activation of the MAP kinase cascade. Proportionately, the impairment of insulin receptor substrate-1 tyrosine phosphorylation is greater than that of the insulin receptor resulting in attenuated phosphatidylinositol 3-kinase activation and mitogenic signaling.  相似文献   

6.
The muscarinic receptor subtype-activated signal transduction mechanisms mediating rat urinary bladder contraction are incompletely understood. M(3) mediates normal rat bladder contractions; however, the M(2) receptor subtype has a more dominant role in contractions of the hypertrophied bladder. Normal bladder muscle strips were exposed to inhibitors of enzymes thought to be involved in signal transduction in vitro followed by a single cumulative concentration-response curve to the muscarinic receptor agonist carbachol. The outcome measures were the maximal contraction, the potency of carbachol, and the affinity of the M(3) -selective antimuscarinic agent darifenacin for inhibition of contraction. Inhibition of phosphoinositide-specific phospholipase C (PI-PLC) with 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH(3)) reduces carbachol potency and reduces darifenacin affinity, whereas inhibition of phosphatidyl choline-specific phospholipase C (PC-PLC) with O-tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609) attenuates the carbachol maximal contraction. Inhibition of rho kinase with (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride (Y-27632) reduces carbachol potency and increases darifenacin affinity. Inhibition of rho kinase, protein kinase A (PKA), and protein kinase G (PKG) with 1-(5-isoquinolinesulfonyl)-homopiperazine.HCl (HA-1077) reduces the carbachol maximal contraction, carbachol potency, and darifenacin affinity. Inhibition of protein kinase C (PKC) with chelerythrine increases darifenacin affinity, whereas inhibition of rho kinase, PKA, PKG, and PKC with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine.2HCl (H7) reduces the carbachol maximum and carbachol potency while increasing darifenacin affinity. Inhibition of rho kinase, PKA, and PKG with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide.2HCl (H89) reduces carbachol maximum and carbachol potency. Both the M(2) and the M(3) receptor subtype are involved in normal rat bladder contractions. The M(3)subtype seems to mediate contraction by activation of PI-PLC, PC-PLC, and PKA, whereas the M(2) signal transduction cascade may include activation of rho kinase, PKC, and an additional contractile signal transduction mechanism independent of rho kinase or PKC.  相似文献   

7.
The mitogen-activated protein kinase signaling cascade is used by many G protein-coupled receptors to initiate functional events. In this study, activation of the Gq/G11-coupled thromboxane A2 (TxA2) receptor (TP) by the TxA2 mimetic IBOP in ECV304 cells was found to induce extracellular regulated kinase (ERK) phosphorylation and tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), which were inhibited by the TP antagonist SQ29548, the EGFR kinase inhibitor AG1478, the Src family kinase inhibitor PP1, the Gi/o protein inhibitor pertussis toxin (PTX), or the protein kinase C (PKC) inhibitor calphostin C. TP activation also increased Src kinase activity, which was blocked by PTX, PP1, and calphostin C, but not by AG1478, indicating that Src activation occurs before phosphorylation of EGFR. Blockade of Src activity by expression of dominant negative mutant of Src inhibits mitogen-activated protein kinase (MAPK) activation induced by TxA2. ERK activation induced by the PKC activator phorbol myristate acetate was inhibited by PTX, PP1, AG1478, and calphostin C. In contrast, activation of ERK by lysophosphatidic acid, a Gi-coupled receptor activator, was inhibited by PTX, PP1, and AG1478, but not by calphostin C. Thus, TP-stimulated ERK activation requires Gi, which in turn requires PKC activation. Immunoprecipitation of Galphai showed increased association of Galphai with TPalpha following PKC activation. In conclusion, TPalpha is directly coupled to the Gi protein by a PKC-regulated mechanism; Gi coupling causes Src-dependent transactivation of the EGFR, which is the dominant pathway in TP-mediated ERK activation.  相似文献   

8.
脑内水通道蛋白4(AQP4)在细胞分化不同阶段表达情况不同,内皮细胞也影响其表达分布;星形胶质细胞及其微环境的渗透压、氨浓度、氧分压、温度以及一些其他因素如激素及肽类、外源性物质铅、补体抑制剂、脂多糖等的存在都会影响AQP4表达。但脑内AQP4表达的调节机制不十分清楚,与之相关的有蛋白的相互作用、蛋白激酶C(PKC)磷酸化途径、丝裂原激活的蛋白激酶信号转导途径、钙信号途径、转录因子活化等,其中研究最多的是PKC通过磷酸化抑制AQP4的活性。  相似文献   

9.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of nuclear factor kappa B (NF-kappaB)-driven proinflammatory cytokines from colonic epithelial cells. However, the signal transduction pathways by which SP-NK-1R interaction induces NF-kappaB activation and interleukin-8 (IL-8) production are not clear. Here, we examined participation of protein kinase C (PKC) in SP-induced IL-8 production in human nontransformed NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells). SP (10(-7) M) induced an early (1 min) phosphorylation of the PKC isoforms PKCdelta, PKC, and PKCepsilon, followed by I-kappaB kinase, IkappaBalpha, and p65 phosphorylation. Depletion of PKC by phorbol-12-myristate-13-acetate (10 microM) blocked SP-induced IkappaBalpha and p65 phosphorylation and IL-8 production. The PKCdelta inhibitor rottlerin at a low concentration (1 microM), but not pseudosubstrate PKC and PKCepsilon inhibitors (10 microM), significantly reduced IL-8 secretion. PKCdelta silencing by RNA interference reduced PKCdelta protein expression and SP-induced PKCdelta phosphorylation that was associated with diminished IL-8 promoter and NF-kappaB luciferase activities in response to SP. Moreover, overexpression of wild-type PKCdelta increased SP-induced IL-8 promoter- and NF-kappaB-driven luciferase activities that were rottlerin-sensitive. We conclude that PKCdelta plays an important role in SP-induced proinflammatory signaling in human colonocytes.  相似文献   

10.
Increased cardiovascular mortality is an unresolved problem in patients with chronic renal failure. Cardiac hypertrophy is observed in the majority of patients with chronic renal failure undergoing haemodialysis. However, the mechanisms, including signal transduction pathways, responsible for cardiac hypertrophy in renal failure remain unknown. We examined the subcellular localization of protein kinase C (PKC) isoforms and phosphorylation activities of 3 mitogen-activated protein (MAP) kinase families in hypertrophied hearts of progressive renal injury rat model by subtotal nephrectomy (SNx). We also examined the effects of a novel angiotensin II type-1 receptor antagonist, CS-866, on the PKC translocation, MAP kinase activity and cardiac hypertrophy in SNx rats. The left ventricle/body weight ratios were significantly larger in SNx rats than in sham rats at 1, 2, and 4 weeks after surgery. The translocation of PKCalpha and epsilon isoforms to membranous fraction was observed in SNx rat hearts at 1, 2, and 4 weeks after surgery. Activation of extracellular signal regulated kinase (ERK) 1/2, but not p38 MAP kinase and c-Jun N-terminal kinase (JNK), was observed at 1 and 2 weeks after surgery. Angiotensin II receptor blockade with CS-866 (1 mg kg-1 day-1) prevented cardiac hypertrophy, PKC translocation and ERK1/2 activation in SNx rats without significant changes in blood pressure. These data suggest that PKC and ERK1/2 are activated by an angiotensin II receptor-mediated pathway and might play an important role in the progression of cardiac hypertrophy in renal failure.  相似文献   

11.
Coordinated translation initiation is coupled with cell cycle progression and cell growth, whereas excessive ribosome biogenesis and translation initiation often lead to tumor transformation and survival. Hepatocellular carcinoma (HCC) is among the most common and aggressive cancers worldwide and generally displays inherently high resistance to chemotherapeutic drugs. We found that RACK1, the receptor for activated C-kinase 1, was highly expressed in normal liver and frequently upregulated in HCC. Aberrant expression of RACK1 contributed to in vitro chemoresistance as well as in vivo tumor growth of HCC. These effects depended on ribosome localization of RACK1. Ribosomal RACK1 coupled with PKCβII to promote the phosphorylation of eukaryotic initiation factor 4E (eIF4E), which led to preferential translation of the potent factors involved in growth and survival. Inhibition of PKCβII or depletion of eIF4E abolished RACK1-mediated chemotherapy resistance of HCC in vitro. Our results imply that RACK1 may function as an internal factor involved in the growth and survival of HCC and suggest that targeting RACK1 may be an efficacious strategy for HCC treatment.  相似文献   

12.
Inhibition of insulin receptor signaling by high glucose levels and by TNF-alpha was recently observed in different cell systems. The aim of the present study was to characterize the mechanism of TNF-alpha-induced insulin receptor inhibition and to compare the consequences of TNF-alpha- and hyperglycemia-induced insulin receptor inhibition for signal transduction downstream from the IR. TNF-alpha (0.5-10 nM) and high glucose (25 mM) showed similar rapid kinetics of inhibition (5-10 min, > 50%) of insulin receptor autophosphorylation in NIH3T3 cells overexpressing the human insulin receptor. TNF-alpha effects were completely prevented by the phosphotyrosine phosphatase (PTPase) inhibitors orthovanadate (40 microM) and phenylarsenoxide (35 microM), but they were unaffected by the protein kinase C (PKC) inhibitor H7 (0.1 mM), the phosphatidylinositol-3 kinase inhibitor wortmannin (5 microM), and the thiazolidindione troglitazone (CS045) (2 microgram/ml). In contrast, glucose effects were prevented by PKC inhibitors and CS045 but unaffected by PTPase inhibitors and wortmannin. To assess effects on downstream signaling, tyrosine phosphorylation of the following substrate proteins of the insulin receptor was determined: insulin receptor substrate-1, the coupling protein Shc, focal adhesion kinase (FAK125), and unidentified proteins of 130 kD, 60 kD. Hyperglycemia (25 mM glucose) and TNF-alpha showed analogous (> 50% inhibition) effects on tyrosine phosphorylation of insulin receptor substrate-1, Shc, p60, and p44, whereas opposite effects were observed for tyrosine phosphorylation of FAK125, which is dephosphorylated after insulin stimulation. Whereas TNF-alpha did not prevent insulin-induced dephosphorylation of FAK125, 25 mM glucose blocked this insulin effect completely. In summary, the data suggest that TNF-alpha and high glucose modulate insulin receptor-signaling through different mechanisms: (a) TNF-alpha modulates insulin receptor signals by PTPase activation, whereas glucose acts through activation of PKC. (b) Differences in modulation of the insulin receptor signaling cascade are found with TNF-alpha and high glucose: Hyperglycemia-induced insulin receptor inhibition blocks both insulin receptor-dependent tyrosine phosphorylation and dephosphorylation of insulin receptor substrate proteins. In contrast, TNF-alpha blocks only substrate phosphorylation, and it does not block insulin-induced substrate dephosphorylation. The different effects on FAK125 regulation allow the speculation that long-term cell effects related to FAK125 activity might develop in a different way in hyperglycemia- and TNF-alpha-dependent insulin resistance.  相似文献   

13.
We investigated proteinase-activated receptor-2 (PAR(2))-triggered signal transduction pathways causing increased prostaglandin E(2) (PGE(2)) formation in human lung-derived A549 epithelial cells. The PAR(2) agonist, SLIGRL-NH(2) (Ser-Leu-Ile-Gly-Arg-Leu-amide), evoked immediate cytosolic Ca(2+) mobilization and delayed (0.5-3 h) PGE(2) formation. The PAR(2)-triggered PGE(2) formation was attenuated by inhibition of the following signal pathway enzymes: cyclooxygenases 1 and 2 (COX-1 and COX-2, respectively), cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), the mitogen-activated protein kinases (MAPKs), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and p38 MAPK, Src family tyrosine kinase, epidermal growth factor (EGF) receptor tyrosine kinase (EGFRK), and protein kinase C (PKC), but not by inhibition of matrix metalloproteinases. SLIGRL-NH(2) caused prompt (5 min) and transient ERK phosphorylation, blocked in part by inhibitors of PKC and tyrosine kinases but not by an EGFRK inhibitor. SLIGRL-NH(2) also evoked a relatively delayed (15 min) and persistent (30 min) phosphorylation of p38 MAPK, blocked by inhibitors of Src and EGFRK but not by inhibitors of COX-1 or COX-2. SLIGRL-NH(2) elicited a Src inhibitor-blocked prompt (5 min) and transient phosphorylation of the EGFRK. SLIGRL-NH(2) up-regulated COX-2 protein and/or mRNA levels that were blocked by inhibition of p38 MAPK, EGFRK, Src, and COX-2 but not MEK-ERK. SLIGRL-NH(2) also caused COX-1-dependent up-regulation of microsomal PGE synthase-1 (mPGES-1). We conclude that PAR(2)-triggered PGE(2) formation in A549 cells involves a coordinated up-regulation of COX-2 and mPGES-1 involving cPLA(2), increased cytosolic Ca(2+), PKC, Src, MEK-ERK, p38 MAPK, Src-mediated EGF receptor trans-activation, and also metabolic products of both COX-1 and COX-2.  相似文献   

14.
The possible participation of phosphatidylinositol (PI) 3-kinase, p44/42 mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in staurosporine-induced prostaglandin E(2) (PGE(2)) production was investigated pharmacologically in rat peritoneal macrophages. When the cells were incubated in the presence of staurosporine (63 nM), phosphorylation of p44/42 MAP kinases and cytosolic phospholipase A(2) (cPLA(2)) was induced at 15 min and increased until 60 min, whereas PGE(2) production and expression of cyclooxygenase-2 (COX-2) protein began to increase at 2 h and increased thereafter. Both PD98059 and U0126, MAP kinase/extracellular signal-regulated kinase (ERK) kinase inhibitors, and LY294002, a PI 3-kinase inhibitor, inhibited staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2) and PGE(2) production. Moreover, U0126 inhibited staurosporine-induced arachidonic acid release at 1 h. Although PD98059 and U0126 at 30 microM partially inhibited staurosporine-induced COX-2 protein expression, they completely inhibited staurosporine-induced PGE(2) production. LY294002 at 100 microM did not inhibit staurosporine-induced expression of COX-2 protein. In contrast, Ro-31-8220, a PKC inhibitor, completely inhibited staurosporine-induced PGE(2) production and COX-2 protein expression at 8 h but did not inhibit staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2). These findings suggest that staurosporine induces PGE(2) production by two mechanisms. One is cPLA(2) phosphorylation through a signal transduction pathway from PI 3-kinase to p44/42 MAP kinases, by which arachidonic acid, a substrate for COX-1 and COX-2, is increased. The other is COX-2 protein expression, which is induced mainly by activation of PKC and partially by activation of p44/42 MAP kinases; thus, arachidonic acid is metabolized to PGE(2).  相似文献   

15.
Intracellular calcium concentration ([Ca2+]i) plays a major role in neuronal excitability, especially that triggered by the N-methyl-d-aspartate (NMDA)-sensitive glutamatergic receptor. We have previously shown that sigma1 receptor agonists potentiate NMDA receptor-mediated neuronal activity in the hippocampus and recruit Ca2+-dependent second messenger cascades (e.g., protein kinase C; PKC) in brainstem motor structures. The present study therefore assessed whether the potentiating action of sigma1 agonists on the NMDA response observed in the hippocampus involves the regulation of [Ca2+]i and PKC. For this purpose, [Ca2+]i changes after NMDA receptor activation were monitored in primary cultures of embryonic rat hippocampal pyramidal neurons using microspectrofluorometry of the Ca2+-sensitive indicator Fura-2/acetoxymethyl ester in the presence of sigma1 agonists and PKC inhibitors. We show that successive activations of the sigma1 receptor by 1-min pulses of (+)-benzomorphans or (+)-N-cyclopropylmethyl-N-methyl-1,4-diphenyl-1-ethyl-but-3-en-1-ylamine hydrochloride (JO-1784) concomitantly with glutamate time dependently potentiated before inconstantly inhibiting the NMDA receptor-mediated increase of [Ca2+]i, whereas 1,3-di-o-tolyl-guanidine, a mixed sigma1/sigma2 agonist, did not significantly modify the glutamate response. Both potentiation and inhibition were prevented by the selective sigma1 antagonist N,N-dipropyl-2-[4-methoxy-3-(211phenylethoxy) phenyl]-ethylamine monohydrochloride (NE-100). Furthermore, only (+)-benzomorphans could induce [Ca2+]i influx by themselves after a brief pulse of glutamate. A pretreatment with the conventional PKC inhibitor 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo [2,3-a] pyrrolo [3,4-c] carbazole (G?-6976) prevented the potentiating effect of (+)-benzomorphans on the glutamate response. Our results provide further support for a general mechanism for the intracellular sigma1 receptor to regulate Ca2+-dependent signal transduction and protein phosphorylation.  相似文献   

16.
Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/2) activation in adhesion- and shear stress-stimulated human umbilical vein endothelial cells (HUVEC). Adhesion of HUVEC to fibronectin, but not to poly-L-lysine, rapidly activated ERK1/2. Fluid shear stress (12 dyn/cm2) enhanced ERK1/2 activation stimulated by adhesion, suggesting the presence of a separate pathway. Two differences in signal transduction were identified: focal adhesion kinase phosphorylation was increased rapidly by adhesion but not by shear stress; and ERK1/2 activation in response to adhesion was inhibited to a significantly greater extent when actin filaments were disrupted by cytochalasin D. Two similarities in activation of ERK1/2 were observed: protein kinase C (PKC) activity was necessary as shown by complete inhibition when PKC was downregulated; and an herbimycin-sensitive (genistein- and tyrphostin-insensitive) tyrosine kinase was required. c-Src was identified as a candidate tyrosine kinase as it was activated by both shear stress and adhesion. These findings suggest that adhesion and shear stress activate ERK1/2 via a shared pathway that involves an herbimycin-sensitive tyrosine kinase and PKC. In addition, shear stress activates ERK1/2 through another pathway that is partially independent of cytoskeletal integrity.  相似文献   

17.
Normal rat bladder contractions are mediated by the M(3) muscarinic receptor subtype. The M(2) receptor subtype mediates contractions of the denervated, hypertrophied bladder. This study determined signal transduction mechanisms mediating contraction of the denervated rat bladder. Denervated bladder muscle strips were exposed to inhibitors of enzymes thought to be involved in signal transduction in vitro followed by a cumulative carbachol concentration-response curve. Outcome measures were the maximal contraction, the potency of carbachol, and the affinity of darifenacin for inhibition of contraction. Inhibition of phosphoinositide-specific phospholipase C (PI-PLC) with 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH(3)) has no effect on denervated bladder contractions, whereas inhibition of phosphatidyl choline-specific phospholipase C (PC-PLC) with O-tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609) attenuates the carbachol maximum and potency. Inhibition of rho kinase with (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride (Y-27632) reduces carbachol maximum, carbachol potency, and increases darifenacin affinity. Inhibition of rho kinase, protein kinase A (PKA), and protein kinase G (PKG) with 1-(5-isoquinolinesulfonyl)-homopiperazine.HCl (HA-1077) reduces the carbachol maximum and potency. Inhibition of PKC with chelerythrine increases darifenacin affinity, whereas inhibition of rho kinase, PKA, PKG, and protein kinase C (PKC) with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine.2HCl (H7) reduces the carbachol potency while increasing darifenacin affinity. Inhibition of rho kinase, PKA, and PKG with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide.2HCl (H89) increases darifenacin affinity. This study demonstrates that different signal transduction mechanisms mediate the contractile response in the denervated rat bladder than in normal rat bladder. In normal rat bladder, PI-PLC and PC-PLC mediate the contraction, but in denervated bladder only PC-PLC is involved. In the denervated bladder, the rho kinase pathway is more dominant than in normal bladders. PKA seems to mediate a contractile response in normal bladders, whereas it seems to inhibit contraction in denervated bladders.  相似文献   

18.
The B cell antigen receptor (BCR)-mediated activation of IkappaB kinase (IKK) and nuclear factor-kappaB require protein kinase C (PKC)beta; however, the mechanism by which PKCbeta regulates IKK is unclear. Here, we demonstrate that another protein kinase, TGFbeta-activated kinase (TAK)1, is essential for IKK activation in response to BCR stimulation. TAK1 interacts with the phosphorylated CARMA1 (also known as caspase recruitment domain [CARD]11, Bimp3) and this interaction is mediated by PKCbeta. IKK is also recruited to the CARMA1-Bcl10-mucosal-associated lymphoid tissue 1 adaptor complex in a PKCbeta-dependent manner. Hence, our data suggest that phosphorylation of CARMA1, mediated by PKCbeta, brings two key protein kinases, TAK1 and IKK, into close proximity, thereby allowing TAK1 to phosphorylate IKK.  相似文献   

19.
Corticotropin-releasing hormone (CRH) regulates diverse biological functions in mammals, through activation of two types of specific G protein-coupled receptors that are expressed as multiple mRNA spliced variants. In most cells, the type 1alpha CRH receptor (CRH-R1alpha) preferentially activates the G(s)-adenylyl cyclase signaling cascade. CRH-R1alpha-mediated signaling activity is impaired by insertion of 29 amino acids in the first intracellular loop, a sequence modification that is characteristic of the human-specific CRH-R1beta variant. In various tissues, CRH signaling events are regulated by protein kinase C (PKC). The CRH receptors contain multiple putative PKC phosphorylation sites that represent potential targets. To investigate this, we expressed recombinant CRH-R1alpha or CRH-R1beta in human embryonic kidney 293 cells and analyzed signaling events after PKC activation. Agonist (oxytocin) or phorbol 12-myristate 13-acetate-induced activation of PKC led to phosphorylation of both CRH-R1 variants. However, CRH-R1alpha and CRH-R1beta exhibited different functional responses to PKC-induced phosphorylation, with only the CRH-R1beta susceptible to cAMP signaling desensitization. This was associated with a significant decrease of accessible CRH-R1beta receptors expressed on the cell surface. Both CRH-R1 variants were susceptible to homologous desensitization and internalization following treatment with CRH; however, PKC activation increased internalization of CRH-R1beta but not CRH-R1alpha in a beta-arrestin-independent manner. Our findings indicate that CRH-R1alpha and -R1beta exhibit differential responses to PKC-induced phosphorylation, and this might represent an important mechanism for functional regulation of CRH signaling in target cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号