首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Isolated rat neurohypophyses were superfused in vitro and the release of vasopressin and oxytocin into the medium was determined by specific radioimmunoassays. Hormone secretion was increased by electrical stimulation of the pituitary stalk at different frequencies. The effects of several phorbol esters, known to activate (phorbol 12,13-dibutyrate, PDB) or not to affect (4a-phorbol 12,13-dideconate and phorbol 12-monoacetate) protein kinase C, and of the direct protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) were tested.Electrical stimulation with 450 pulses caused the release of about 45 U vasopressin and 55 U oxytocin, when a frequency of 3 Hz was applied, and of about 500 U vasopressin and oxytocin, when a frequency of 15 Hz was used.PDB (1 gmol/l) increased the release of vasopressin evoked by 15 Hz stimulation maximally by about 40–50% and that evoked by 3 Hz stimulation by about 150%. The release of oxytocin evoked by 15 Hz stimulation was increased by about 150% and that evoked by 3 Hz stimulation by about 400–500% in the presence of PDB. Both inactive phorbol esters had no effects on the evoked release of vasopressin or oxytocin. The effect of PDB on the release of vasopressin and oxytocin was blocked by H7 (10–30mol/1). H7 (30 ol/1) alone reduced the release of vasopressin evoked by stimulation at 15 Hz by 50%. The release of oxytocin was not significantly affected by H7. In the presence of naloxone (1 ol/1) the release of oxytocin evoked by 3 and 15 Hz stimulation was increased by about 175 and 105%, respectively. In the presence of naloxone, H7 (30 mol/1) had no effect on the release of oxytocin evoked by stimulation at 15 Hz, but PDB caused an increase of the release of oxytocin similar to that in the absence of naloxone. Inactivation of protein kinase C by prolonged exposure of isolated neurohypophyses to PDB (1 mol/1) for 4 h reduced the release of vasopressin evoked by stimulation at 15 Hz by about 45%.In conclusion, activation of protein kinase C can facilitate impulse-induced hormone secretion from neurosecretory nerve endings. Under the present in vitro conditions, an endogenous activation of protein kinase C appears to be involved, in part, in the frequency-dependent facilitation of vasopressin, but not of oxytocin secretion. In addition, the inhibition of oxytocin release by endogenous opioids appears not to be associated with effects on protein kinase C.Abbreviations DMSO dimethylsulphoxide - H7 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine - PDB phorbol 12,13-dibutyrate Send offprint requests to K. Rack at the above address  相似文献   

2.
Summary The effect of pinacidil on the release of endogenous noradrenaline and dopamine from the sympathetic innervation of the rat vas deferens was examined. Amine release was evoked by electrical stimulation (1, 2, 5 and 10 Hz) or by depolarization with high potassium (75 mmol/l) in the medium. Dopamine and noradrenaline were measured by means of high pressure liquid chromatography with electrochemical detection.Pinacidil (1, 5, 10 and 50 mol/l) produced a concentration-dependent inhibition of the electrically stimulated (2 Hz) overflow of noradrenaline and dopamine. Only pinacidil 50 mol/l increased the spontaneous loss of dopamine and noradrenaline. The inhibitory effects of pinacidil (5 mol/l) on amine overflow were also observed at other frequencies of stimulation (1, 5 and 10 Hz). The magnitude of the inhibitory effect on noradrenaline release was approximately the same at all frequencies (63% to 56% reduction); for dopamine, the higher the frequency of stimulation, the greater the inhibitory effect of pinacidil (up to 73% reduction). When the preparations were continuously stimulated for 70 min at 2 Hz, pinacidil (5 mol/l) reduced the overflow of dopamine and noradrenaline during the first 40 or 30 min of stimulation only. The addition of phentolamine (1 mol/l) to the perifusion medium slightly reduced the inhibitory effect of pinacidil on amine overflow, but the inhibition by pinacidil remained statistically significant. Tetraethylammonium (10 mmol/l) completely abolished the inhibitory effect of pinacidil (10 mol/l). Pinacidil (5 mol/l) did not reduce the potassium-evoked release of the amines.The results demonstrate that pinacidil impairs transmitter release from the sympathetic innervation of the rat vas deferens, probably as a consequence of the opening of potassium channels. Send offprint request to P. Soares-da-Silva at the above adress  相似文献   

3.
Summary 3H-Noradrenaline release in the rabbit hippocampus and its possible modulation via presynaptic dopamine receptors was studied. Hippocampal slices were preincubated with 3H-noradrenaline, continuously superfused in the presence of cocaine (30 mol/l) and subjected to electrical field stimulation. The electrically evoked tritium over-flow from the slices was reduced by 0.1 and 1 mol/l dopamine and apomorphine, but significantly enhanced by 10 mol/l apomorphine or by 0.1 and 1 mol/l bromocriptine. If the 2-adrenoceptor antagonist yohimbine (0.1 mol/l) was present throughout superfusion, the inhibitory effects of dopamine and apomorphine were more pronounced and even 10 mol/l apomorphine and 1 mol/l bromocriptine inhibited noradrenaline release. Qualitatively similar observations were made in the presence of another 2-antagonist, idazoxane (0.1 mol/l). In the presence of the D2-receptor antagonist domperidone (0.1 mol/l) the inhibitory effects of dopamine were almost abolished, whereas both apomorphine (>1 mol/l) and bromocriptine (>0.01 mol/l) greatly facilitated noradrenaline release. The D2-receptor agonist LY 171555 (0.1 and 1 mol/l) significantly reduced the evoked noradrenaline release whereas the D1-selective agonist SK & F 38393 was ineffective at similar concentrations. The effects of LY 171555 were abolished in the presence of domperidone (0.1 mol/l) but remained unchanged in the presence of yohimbine or idazoxane (0.1 mol/l, each).At 1 mol/l the D2-receptor antagonists domperidone and (-)sulpiride significantly increased the evoked noradrenaline release by about 10%. However, at this concentration, domperidone (but not (-)sulpiride) affected also basal tritium outflow. Bulbocapnine and the preferential D1-receptor antagonists SCH 23390 enhanced the evoked noradrenaline release already at 0.1 mol/l. Their marked facilitatory effects (50 to 60% increase at 1 mol/l) were reduced in the presence of idazoxane (0.1 mol/l) and almost abolished in the presence of 0.1 mol/l yohimbine, whereas the increase due to 1 mol/l (-)sulpiride persisted under these conditions.The evoked tritium efflux from rabbit hippocampal slices preincubated with 3H-serotonin was not affected by dopamine receptor agonists.From our results we conclude that hippocampal noradrenaline, but not serotonin release, is modulated via D2-dopamine receptors. In addition, our results provide evidence for more or less pronounced 2-adrenoceptor agonistic properties of dopamine and 2-adrenoceptor antagonistic properties of apomorphine, bromocriptine, SCH 23390 and bulbocapnine in this noradrenaline release model from CNS tissue.  相似文献   

4.
Summary Isolated neurointermediate lobes (NILs) or isolated neural lobes (NLs) of the rat pituitary gland were incubated in Krebs-HEPES solution which contained pargyline and the dopamine uptake inhibitor GBR 12921. The release of endogenous dopamine was determined by HPLC with electrochemical detection. Electrical stimulation of the pituitary stalk induced a frequency-dependent release of dopamine.The release of dopamine from the combined NIL evoked by stimulation at 15 Hz was increased by 130% in the presence of the dopamine D2 receptor antagonist, (–)-sulpiride; the (+)-enantiomer of sulpiride had virtually no effect. When the stimulation frequency was 3 Hz (–)-sulpiride caused an increase in dopamine release by 230%. A similar increase was observed in the presence of domperidone, another dopamine D2 receptor antagonist.The dopamine receptor agonists, apomorphine and quinpirole, had no significant effects on the evoked release of dopamine indicating that under the present incubation conditions endogenous dopamine may have been maximally activating the autoinhibition. However, in the presence of 1 mol/l (–)-sulpiride, apomorphine as well as quinpirole reduced the evoked release of dopamine in a concentration-dependent manner.The dopamine D1 receptor selective antagonist, SCH 23390, had no effect on the evoked release of dopamine at a concentration of 1 mol/1. Only at a concentration of 10 mol/l did SCH 23390 cause a small increase in dopamine release; this effect was, however, abolished in the presence of 1 mol/1(–)-sulpiride.In the presence of 1 mol/l (–)-sulpiride neither clonidine, yohimbine, 5-methoxytryptamine nor metitepine significantly affected the release of dopamine from the NIL evoked by stimulation at 3 Hz.In the NL, the release of dopamine is inhibited by endogenous opioids. For this reason, naloxone 1 or 10 mol/1 was present in the experiments on isolated NLs. Domperidone and (–)-sulpiride, but not (+)-sulpiride, increased the release of dopamine from the NL evoked by electrical stimulation at 15 Hz by about 90%. SCH 23390 caused a significant increase in dopamine release at 10 mol/l, but not at 1 mol/lIn conclusion, the release of endogenous dopamine from the neurons terminating in the intermediate and neural lobe of the pituitary gland is inhibited via dopamine receptors of the D2 type.Abbreviations DOPAC dihydroxyphenylacetic acid - 5-HT 5-hydroxytryptamine - HPLC high performance liquid chromatography - IL intermediate lobe - NIL neurointermediate lobe - NL neurallobe Send offprint requests to K. Racké at the above address  相似文献   

5.
Summary The effects of (±)N-allyl-normetazocine on the release of acetylcholine from different areas of guinea-pig and rat brain were investigated. 1. The drug did not modify the electrically (2 Hz) evoked tritium efflux from guinea-pig cerebral cortex, thalamus and caudate nucleus slices, preloaded with 3H-choline 0.1 mol/l and superfused with Krebs solution containing hemicholinium-3 10 mol/l. 2. (±)N-allyl-normetazocine 10 mol/l. enhanced the evoked 3H efflux from guinea-pig brain slices superfused with Krebs solution containing physostigmine 30 mol/l or oxotremorine 0.3 -1 gmol/l; the effect was naloxone-insensitive and was abolished by atropine 0.15 mol/l, but not by pirenzepine 1 mol/l. 3. (±)N-allyl-normetazocine 5 mol/l enhanced the electrically evoked release of endogenous acetylcholine as well, in a naloxone-insensitive way. 4. Both (±) and (+)N-allyl-normetazocine were without effect on 3H efflux from rat caudate nucleus slices electrically stimulated at 0.2 Hz frequency, after preloading with 3H-choline and during superfusion with hemicholinium-3. 5. The results are discussed in view of the antimuscarinic properties of the drug. Send offprint requests to A. Siniscalchi  相似文献   

6.
We investigated the effects of the full muscarinic acetylcholine receptor agonist methacholine and the partial and putatively M2-selective agonist pilocarpine on endogenous acetylcholine release from guinea-pig trachea by use of high-performance liquid chromatography with electrochemical detection. Atropine-induced increases in acetylcholine release were used to monitor the system.Electrical field stimulation (8 V, 30 Hz, 0.5 ms for 5 min)-induced acetylcholine release in the presence of neostigmine, with or without preincubation with choline to maximally enhance acetylcholine output, was increased to about 225% by 0.3 M atropine, indicating functional autoinhibition. However, methacholine (10 M) did not affect the acetylcholine release, whereas it was enhanced to 166% by 30 M pilocarpine. When electrical field stimulation was applied at lower intensity (8 V, 16 Hz, 0.1 ms for 5 min) and in the absence of neostigmine, an increase by 0.3 M atropine (to 177%) but a decrease of the acetylcholine release by 10 M methacholine (to 65%) and 30 M pilocarpine (to 63%) were observed. These results clearly demonstrate (i) that inhibition of evoked endogenous acetylcholine release from prejunctional nerve terminals in guinea-pig trachea can only be demonstrated under conditions of low junctional concentrations of acetylcholine, and (ii) that pilocarpine, as a partial muscarinic agonist, behaves as an antagonist under high junctional concentrations of the neurotransmitter.  相似文献   

7.
Summary The effect of nicotine (1–10 M) and tacrine (9-amino-1,2,3,4-tetrahydroacridine; THA) on stimulation evoked release of [3H]acetylcholine from the rat brain slice preparation preincubated with [3H]choline was investigated.In these preparations, nicotine enhanced while tacrine inhibited evoked [3H]acetylcholine release. These effects were blocked by (+)tubocurarine (1 M) and atropine (0.1 M) respectively. In the presence of idazoxan (0.3 M) plus atropine (0.1 M), nicotine (3 M) continued to enhance evoked [3H]acetylcholine release while the inhibitory effect of tacrine (1 M) on evoked [3H]acetylcholine release was reversed to an enhancement. Under these circumstances the effects of both nicotine and tacrine were blocked by (+)tubocurarine (1 M).These findings demonstrate that tacrine can both inhibit or enhance [3H]acetylcholine release, most likely through its activity as a cholinesterase inhibitor. Under normal circumstances following tacrine the predominant effect of the elevated levels of acetylcholine will be activation of inhibitory presynaptic muscarine receptors on cholinergic nerves and an inhibition of evoked [3H]acetylcholine release. Under conditions where both presynaptic inhibitory muscarine and 2-adrenoceptors are blocked, the elevated levels of acetylcholine produced by tacrine will lead to the activation of facilitatory presynaptic nicotine cholinoceptors on cholinergic nerves and an enhancement of evoked [3H]acetylcholine release. Send offprint requests to R. Loiacono at the above address  相似文献   

8.
Summary Contractions, release of previously stored [3H]-noradrenaline (measured as overflow of total tritiated compounds) and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) were studied in the superfused vas deferens of the guinea pig. Prazosin and suramin were used to suppress non-neural ATP release, and effects of bromoxidine and rauwolscine on the neural release thus isolated were examined.Electrical stimulation elicited reproducible contraction, tritium overflow and ATP overflow. Both prazosin (0.03–3 M) and suramin (30–300 M) reduced contractions as well as the evoked overflow of ATP. No visible contraction remained in 21 of 28 tissues exposed to prazosin 0.3 M combined with suramin 300 M. The evoked overflow of ATP under these conditions was about 17% of that observed in the absence of drugs. In the presence of prazosin 0.3 M and suramin 300 M, bromoxidine (0.01–1 M) decreased and rauwolscine (0.1–10 M) increased the evoked overflow of both tritium and ATP. Rauwolscine increased the evoked overflow of tritium to a significantly greater extent than the overflow of ATP.It is concluded that the overflow of ATP elicited by electrical (neural) stimulation in the presence of prazosin 0.3 M and suramin 300 M reflects purely neural release of ATP. This release of ATP, like the release of noradrenaline, is modulated through prejunctional 2-adrenoceptors. The 2-adrenoceptor modulation of the release of noradrenaline seems to be more marked than the modulation of the release of ATP. Correspondence to B. Driessen at the above address  相似文献   

9.
Summary Experiments were carried out on rat isolated perfused hearts with both vagus nerves attached. The acetylcholine stores were labelled with [14C]-choline. The effects of muscarinic receptor antagonists on the [14C]overflow and increase in perfusion pressure evoked by vagus nerve stimulation (10 Hz, 4–10 mA) were studied in order to determine the muscarinic receptor type involved in autoinhibition of acetylcholine release and vagally-induced vasoconstriction in the rat heart.Stimulation of the vagus nerves (1200 pulses) caused an increase in [14C]-overflow and in perfusion pressure which was significantly reduced by hexamethonium 500 mol/l and abolished by tetrodotoxin 0.3 mol/l or perfusion with Ca2+-free solution. The fractional rate of evoked [14C]-overflow per pulse upon stimulation at 10 Hz (720 pulses) was doubled in the presence of the non-selective antagonist atropine (0.01–1 mol/l) as well as in that of the M2-selective compounds methoctramine (0.1 mol/l) and AF-DX 116 (0.1–1 mol/l), but remained unaffected by the M3-selective hexahydrosiladifenidol (0.1 mol/l). The increase in perfusion pressure upon nerve stimulation was reduced by atropine (0.01 mol/l) or hexahydrosiladifenidol (0.1 mol/l) to approximately 50% and increased by about 50% in the presence of AF-DX 116 (0.1 mol/l).The results show that the autoinhibition of acetylcholine release in the rat heart is mediated by M2 receptors. On the other hand, the increase in perfusion pressure upon vagus nerve stimulation is caused by a different muscarinic receptor, more sensitive to hexahydrosiladifenidol than to M2-selective antagonists. Send offprint requests to I. T. Bognar at the above address  相似文献   

10.
The effects of ATP and analogues on the release of previously incorporated 3H-noradrenaline were studied in cultured sympathetic neurons derived from superior cervical ganglia of neonatal rats. Electrical field stimulation (40 mA at 3 Hz) of the neurons for 10 s markedly enhanced the outflow of tritium. ATP applied for 5 s to 2 min at concentrations of 0.01 to 1 mmol/l caused a time- and concentration-dependent overflow with half maximal effects at about 10 s and 100 mol/l, respectively. 2-Methylthio-ATP was equipotent to ATP in inducing 3H-overflow. ADP (100 mol/l), when applied for 2 min, also caused a small 3H-overflow, but , -methylene-ATP (100 mol/l), AMP (100 mol/l), R(–)N6-(2-phenylsiopropyl)-adenosine (R(–)-PIA; 10 mol/l) and 5-N-ethylcarboxamidoadenosine (NECA; 1 mol/l) did not. The 3H-overflow induced by 10 s applications of 100 mol/l ATP was abolished by suramin (100 mol/l) and reduced by about 70% by reactive blue 2 (3 mol/l). Electrically evoked overflow, in contrast, was slightly enhanced by suramin, but not modified by reactive blue 2. Xanthine amine congener (10 mol/l) and hexamethonium (10 mol/l) did not alter ATP-evoked release. Removal of extracellular Ca2+ from the medium reduced ATP- and electrically induced overflow by about 95%. Tetrodotoxin (1 mol/l) abolished electrically evoked 3H-overflow but inhibited ATP-induced overflow by only 70%. The 2-adrenoceptor agonist UK 14,304 at a concentration of 1 mol/l diminished both electrically and ATP-evoked tritium overflow by approximately 70%. These results indicate that activation of P2-purinoceptors stimulates noradrenaline release from rat sympathetic neurons. The release resembles electrically induced transmitter release, but additional mechanisms may contribute. Correspondence to: S. Boehm at the above address  相似文献   

11.
Summary The potencies of several muscarine receptor antagonists in blocking either the autoinhibition of acetylcholine release or the muscarinic contraction of the sphincter muscle upon acetylcholine release were investigated in the guinea-pig iris. The agonist at pre- or postjunctional muscarine receptors was acetylcholine released upon field stimulation (5.5 Hz, 2 min) of the irides preloaded with 14C-choline. The stimulation-evoked 14C-overflow was doubled in the presence of atropine 0.1 mol/l but unaffected by the agonist (±)-methacholine (50 mol/l). Thus, under the present stimulation conditions, the autoinhibition of acetylcholine release on the guinea-pig iris cholinergic nerves was nearly maximally activated. Isotonic contractions of the irides upon field stimulation consisted of a rapid, atropine (0.1 mol/l). peak phase followed by a sustained contraction which involved a cholinergic and a non-cholinergic stimulation of the sphincter muscle. The M2-selective antagonists methoctramine (10 mol/l) and gallamine (100 µmol/l). increased both the 14Goverflow and the peak contractions evoked by field stimulation. In contrast, the M3-selective antagonist hexahydrosiladifenidol (0.1–10 mol/l) failed to affect the evoked 14C-release but concentration-dependently (1–10 mol/l) reduced the iris contractions. Pirenzepine (10 mol/l) enhanced the evoked 14C-overflow and inhibited the peak contractions (0.1–10 mol/l; maximal effect at 10 mol/l). The low potency of the antagonist at both receptor sites indicates that an M1 muscarine receptor is not involved. The results are consistent with the idea of M2 muscarine receptors mediating autoinhibition of acetylcholine release in the guinea-pig iris and M3-like receptors inducing the contraction of the sphincter muscle. Send offprint requests to I. T. Bognar at the above address  相似文献   

12.
Prostanoid EP receptor-mediated modulation of noradrenaline release from cultured chick sympathetic neurons was investigated. Transmitter release from dissociated cell cultures of embryonic paravertebral ganglia, loaded with [3H]-noradrenaline, was elicited either by electrical field stimulation (36 pulses/3 Hz) or by elevating the extracellular concentration of K+ (to 30 mM; for 2 min).Prostaglandin E2 (PGE2; 0.01–3 M) enhanced electrically evolved [3H]-noradrenaline release in a concentration-dependent manner with a maximal increase by about 50% at 1 M. Also iloprost (0.1–3 M) increased transmitter release concentration-dependently, whereas misoprostol (0.1–3 M) had no effect. Indometacin (10 M) influenced neither evoked release per se nor the enhancement caused by PGE2. AH6809 (3 M), a selective EP1 receptor antagonist, blocked the enhancement caused by both PGE2 and iloprost. K+-evoked noradrenaline release, which was virtually insensitive to tetrodotoxin (0.3 M), was increased by PGE2 to an extent comparable to that observed after electrical stimulation.In summary, the present data indicate that PGE2 facilitates noradrenaline release from cultured chick sympathetic neurons by a receptor which shows the pharmacological profile of the EP1 subtype and is probably located at the processes of the neuron.  相似文献   

13.
Activation of ionotropic but not of metabotropic glutamate receptors causes an indirect inhibition of the release of noradrenaline in slices of rabbit brain cortex. The inhibition is mediated by adenosine which activates presynaptic adenosine A1-receptors. The present study characterizes the ionotropic receptor types through which glutamate itself produces this indirect inhibition. Rabbit brain cortex slices were preincubated with [3H]-noradrenaline, superfused with medium containing desipramine (1 M) and stimulated electrically by trains of 6 pulses at 100 Hz.Glutamate (100–3000 M) reduced the electrically evoked overflow of tritium by up to 58 %. The effect did not differ 20 min and 60 min after addition of glutamate. Adenosine deaminase (1 U ml-1) as well as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 30 M) and d--glutamylamino-methanesulfonate (GAMS; 30 M), both of which block kainate receptors, attenuated the glutamate-induced inhibition. The NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP5; 100 M) and the AMPA receptor antagonist 6-nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-dione (NBQX; 30 M) did not change the effect of glutamate. Given alone, CNQX and GAMS, but not AP5 and NBQX, slightly increased the evoked overflow of tritium; the increases were abolished in the presence of adenosine deaminase.The results indicate that activation of kainate but not NMDA and AMPA receptors is involved in the indirect, adenosine-mediated inhibition by exogenous glutamate of the release of noradrenaline in rabbit brain cortex slices. Moreover, as shown by the increase caused by CNQX and GAMS, endogenous excitatory amino acids inhibit the release of noradrenaline through the kainate receptor-adenosine mechanism and thus contribute to the purinergic inhibitory control of noradrenaline release in the brain.  相似文献   

14.
Summary In the superfused isolated rat urinary bladder, capsaicin as well as electrical field stimulation evoked the release of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR). Carbonyl cyanide p-trichloromethoxyphenylhydrazone (CCCP, threshold 2 M) reduced both, the capsaicin- and the electrical field stimulation-evoked release of CGRP-IR while a low concentration of Ruthenium Red (RR, 0.6 M and 2 M) selectively attenuated the capsaicin-evoked release of CGRP-IR but did not influence the effect of electrical field stimulation. 20 M RR nearly abolished the capsaicin-evoked release, but also attenuated the effect of electrical field stimulation.In the isolated guinea-pig bronchus, electrical field stimulation and capsaicin induced non-cholinergic contractions which are known to be caused by tachykinin release from afferent nerve terminals. CCCP (0.6 M) only reduced the response to field stimulation; a ten-fold higher concentration of CCCP attenuated field stimulation as well as capsaicin-induced contractions. This is in contrast to the reported selective inhibition of capsaic-ininduced contractions by RR.The present data demonstrate that CCCP generally inhibits evoked neuropeptide release, regardless of the kind of stimulation used while low concentrations of RR preferentially inhibit capsaicin-evoked neuropeptide release.Send offprint requests to: R. Amann at the above address  相似文献   

15.
Summary Phorbol 12-myristate 13-acetate (PMA; 0.03, 0.1 and 1.0 mol/l), a protein kinase C activating phorbol ester, significantly enhanced the stimulation-induced (S-I) outflow of radioactivity at 5 Hz stimulation in mouse atria preincubated with [3H]-noradrenaline, whereas a phorbol ester which does not activate protein kinase C, phorbol 13-acetate (0.1 mol/l), had no effect. This suggests that protein kinase C may have a role in modulating sympathetic neurotransmission.Polymyxin B (7 and 21 mol/l), an inhibitor of protein kinase C, had no effect on the S-I outflow of radioactivity. However, it had a significant inhibitory effect in a concentration of 70 mol/l. Polymyxin B (21 mol/l) reduced the facilitation of the S-I outflow of radioactivity produced by PMA (0.03 mol/l), 8-bromo-cyclic AMP (90 mol/l), tetraethylammonium chloride (300 mol/l), and idazoxan (0.1 mol/l). Furthermore, when a higher frequency of stimulation was applied (10 Hz rather than 5 Hz), polymyxin B (21 pmol/1) by itself inhibited the S-I outflow of radioactivity.In the presence of a concentration of PMA (0.1 mol/l) that was maximally effective in enhancing the S-I outflow of radioactivity, both idazoxan (0.1 mol/l) and 8-bromocyclic AMP (90 mol/l) still enhanced the S-I outflow. This suggests that these agents are not operating through protein kinase C and further suggests that the inhibitory effect of polymyxin B on these agents cannot be due to inhibition of protein kinase C. The effects of clonidine on the S-I outflow were not affected by a maximally effective concentration of PMA (0.1 mol/l). These results suggest that protein kinase C is not involved in a 2-adrenoceptor mediated modulation of noradrenaline release. Send offprint requests to I. F. Musgrave at the above address  相似文献   

16.
Contractions and overflow of tritium and ATP elicited by hypogastric nerve stimulation (HNS) and field stimulation (FS) were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.HNS and FS elicited contraction, tritium overflow and ATP overflow. HNS at supramaximal current strength produced smaller responses than did FS at supramaximal current strength (210 pulses/7 Hz). Supramaximal HNS and submaximal FS were used in the remainder of the study. Prazosin (0.3 mol/l) reduced contractions and the overflow of ATP elicited by both HNS and FS; the evoked overflow of tritium was not changed (210 pulses/7 Hz). Combined administration of prazosin (0.3 mol/l) and suramin (300 mol/l) abolished contractions and reduced the overflow of ATP elicited by both HNS and FS slightly more than did prazosin alone; tritium overflow again was not changed (210 pulses/7 Hz). Contractions, tritium overflow and ATP overflow increased with the frequency of both HNS and FS (from 7 to 25 Hz; 210 pulses); the increase in ATP overflow with frequency was more marked than the increase in tritium overflow. The preferential increase of ATP overflow with the frequency of HNS and FS persisted in the combined presence of prazosin (0.3 mol/l) and suramin (300 mol/l).The study confirms for HNS, a more physiologic way of sympathetic nerve stimulation, several observations previously obtained with FS. First, HNS-evoked ATP release is detectable as an overflow of ATP into the superfusion fluid. Second, a large part of the HNS-evoked release of ATP is postjunctional in origin, due to activation of post-junctional 1-adrenoceptors and presumably P2-purinoceptors. Third, the average neural release of ATP per pulse facilitates with the frequency of stimulation to a greater extent than the average release of noradrenaline per pulse.  相似文献   

17.
Summary Modulation of acetylcholine release was studied in slices of the rabbit hippocampus preincubated with 3H-choline and then continuously superfused with a medium containing 10 mol/l hemicholinium-3. Electrical field stimulation of the superfused slices elicited an increase in tritium outflow, which was tetrodotoxin-sensitive and largely calcium-dependent. Stimulus-evoked acetylcholine release in the rabbit hippocampal slices was modulated by presynaptic muscarinic autoreceptors, as has been shown previously for the rat hippocampus. Drugs with affinity for - and or -adrenoceptors did not affect the evoked overflow of tritium from rabbit hippocampal slices. In contrast, the dopamine receptor agonist apomorphine (0.1 or 1 mol/l) and exogenous dopamine (1 or 10 mol/l) significantly reduced the evoked outflow by about 10 or 20%, respectively. This effect was antagonized by haloperidol (0.01 mol/l) but not by phentolamine (1 mol/l). Attempts to enhance (using nomifensine 10 mol/l) or reduce (using haloperidol, up to 1 mol/l; or bretylium, 1 mmol/l for 5 min) endogenous dopaminergic transmission in the hippocampal slices did not affect stimulation evoked acetylcholine release. In conclusion, presynaptic dopamine receptors modulating acetylcholine release are present in the rabbit hippocampus, but they seem not to be of physiological significance.  相似文献   

18.
Effects of indomethacin, N-nitro-L-arginine (NNA) and naloxone, and of pretreatment with cyclophosphamide (CY), on the interleukin (IL)-I\ induced inhibition of exocytotic noradrenaline release were investigated in the isolated, vascularly perfused spleen of the rat. Neurotransmitter release was evoked by perivascular electrical stimulation (4 Hz) and the overflow of endogenous noradrenaline was determined by HPLC with electrochemical detection.Perfusion of the spleen with Tyrode's solution containing IL-1\ (100 pg/ml) for 90 min caused an inhibition of the stimulation-evoked noradrenaline overflow which persisted for at least 20 min after washout of the IL. The evoked overflow was reduced in the presence of NNA 30 mol/l, but remained unaffected by indomethacin 3 mol/l, naloxone 0.1 mol/l or treatment of the rats with CY (250 mg/kg). The opioid agonist etorphine 10 mol/1 inhibited the evoked overflow of noradrenaline and this effect was prevented by naloxone 0.1 mol/1. The inhibition of evoked overflow by IL-1\ was not affected by indomethacin but was reduced or even prevented in the presence of NNA or naloxone, or after lymphocyte depletion of spleens by CY.The results are compatible with the idea that in the rat spleen exocytotic noradrenaline release is accompanied by a concomitant secretion of a nitric oxide (NO)-like compound which, in turn, reinforces noradrenaline release, and that the release can be inhibited via prejunctional opioid receptors. The IL-1\ induced inhibition of evoked release appears to be a complex process which involves as one of many steps a decrease of the facilitatory NO-like compound and the release of endogenous opioids probably from spleen lymphocytes.  相似文献   

19.
Summary The effect of methoxamine, an 1-adrenoceptor agonist, on the electrically-evoked release of endogenous noradrenaline was examined in the isolated rabbit ear artery. Noradrenaline was quantified by high performance liquid chromatography-electrochemical detection. The release of adenine nucleotides and nucleosides by methoxamine was examined using high performance liquid chromatography-fluorescence detection.The release of noradrenaline evoked by electrical field stimulation (EFS) at 4 Hz was reduced by tetrodotoxin 0.3 mol/l and clonidine 1 mol/l by approximately 80% and 50%, respectively. On the other hand, methoxamine at 10 but not 1 mol/l enhanced the release of noradrenaline to approximately twice the control, and the enhancement was prevented by prazosin 1 mol/l. The facilitatory action of methoxamine was also abolished after desensitization of P2-purinoceptors by ,-methylene ATP 30 mol/l as well as by the presumed P2-purinoceptor antagonist suramin given at 10 mol/l. Exogenous ATP 10 mol/l significantly enhanced the EFS-evoked release of noradrenaline, and the enhancement was abolished by ,-methylene ATP and suramin. None of the drugs changed the spontaneous outflow of noradrenaline. These results indicate that endogenous ATP, acting at prejunctional purinoceptors, may participate in the facilitatory effect of methoxamine. Indeed, methoxamine 10 mol/l significantly enhanced the spontaneous outflow of ATP and, less so, ADP. The methoxamine evoked release of ATP and ADP was antagonized by prazosin 1 mol/l.It is concluded that methoxamine releases endogenous ATP from postjunctional sites which then, via prejunctional purinoceptors, facilitates action potential-evoked release of noradrenaline in rabbit ear artery.Supported by grants from the Mita Research Foundation, Matsue, Japan and Kanae Research Foundation, Osaka, JapanCorrespondence to K. Takeuchi at the above address  相似文献   

20.
Summary A possible contribution of adenine nucleotides to the endogenous purinergic, A1-receptor-mediated inhibition of noradrenaline release was studied in rabbit occipito-parietal cortex slices. The slices were preincubated with [3H]-noradrenaline and then superfused and stimulated electrically, in most experiments by trains of 6 pulses/100 Hz. A few experiments were carried out in rat occipito-parietal cortex slices. The A1-purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 1–100 nmol/l) as well as the enzyme adenosine deaminase (0.1–10 U/ml) increased the electrically evoked overflow of tritiated compounds. The maximal increase was by about 85% for both DPCPX and adenosine deaminase. The increases obtained with maximally effective concentrations of DPCPX and adenosine deaminase were not additive. The 1-adrenoceptor-selective agonist methoxamine (10 but not 1 mol/l) reduced the evoked overflow. Its effect was antagonized by yohimbine 1 mol/l but then not attenuated further by DPCPX100 nmol/l.L-Glutamate (300 mol/l–2.3 mmol/l) also reduced the evoked overflow of tritium. Its effect was not changed by yohimbine 1 mol/l but greatly, and to the same extent, attenuated by DPCPX 100 mol/l and adenosine deaminase 3 U/ml. Neither the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine nor omission of Mg++ changed the inhibition by glutamate. Glutamate did not alter the basal efflux of tritium from rabbit cortex slices under any experimental condition. In contrast, glutamate (100 mol/l and 1 mol/l) caused an immediate, marked and transient acceleration of tritium outflow from rat occipitoparietal cortex slices (medium without Mg++). It is concluded that adenosine but not an adenine nucleotide mediates the tonic purinergic presynaptic inhibition of noradrenaline release in rabbit brain cortex. The marked degree of disinhibition by DPCPX and adenosine deaminase underscores the potential physiological role of this inhibition. The purinergic inhibitory tone is reinforced by glutamate, indicating that glutamate releases adenyl compounds in rabbit brain cortex. Again adenosine but not an adenine nucleotide mediates the indirect inhibition by glutamate of the release of noradrenaline. The noradrenaline-releasing effect that glutamate exerts in rat occipito-parietal cortex does not occur in rabbit occipito-parietal cortex. Methoxamine depresses the release of noradrenaline in rabbit brain cortex directly at presynaptic 2-adrenoceptors rather than by release of purines.Correspondence to I. von Kügelgen at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号