首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Naegleria fowleri, a free-living amoeba, exists as a virulent pathogen which causes fatal primary amoebic meningoencephalitis in experimental animals and humans. Using infected and immune mouse sera, we previously cloned an nfa1 gene from a cDNA library of N. fowleri by immunoscreening. The nfa1 gene (360 bp) produced a recombinant 13.1-kDa protein, and the Nfa1 protein showed pseudopodium-specific immunolocalization on a trophozoite of N. fowleri. In this study, the role of the Nfa1 protein as a cell contact mechanism of N. fowleri cocultured with target cells was observed by an immunofluorescence assay with an anti-Nfa1 polyclonal antibody. Using confocal microscopic findings, the Nfa1 protein was located on the pseudopodia of N. fowleri trophozoites. The Nfa1 protein in N. fowleri trophozoites cocultured with CHO target cells was also located on pseudopodia, as well as in a food cup formed as a phagocytic structure in close contact with target cells. The amount of nfa1 mRNA of N. fowleri was strongly increased 6 h after coculture.  相似文献   

2.
We previously cloned an antigenic gene (named nfa1) from a cDNA library of Naegleria fowleri by immunoscreening. The nfa1 gene had a coding nucleotide sequence consisting of 357 bases and produced a recombinant 13.1-kDa protein (Nfa1). In this study, to get more information regarding the recombinant Nfa1 protein (rNfa1), we produced an anti-Nfa1 polyclonal antibody from mice immunized with rNfa1 and used a peroxidase staining method to carry out immunocytochemistry experiments. In addition, we observed the effect of the presence of an anti-Nfa1 antibody on the in vitro cytotoxicity of N. fowleri against Chinese hamster ovary (CHO) cells. Trophozoites of N. fowleri in cultivation reacted strongly with a peroxidase-labeled anti-Nfa1 antibody. In inflammatory and necrotic regions of brain tissue infected with N. fowleri, labeled trophozoites that were stained brown were also observed. When examined using a transmission electron microscope, the Nfa1 protein showed pseudopodium-specific immunolocalization on a trophozoite of N. fowleri. When examined using a light microscope, CHO cells grown in cocultures with N. fowleri trophozoites (group I) for 48 h showed morphologically severe destruction but CHO cells grown in cocultures with N. fowleri trophozoites and an anti-Nfa1 polyclonal antibody (group II) showed less destruction. The results of a lactate dehydrogenase release assay showed that group I CHO cells exhibited 81% cytotoxicity and group II CHO cells exhibited 13.8% cytotoxicity.  相似文献   

3.
The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.  相似文献   

4.
Naegleria fowleri, agent of fatal primary amoebic meningoencephalitis, appears to induce cytotoxicity mechanically through its contact with the cell. The nfa1 gene cloned from a cDNA library of pathogenic N. fowleri by immunoscreening consists of 360 bp and expresses a 13.1-kDa recombinant protein (rNfa1) that demonstrated localization in the pseudopodia when examined using immunocytochemistry. To study the mechanisms involved in N. fowleri cytotoxicity, we developed a large volume of rNfa1-specific monoclonal antibody (McAb) against a 17-kDa His-tag fusion rNfa1 protein using a cell fusion technique. We established eight McAb-producing hybridoma cells. The antibodies were all immunoglobulin G2b and reacted strongly with a 17-kDa band representing the rNfa1 fusion protein in Western blotting, demonstrating immunoreactivity to the Nfa1 protein in pseudopodia (especially in the food cups) of N. fowleri trophozoites. A 51Cr-release assay indicated N. fowleri cytotoxicity by demonstrating that it eliminated 37.8, 60.6, and 98.8% of the target (microglial) cells 6, 12, and 24 h after co-incubation, respectively. When an anti-Nfa1 McAb was added to the coculture system, N. fowleri cytotoxicity decreased to 29.8, 44.1, and 66.3%, respectively.  相似文献   

5.
Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.  相似文献   

6.
7.
We previously cloned an antigenic gene (named nfa1) from a cDNA library of Naegleria fowleri by immunoscreening. The nfa1 gene had a coding nucleotide sequence consisting of 357 bases and produced a recombinant 13.1-kDa protein (Nfa1). In this study, to get more information regarding the recombinant Nfa1 protein (rNfa1), we produced an anti-Nfa1 polyclonal antibody from mice immunized with rNfa1 and used a peroxidase staining method to carry out immunocytochemistry experiments. In addition, we observed the effect of the presence of an anti-Nfa1 antibody on the in vitro cytotoxicity of N. fowleri against Chinese hamster ovary (CHO) cells. Trophozoites of N. fowleri in cultivation reacted strongly with a peroxidase-labeled anti-Nfa1 antibody. In inflammatory and necrotic regions of brain tissue infected with N. fowleri, labeled trophozoites that were stained brown were also observed. When examined using a transmission electron microscope, the Nfa1 protein showed pseudopodium-specific immunolocalization on a trophozoite of N. fowleri. When examined using a light microscope, CHO cells grown in cocultures with N. fowleri trophozoites (group I) for 48 h showed morphologically severe destruction but CHO cells grown in cocultures with N. fowleri trophozoites and an anti-Nfa1 polyclonal antibody (group II) showed less destruction. The results of a lactate dehydrogenase release assay showed that group I CHO cells exhibited 81% cytotoxicity and group II CHO cells exhibited 13.8% cytotoxicity.  相似文献   

8.
Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.  相似文献   

9.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis, a rapidly fatal parasitic disease of humans. The adherence of Naegleria trophozoites to the host cell is one of the most important steps in the establishment and invasiveness of this infectious disease. Currently, little is known about the surface molecules that may participate in the interaction of N. fowleri with their target cells. In the present study, we investigated the composition of glycoconjugates present on the surface of trophozoites of the pathogenic N. fowleri and the nonpathogenic Naegleria gruberi. With the use of biotinylated lectins in western blot and flow cytometric analysis, we showed that N. fowleri trophozoites present high levels of surface glycoconjugates that contain α-D-mannose, α-D-glucose, and terminal α-L-fucose residues. A significant difference in the expression of these glycoconjugates was observed between N. fowleri and the nonpathogenic N. gruberi. Furthermore, we suggest that glycoconjugates that contain D-mannose and L-fucose residues participate in the adhesion of N. fowleri and subsequent damage to MDCK cells.  相似文献   

10.
To determine whether pathogenic Acanthamoeba culbertsoni trophozoites and lysate can induce cytopathic changes in primary-culture microglial cells, morphological changes were observed by transmission electron microscopy (TEM). In addition, the secretion of two kinds of cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), from microglial cells was observed. Trophozoites of pathogenic A. culbertsoni made contact with microglial cells and produced digipodia. TEM revealed that microglial cells cocultured with amoebic trophozoites underwent a necrotic process, accompanied by lysis of the cell membrane. TEM of microglial cells cocultured with amoebic lysate showed that the membranes of the small cytoplasmic vacuoles as well as the cell membrane were lysed. The amounts of TNF-α secreted from microglial cells cocultured with A. culbertsoni trophozoites or lysate increased at 6 h of incubation. The amounts of IL-1β secreted from microglial cells cocultured with A. culbertsoni trophozoites at 6 h of incubation was similar to those secreted from the control group, but the amounts decreased during cultivation with A. culbertsoni lysate. These results suggest that pathogenic A. culbertsoni induces the cytopathic effects in primary-culture rat microglial cells, with the effects characterized by necrosis of microglial cells and changes in levels of secretion of TNF-α and IL-1β from microglial cells.  相似文献   

11.
Free-living ameba Naegleria fowleri produces an acute and fatal infectious disease called primary amebic meningoencephalitis (PAM), whose pathophysiological mechanism is largely unknown. The aim of this study was to investigate the role of nitric oxide (NO) in PAM. Although NO has a cytotoxic effect on various parasites, it is produced by others as part of the pathology, as is the case with Entamoeba histolytica. To test for the production of NO, we analyzed whether antibodies against mammalian NO synthase isoforms (neuronal, inducible, and endothelial) presented immunoreactivity to N. fowleri proteins. We found that the trophozoites produced NO in vitro. The Western blot results, which showed N. fowleri trophozoites, contained proteins that share epitopes with the three described mammalian NOS, but have relative molecular weights different than those described in the literature, suggesting that N. fowleri may contain undescribed NOS isoforms. Moreover, we found that trophozoites reacted to the NOS2 antibody, in amebic cultures as well as in the mouse brain infected with N. fowleri, suggesting that nitric oxide may participate in the pathogenesis of PAM. Further research aimed at determining whether N. fowleri contains active novel NOS isoforms could lead to the design of new therapies against this parasite.  相似文献   

12.
To determine whether trophozoites and lysates of pathogenic Acanthamoeba spp. induce apoptosis in primary-culture microglial cells, transmission electron microscopic (TEM) examinations, assessment of DNA fragmentation by agarose gel electrophoresis, and the TdT-mediated dUTP nick-end labeling assay were performed. When a trophozoite of pathogenic Acanthamoeba culbertsoni came in contact with a microglial cell, the digipodium was observed by TEM. Nuclear chromatin condensation was observed in 10% of microglial cells, while it was not revealed when they were cocultured with weakly pathogenic Acanthamoeba royreba trophozoites. DNA fragmentation in microglial cells cocultured with the A. culbertsoni lysate was detected by electrophoresis, showing DNA ladder formation, whereas it was hardly observed in microglial cells cocultured with A. royreba. DNA fragmentation of microglial cells was also confirmed by flow cytometry analysis. The fluorescence of TdT-stained apoptotic bodies became intensely visible with microglial cells cocultured with the A. culbertsoni lysate. In contrast, with microglial cells cocultured with the A. royreba lysate, only a background level of fluorescence of TdT-stained apoptotic bodies was detected. These results suggest that some rat microglial cells cocultured with pathogenic A. culbertsoni undergo cytopathic changes which show the characteristics of the apoptotic process, such as nuclear condensation and DNA fragmentation.  相似文献   

13.
Primary amoebic meningoencephalitis is rare but fatal disease encountered in immunocompetent individuals. Here, we present a case of a previously healthy 8-month-old female child, who presented with features of meningoencephalitis of 2 days’ duration. Rapidly moving trophozoites of amoeba were observed in cerebrospinal fluid, which were confirmed to be Naegleria fowleri on polymerase chain reaction. Broad-spectrum antimicrobial therapy with ceftriaxone, vancomycin, amphotericin B and acyclovir was initiated. However, the patient deteriorated and left the hospital against medical advice. The isolation of N. fowleri in this case demands for increased awareness for prompt diagnosis and management in view of its high mortality.  相似文献   

14.
Adherence of a pathogen to the host cell is one of the critical steps in microbial infections. Naegleria fowleri, a causative agent of primary amoebic meningoencephalitis in humans, is expected to interact with extracellular components of the host, such as fibronectin, in a receptor-mediated mode. In this study, we investigated the interaction between N. fowleri and fibronectin to understand its cytopathology. In binding assays using immobilized fibronectin, the number of amoebae bound to fibronectin was increased compared to the controls, and was dependent on the amount of coated fibronectin present. A fibronectin binding protein of 60 kDa was found in extracts of N. fowleri. Western blot and immunolocalization assays using integrin 5/FnR antibodies showed that a 60 kDa protein reacted with the antibodies in extracts of N. fowleri, which was localized on the surface of N. fowleri. Preincubation of N. fowleri with the integrin antibodies significantly inhibited amoebic binding to fibronectin and cytotoxicity to the CHO cells. Additionally, protein kinase C activity was detected in the extract of N. fowleri. When N. fowleri was pretreated with protein kinase C activator or inhibitor, the abilities of amoebic adhesion to fibronectin and cytotoxicity to the host cells were markedly affected compared to untreated amoebae. These results suggest that an amoebic integrin-like receptor and protein kinase C play important roles in amoebic cellular processes in response to fibronectin.  相似文献   

15.
Primary amoebic meningoencephalitis is a rare fatal meningitis caused by free living amoeba Naegleria fowleri, found in freshwater ponds and lakes. It infects children and young adults with exposure due to swimming or diving. We report a case of N. fowleri meningitis in a 6-year-old boy who presented with signs and symptoms of acute bacterial meningitis. No history of travelling or swimming was present. However, the boy frequently played with water stored from a “kuhl” (diversion channels of water). Wet mount of cerebrospinal fluid (CSF) revealed amoeboid and actively motile flagellate forms of trophozoites. CSF culture done on 1.5% non-nutrient agar plates with a lawn culture of Escherichia coli kept at 37°C for 15 days did not reveal any growth. The test of flagellation on passing CSF in distilled water was however positive in 3 h. Water of the “kuhl” from the stored tank also showed actively motile trophozoites similar to the forms obtained from the CSF. Based on our reports, the boy was immediately treated with amphotericin B, rifampicin and fluconazole for 21 days. Repeat CSF examination after 14 days did not reveal any trophozoites in wet mount and patient was discharged after 3 weeks of successful treatment.  相似文献   

16.
We report the first case of primary amoebic meningoencephalitis in a 9-year-old boy in Guadeloupe. The outcome was rapidly fatal in 7 days. The patient presumably acquired the infection by swimming and diving in a basin supplied by natural thermal water 1 week before onset of the disease. The possibility of a free-living amoeba infection was suspected both on the negativity of all bacterial and viral initial tests and on the observation of peculiar cells in stained cerebrospinal fluid samples. Although the amoeba was not isolated, Nægleria fowleri could be identified by polymerase chain reaction with specific primers on DNA extracted from frozen cerebrospinal fluid samples. Furthermore, as the internal transcribed spacer (ITS1) region of DNA is variable in length between the different strains of N. fowleri, sequencing of the amplified ITS1 demonstrated that the responsible N. fowleri strain belongs to a common genotype present in the American and European continent.  相似文献   

17.
We analyzed the possible role of glycoconjugates containing α-d-mannose and α-d-glucose residues in adherence of trophozoites to mouse nasal epithelium. Trophozoites incubated with 20 μg of one of three different lectins which preferentially recognized these residues were inoculated intranasally in Balb/c mice. Mouse survival was 40 % with Pisum sativum and Canavalia ensiformis and 20 % with Galanthus nivalis amebic pretreatment, compared with 0 % survival for control animals administered trophozoites without pretreatment. Possibly some of the glycoproteins found in Naegleria fowleri represent an adherence factor. Differences in the saccharide sequences of the Naegleria species, even on the same glycoconjugate structure, could explain the different results corresponding to the distinct pretreatments (C. ensiformis, G. nivalis, and P. sativum). We found a higher expression of glycoconjugates recognized by P. sativum in Naegleria lovaniensis than N. fowleri, probably due to the higher number of oligosaccharides containing an α-1,6-linked fucose moiety expressed on the former species.  相似文献   

18.
19.
Summary A soluble fraction, derived from Naegleria fowleri trophozoites disrupted by freeze-thawing, was tested for antigenic properties. Intradermal injections of this preparation were administered to guinea pigs previously infected subcutaneously with viable N. fowleri. Delayed hypersensitivity to the antigen and loss of weight, the diagnostic symptom of visceral naegleriasis, were observed in the surviving animals. Fifty percent of the guinea pigs, however, did not lose weight and had a reduced reaction to the antigen. The apparent differences in the immunocompetence of guinea pigs inoculated subcutaneously and intranasally with N. fowleri are compared.This report is a part of a thesis presented by Peter Diffley in partial fulfillment of the requirements designated by the Department of Zoology, University of Montana, for the M.A. degree.  相似文献   

20.
The aim of this study is to evaluate cellular interaction between free-living amoebae Naegleria fowleri strains and mammalian target cells in vitro. Two Thai strains of N. fowleri; Khon Kaen strain from the environment and Siriraj strain from the patient’s cerebrospinal fluid and the Center of Disease Control VO 3081 strain from Atlanta (US) were studied. Human neuroblastoma (SK-N-MC) and African Green monkey Kidney (Vero) cells were used as target cells. Each cell line was inoculated with each strain of N. fowleri at a ratio of 1:1 and observed for 7 days. The uninoculated target cells and each strain of N. fowleri were used as control. The numbers of the challenged and unchallenged cells as well as the free-living amoebae were counted three times by trypan blue exclusion method. The inoculation began when the amoebae attached to the cell membrane and ingested the target cells. In this study, extensive cytopathogenesis with many floating inoculated cells and abundant number of amoebae were observed. The destruction pattern of both inoculated SK-N-MC and Vero target cells were similar. Interestingly, SK-N-MC was more susceptible to N. fowleri strains than the Vero cell. In addition, N. fowleri Siriraj strain showed the highest destruction pattern for each target cell. Our findings suggest that the SK-N-MC should be used as a base model for studying the neuropathogenesis in primary amoebic meningoencephalitis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号