首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive transcranial magnetic stimulation (rTMS) to the human primary motor cortex (M1) causes bidirectional changes in corticospinal excitability depending on the stimulation frequency used. We used functional brain imaging to compare the effects of 5 Hz and 1 Hz-rTMS on local and inter-regional connectivity within the motor system. Regional cerebral blood flow (rCBF) was measured as a marker of synaptic activity at rest and during freely selected finger movements. We hypothesized that increased cortical excitability induced by 5 Hz-rTMS over M1 has an opposite effect on the synaptic activity and the connectivity of the motor network from the decreased cortical excitability induced by 1 Hz-rTMS. rTMS at both frequencies induced similar changes in rCBF at the site of stimulation and within areas of the motor network engaged by the task. The two frequencies showed different effects on movement-related coupling between motor areas. Connectivity analyses also indicated a differential effect of 5 and 1 Hz-rTMS on motor network connectivity, suggesting a role for an inferomedial portion of left M1 and left dorsal premotor cortex in maintaining performance. These results suggest that rapid reorganization of the motor system occurs to maintain task performance during periods of altered cortical excitability. This reorganization differs according to the modulation of excitability which is a function of rTMS frequency. This study extends the work of Lee et al. (Lee, L., Siebner, H.R., Rowe, J.B., Rizzo, V. Rothwell, J.C. Frackowiak, R.S. Friston, K.J., 2003. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 23, 5308-5318.) by providing evidence that the pattern of acute reorganization in the motor network following rTMS depends on the direction of conditioning.  相似文献   

2.
In six healthy volunteers, H(2)(15)O positron emission tomography (PET) was employed to evaluate rate-dependent functional activation of the left primary sensorimotor hand area (SM1(HAND)) during subthreshold repetitive transcranial magnetic stimulation (rTMS). Using an eight-shaped coil, continuous trains of rTMS were delivered during nine 50-s H(2)(15)O PET scans. Nine different stimulation frequencies were used, ranging from 1 to 5 Hz. Stimulus intensity was set at 10% below active motor threshold. During three additional PET scans, an ineffective rTMS was applied via another eight-shaped coil, which was held 10 cm above the vertex. Statistical parametric mapping was employed to assess relative differences in normalized regional cerebral blood flow (rCBF) across conditions. Compared with ineffective rTMS, subthreshold rTMS increased normalized rCBF in the stimulated SM1(HAND). Moreover, the increase in rCBF in the left SM1(HAND) showed a linear positive relationship with the rate of rTMS, indicating a rate-dependent functional activation of the stimulated SM1(HAND). These data demonstrate that, by varying the variables of rTMS across scans, continuous rTMS during H(2)(15)O PET provides a noninvasive tool to study the regional excitability profile of a distinct cortical area.  相似文献   

3.
We investigated the role of glutamate N-methyl-d-aspartate (NMDA) receptors in the analgesic effects induced by repetitive transcranial magnetic stimulation (rTMS). In a randomized, double-blind, crossover study, we compared the effects of ketamine and placebo on the analgesic effects of motor cortex (M1) or dorsolateral prefrontal cortex/premotor cortex (DLPFC/PMC) stimulation. Three groups of 12 healthy volunteers underwent active rTMS (10 Hz, 80% resting motor threshold, 1,500 pulses per session) of the right M1, active stimulation of the right DLPFC/PMC, or sham stimulation during 2 experimental sessions 2 weeks apart. Cold pain thresholds were measured on the left thenar eminence before and 1 hour after cortical stimulation, to evaluate the analgesic effects of rTMS. Ketamine (0.15 mg/kg in a 10-minute bolus followed by continuous infusion of 6 μg/kg per minute until the end of rTMS) or placebo (saline) were administered intravenously during cortical stimulation. We also systematically measured cortical excitability parameters (resting motor threshold, suprathreshold motor-evoked potentials, short intracortical inhibition, and intracortical facilitation) before and after treatment, to investigate the possible relationship between changes in cortical excitability and rTMS-induced analgesia. Ketamine injection significantly decreased the analgesic effects of both M1 and DLPFC/PMC stimulation. The decrease in the analgesic effect of rTMS was not associated with changes in cortical excitability parameters, which were not influenced by rTMS following the administration of either saline or ketamine. Thus, rTMS-induced analgesia depends on glutamate NMDA receptors and may involve long-term potentiation-like mechanisms.  相似文献   

4.
We explored the aftereffects of two premotor 1 Hz rTMS sessions on motor cortex excitability in healthy humans. In experiment 1, 11 healthy right-handed volunteers received 20-min submotor threshold 1 Hz rTMS trains over the left premotor cortex on 2 consecutive days. Left motor cortex excitability was determined at baseline, immediately after, 30, 60, 120 min, and 24 h after each rTMS session. We measured motor thresholds, amplitudes of motor-evoked potentials, silent periods, and paired-pulse excitability at interstimulus intervals (ISI) of 3-7, 10, and 15 ms. In experiment 2, 5 volunteers received two identical rTMS trains on Days 1 and 7. Measurements were carried out on Day 1 (first rTMS train), Day 2, and Day 7 (second rTMS train). In experiment 1 there was a selective increase of paired pulse facilitation at an ISI of 7 ms after rTMS lasting for less than 30 min on Day 1. This effect was also present after rTMS on Day 2. However, it persisted for at least 2 h. In experiment 2 the same extra facilitation was induced by rTMS on Days 1 and 7 but not on Day 2. It lasted for less than 30 min on both Day 1 and Day 7. We conclude that 1 Hz premotor rTMS leads to cumulative plastic changes of intrinsic motor cortex excitability when repeated within 24 h but not after 1 week, implying the formation of memory after the first rTMS train lasting more than a day but less than a week.  相似文献   

5.
Continuous Arterial Spin Labeling (CASL) offers the possibility to quantitatively measure the regional cerebral blood flow (rCBF). We demonstrate, for the first time, the feasibility of interleaving Transcranial Magnetic Stimulation (TMS) with CASL at 3 T. Two different repetitive TMS (rTMS) protocols were applied to the motor cortex in 10 subjects and the effect on rCBF was measured using a CASL sequence with separate RF coils for labeling the inflowing blood. Each subject was investigated, using a block design, under 7 different conditions: continuous 2 Hz rTMS (3 intensities: 100%, 110% and 120% resting motor threshold [MT]), short 10 Hz rTMS trains at 110% MT (8 pulses per train; 3 different numbers of trains per block with 2, 4 and 12 s intervals between trains) and volitional movement (acoustically triggered by 50% MT stimuli). We show robust rCBF increases in motor and premotor areas due to rTMS, even at the lowest stimulation intensity of 100% MT. RCBF exhibited a linear positive dependency on stimulation intensity (for continuous 2 Hz rTMS) and the number of 10 Hz trains in the stimulated M1/S1 as well as in premotor and supplementary motor areas. Interestingly, the 2 different rTMS protocols yielded markedly different rCBF activation time courses, which did not correlate with the electromyographic recordings of the muscle responses. In future, this novel combination of TMS with ASL will offer the possibility to investigate the immediate and after-effects of rTMS stimulation on rCBF, which previously was only possible using PET.  相似文献   

6.
Central poststroke pain (CPSP) is one of the most refractory chronic pain syndromes. Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex has been demonstrated to provide moderate pain relief for CPSP. However, the mechanism underlying the pain relief remains unclear. The objective of this study was to assess changes in cortical excitability in patients with intractable CPSP before and after rTMS of the primary motor cortex. Subjects were 21 patients with CPSP of the hand who underwent rTMS. The resting motor threshold, the amplitude of the motor evoked potential, duration of the cortical silent period, short interval intracortical inhibition, and intracortical facilitation were measured as parameters of cortical excitability before and after navigation-guided 5 Hz rTMS of the primary motor cortex corresponding to the painful hand. Pain reduction from rTMS was assessed with a visual analog scale. The same parameters were measured in both hemispheres of 8 healthy controls. Eight of 21 patients experienced ?30% pain reduction after rTMS (responders). The resting motor threshold in the patients was higher than those in the controls at baseline (P = .035). Intracortical facilitation in the responders was lower than in the controls and the nonresponders at baseline (P = .035 and P = .019), and significantly increased after rTMS (P = .039). There were no significant differences or changes in the other parameters. Our findings suggest that restoration of abnormal cortical excitability might be one of the mechanisms underlying pain relief as a result of rTMS in CPSP.  相似文献   

7.
Experimental evidence suggests impairment of inhibitory intracortical circuits in migraine, while not much is known about activity of facilitatory intracortical circuits. In the present work we evaluated the effects of high frequency‐repetitive transcranial magnetic stimulation (hf‐rTMS) on the activity of facilitatory circuits of motor cortex in 18 patients affected by migraine with aura and 18 healthy subjects. Trains of 10 stimuli were applied to the motor cortex at 5‐Hz frequency with recording of the EMG traces from the contralateral abductor pollicis brevis muscle (APB). Two intensities of stimulation (110% and 130% of resting motor threshold) were used in order to explore whether motor cortex excitability was differently modulated. Twelve patients underwent hf‐rTMS both before and during prophylactic treatment with levetiracetam. Results showed that rTMS delivered at 110% intensity of stimulation at rest had a facilitatory effect on MEP size in untreated patients, while left MEP unchanged in controls. Conversely, when rTMS was applied at 130%, we observed MEP potentiation in healthy subjects and paradoxical MEP inhibition in migraineurs. In treated patients, levetiracetam inhibited MEP size at both 110% and 130% intensity of stimulation. Our findings reveal an opposite response of migraine motor cortex to 5‐Hz rTMS when it is delivered at different stimulation intensities, providing evidence of both hyper‐responsivity and self‐limiting hyperexcitability capacity, in line with studies supporting the concept that under conditions of cortical hyperexcitability inhibitory mechanisms of homeostatic plasticity could be activated.  相似文献   

8.
We used two complementary methods to investigate cortical reorganization in chronic stroke patients during treatment with a defined motor rehabilitation program. BOLD ("blood oxygenation level dependent") sensitive functional magnetic resonance imaging (fMRI) and intracortical inhibition (ICI) and facilitation (ICF) measured with transcranial magnetic stimulation (TMS) via paired pulse stimulation were used to investigate cortical reorganization before and after "constraint-induced movement therapy" (CI). The motor hand function improved in all subjects after CI. BOLD signal intensity changes within affected primary sensorimotor cortex (SMC) before and after CI showed a close correlation with ICI (r = 0.93) and ICF (r = 0.76) difference before and after therapy. Difference in number of voxels and ICI difference before and after CI also showed a close correlation (r = 0.92) in the affected SMC over the time period of training. A single subject analysis revealed that patients with intact hand area of M1 ("the hand knob") and its descending motor fibers (these patients revealed normal motor evoked potentials [MEP] from the affected hand) showed decreasing ipsilesional SMC activation which was paralleled by an increase in intracortical excitability. This pattern putatively reflects increasing synaptic efficiency. When M1 or its descending pyramidal tract was lesioned (MEP from the affected hand was pathologic) ipsilesional SMC activation increased, accompanied by decreased intracortical excitability. We suggest that an increase in synaptic efficiency is not possible here, which leads to reorganization with extension, shift and recruitment of additional cortical areas of the sensorimotor network. The inverse dynamic process between both complementary methods (activation in fMRI and intracortical excitability determined by TMS) over the time period of CI illustrates the value of combining methods for understanding brain reorganization.  相似文献   

9.
Repetitive Transcranial Magnetic Stimulation (rTMS) is known to modulate cortical excitability and has thus been suggested to be a therapeutic approach for improving the efficacy of rehabilitation for motor recovery after stroke. In addition to producing effects on cortical excitability, stroke may affect the balance of transcallosal inhibitory pathways between motor primary areas in both hemispheres: the affected hemisphere (AH) may be disrupted not only by the infarct itself but also by the resulting asymmetric inhibition from the unaffected hemisphere, further reducing the excitability of the AH. Conceptually, therefore, rTMS could be used therapeutically to restore the balance of interhemispheric inhibition after stroke. rTMS has been used in two ways: low-frequency stimulation (≤1 Hz) to the motor cortex of the unaffected hemisphere to reduce the excitability of the contralesional hemisphere or high-frequency stimulation (>1 Hz) to the motor cortex of the AH to increase excitability of the ipsilesional hemisphere. The purpose of this systematic review is to collate evidence regarding the safety and efficacy of high-frequency rTMS to the motor cortex of the AH. The studies included investigated the concurrent effects of rTMS on the excitability of corticospinal pathways and upper-limb motor function in adults after stroke. This review suggests that rTMS applied to the AH is a safe technique and could be considered an effective approach for modulating brain function and contributing to motor recovery after stroke. Although the studies included in this review provide important information, double-blinded, sham-controlled Phase II and Phase III clinical trials with larger sample sizes are needed to validate this novel therapeutic approach.  相似文献   

10.
Knoch D  Treyer V  Regard M  Müri RM  Buck A  Weber B 《NeuroImage》2006,31(2):641-648
Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.  相似文献   

11.
The 10 Hz repetitive transcranial magnetic stimulation (10 Hz-rTMS) to the left dorsolateral prefrontal cortex produces analgesia, probably by activating the pain modulation system. A newer rTMS paradigm, called theta burst stimulation (TBS), has been developed. Unlike 10 Hz-rTMS, prolonged continuous TBS (pcTBS) mimics endogenous theta rhythms, which can improve induction of synaptic long-term potentiation. Therefore, this study investigated whether pcTBS to the left dorsolateral prefrontal cortex reduced pain sensitivity more efficiently compared with 10 Hz-rTMS, the analgesic effects lasted beyond the stimulation period, and the reduced pain sensitivity was associated with increased efficacy of conditioned pain modulation (CPM) and/or intracortical excitability. Sixteen subjects participated in a randomized cross-over study with pcTBS and 10 Hz-rTMS. Pain thresholds to heat (HPT), cold, pressure (PPT), intracortical excitability assessment, and CPM with mechanical and heat supra-pain threshold test stimuli and the cold pressor test as conditioning were collected before (Baseline), 3 (Day3) and 4 days (Day4) after 3-day session of rTMS. HPTs and PPTs increased with 10 Hz-rTMS and pcTBS at Day3 and Day4 compared with Baseline (P = .007). Based on pooled data from pcTBS and 10 Hz-rTMS, the increased PPTs correlated with increased efficacy of CPM at Day3 (P = .008), while no correlations were found at Day4 or with the intracortical excitability.PerspectivePreliminary results of this comparative study did not show stronger pain sensitivity reduction by pcTBS compared with 10 Hz-rTMS to the L-DPFC. Both protocols maintained increased pain thresholds up to 24-hours after the last session, which were partially associated with modulation of CPM efficacy but not with the intracortical excitability changes.  相似文献   

12.
We assessed cortical excitability and intracortical modulation systematically, by transcranial magnetic stimulation (TMS) of the motor cortex, in patients with fibromyalgia. In total 46 female patients with fibromyalgia and 21 normal female subjects, matched for age, were included in this study. TMS was applied to the hand motor area of both hemispheres and motor evoked potentials (MEPs) were recorded for the first interosseous muscle of the contralateral hand. Single-pulse stimulation was used for measurements of the rest motor threshold (RMT) and suprathreshold MEP. Paired-pulse stimulation was used to assess short intracortical inhibition (SICI) and intracortical facilitation (ICF). Putative correlations were sought between changes in electrophysiological parameters and major clinical features of fibromyalgia, such as pain, fatigue, anxiety, depression and catastrophizing. The RMT on both sides was significantly increased in patients with fibromyalgia and suprathreshold MEP was significantly decreased bilaterally. However, these alterations, suggesting a global decrease in corticospinal excitability, were not correlated with clinical features. Patients with fibromyalgia also had lower ICF and SICI on both sides, than controls, these lower values being correlated with fatigue, catastrophizing and depression. These neurophysiological alterations were not linked to medication, as similar changes were observed in patients with or without psychotropic treatment. In conclusion, fibromyalgia is associated with deficits in intracortical modulation involving both GABAergic and glutamatergic mechanisms, possibly related to certain aspects of the pathophysiology of this chronic pain syndrome. Our data add to the growing body of evidence for objective and quantifiable changes in brain function in fibromyalgia.  相似文献   

13.
Theta-burst stimulation (TBS), a novel repetitive transcranial magnetic stimulation (TMS) protocol, is capable of suppressing the amplitude of contralateral motor-evoked potentials (MEP) for several minutes after the end of a conditioning train over the motor cortex. It remains unknown whether TBS leads to effects on motor cortical excitability when applied to contralateral brain sites distant but connected to motor cortex and whether TBS triggers measurable changes in force control. Subjects received bursts (50 Hz) of three subthreshold magnetic stimuli repeated at 5 Hz for 20 s (TBS-300) or 40 s (TBS-600) over the hand area of the left motor cortex (M1(LEFT)). With TBS-300, conditioning of right motor cortex (M1(RIGHT)), right dorsal premotor cortex (PMd(RIGHT)), and a mid-occipital (MO) region also were tested. Corticospinal excitability was probed by evoking MEPs in abductor pollicis brevis (APB) muscle by single suprathreshold stimuli over M1(LEFT) or M1(RIGHT) before and after TBS. Force level control was assessed in an isometric right thumb abduction task. With TBS-600, the time course of physiological and behavioral changes was monitored. TBS over either of the motor cortices reduced the amplitude of MEP in the contralateral APB and increased it in the ipsilateral APB. In contrast, conditioning TBS over PMd(RIGHT) or MO did not modify MEP size. Post-TBS right thumb force level control was impaired, with contralateral M1(LEFT) stimulation only, for a duration of at least 5 min. TBS may induce remote physiological effects and reveals local functional properties of the underlying brain region.  相似文献   

14.
To elucidate changes in human brain activity evoked by repetitive transcranial magnetic stimulation (rTMS), sub- and suprathreshold rTMS (4 Hz, 10 s) over the left primary sensorimotor cortex (M1/S1) was interleaved with blood-oxygenation-level-dependent (BOLD) echo-planar imaging of primary and secondary motor areas. Suprathreshold rTMS over left M1/S1 caused marked increases in BOLD signal in the stimulated area and SMA-proper in seven of eight subjects. By contrast, we found no change in BOLD signal in the stimulated M1/S1, when rTMS was given at intensities that were subthreshold for inducing motor responses in the contralateral hand. However, five of eight subjects showed consistent increases in BOLD MRI signal in the SMA-proper and, to a lesser extent, in bilateral lateral premotor cortex (LPMC) during subthreshold rTMS. A decrease in BOLD MRI signal was found in contralateral (right) M1/S1 in 6/8 subjects across all conditions. No significant changes were observed in the pre-SMA. The results support the notion that BOLD MRI responses to suprathreshold rTMS over M1/S1 are dominated by neuronal activity related to reafferent processing of TMS-induced hand movements. At subthreshold intensity, a short train of high-frequency rTMS seems to predominantly modulate activity of corticocortical connections which link the stimulated area with remote frontal premotor areas.  相似文献   

15.
We have shown that in healthy volunteers (HV) one session of 1 Hz repetitive transcranial magnetic stimulation (rTMS) over the visual cortex induces dishabituation of visual evoked potentials (VEPs) on average for 30 min, while in migraineurs one session of 10 Hz rTMS replaces the abnormal VEP potentiation by a normal habituation for 9 min. In the present study, we investigated whether repeated rTMS sessions (1 Hz in eight HV; 10 Hz in eight migraineurs) on 5 consecutive days can modify VEPs for longer periods. In all eight HV, the 1 Hz rTMS-induced dishabituation increased in duration over consecutive sessions and persisted between several hours (n=4) and several weeks (n=4) after the fifth session. In six out eight migraineurs, the normalization of VEP habituation by 10 Hz rTMS lasted longer after each daily stimulation but did not exceed several hours after the last session, except in two patients, where it persisted for 2 days and 1 week. Daily rTMS can thus induce long-lasting changes in cortical excitability and VEP habituation pattern. Whether this effect may be useful in preventative migraine therapy remains to be determined.  相似文献   

16.
17.
The precentral gyrus (M1) is a representative target for electrical stimulation therapy of pain. To date, few researchers have investigated whether pain relief is possible by stimulation of cortical areas other than M1. According to recent reports, repetitive transcranial magnetic stimulation (rTMS) can provide an effect similar to that of electrical stimulation. With this in mind, we therefore examined several cortical areas as stimulation targets using a navigation-guided rTMS and compared the effects of the different targets on pain. Twenty patients with intractable deafferentation pain received rTMS of M1, the postcentral gyrus (S1), premotor area (preM), and supplementary motor area (SMA). Each target was stimulated with ten trains of 10-s 5-Hz TMS pulses, with 50-s intervals in between trains. Intensities were adjusted to 90% of resting motor thresholds. Thus, a total of 500 stimuli were applied. Sham stimulations were undertaken at random. The effect of rTMS on pain was rated by patients using a visual analogue scale (VAS) and the short form of the McGill Pain Questionnaire (SF-MPQ). Ten of the 20 patients (50%) indicated that stimulation of M1, but not other areas, provided significant and beneficial pain relief (p<0.01). Results indicated a statistically significant effect lasting for 3 hours after the stimulation of M1 (p<0.05). Stimulation of other targets was not effective. The M1 was the sole target for treating intractable pain with rTMS, in spite of the fact that M1, S1, preM, and SMA are located adjacently.  相似文献   

18.
Changes of cortical and corticospinal excitability as a function of sleep deprivation have been studied, using EEG power maps and several TMS measures in 33 normal subjects before and after a 40-h sleep deprivation (SD). The effects of SD were independently assessed by subjective and EEG measures of sleepiness, the latter being represented in terms of cortical maps for different frequency bands. Short intracortical facilitation (SICF) and inhibition (SICI) were measured by the paired-pulse TMS technique with different inter-stimulus intervals. Besides standardized motor threshold (MT), lower threshold (LT) and upper threshold (UT) were also determined. Subjective sleepiness severely increased as a consequence of SD, paralleled by a drastic decrease of alertness. EEG topography showed large increases in delta and theta activity, mainly evident at fronto-central areas. Standard MTs, as well as LTs and UTs, all increased as a consequence of SD. SICF also showed a significant increase as compared to pre-deprivation values, but only in females. The increase of theta activity was strongly associated in the left frontal and prefrontal cortex to a smaller decrease of corticospinal excitability, expressed by MTs, and a larger increase of intracortical facilitation, expressed by SICF. TMS and EEG measures converge in indicating that SD has severe effects on both cortical and corticospinal excitability, as shown respectively by the increases of slow-frequency EEG power and MTs. The SICF enhancement in females and the results of the combined topographical analysis of EEG and TMS changes are coherent with the hypothesis that cortical TMS-evoked responses are higher as a consequence of a longer wakefulness. However, the lack of an increase in cortical excitability after prolonged wakefulness in males suggests some caution in the generalization of these effects, that deserve further investigation.  相似文献   

19.
Tamura Y  Okabe S  Ohnishi T  N Saito D  Arai N  Mochio S  Inoue K  Ugawa Y 《Pain》2004,107(1-2):107-115
The aim of this study is to investigate the efficacy of 1-Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) on acute pain induced by intradermal capsaicin injection and to elucidate its mechanisms by single-photon emission computed tomography (SPECT). We compared time courses of a subjective scale of pain induced by intradermal capsaicin injection in seven normal subjects under three different conditions: rTMS over M1, sham stimulation, and control condition (natural course of acute pain without any stimulation). In ten normal subjects, using SPECT, we also studied differences in regional cerebral blood flow (rCBF) after capsaicin injection between two conditions: rTMS over M1 and the control condition. rTMS over M1 induced earlier recovery from acute pain compared with the sham or control conditions. Under rTMS over the right M1 condition compared with the control condition, the SPECT study demonstrated a significant relative rCBF decrease in the right medial prefrontal cortex (MPFC) corresponding to Brodmann area (BA) 9, and a significant increase in the caudal part of the right anterior cingulate cortex (ACC) corresponding to BA24 and the left premotor area (BA6). A region-of-interest analysis showed significant correlation between pain reduction and rCBF changes in both BA9 and BA24. We conclude that rTMS over M1 should have beneficial effects on acute pain, and its effects must be caused by functional changes of MPFC and caudal ACC.  相似文献   

20.
目的 探讨10Hz高频重复经颅磁刺激(rTMS)联合镜像治疗(MT)对男性慢性期脑卒中患者上肢功能恢复的影响。 方法 选取45例男性首次脑卒中住院慢性期患者(病程3~6个月),采用随机数字表法将其分为A组、B组及C组,每组15例,在治疗过程中B组有1例患者脱落。3组患者均给予常规药物及康复治疗,A组患者在此基础上给予60min MT治疗;B组患者则先给予患侧M1区高频(10Hz)rTMS治疗,再辅以MT治疗;C组则先进行MT治疗,再给予患侧M1区高频rTMS治疗。以上治疗每天1次,每周治疗5d,共持续治疗4周。于治疗前、治疗4周后分别检测各组患者患侧拇短展肌运动诱发电位(MEP)皮质潜伏期、中枢运动传导时间(CMCT)及上肢运动功能指标,包括上肢Fugl-Meyer评分(FMA)、上肢运动力指数(MI)及偏瘫上肢功能测试-香港版(FTHUE-HK)分级等。 结果 治疗4周后,3组患者MEP皮质潜伏期和CMCT均比治疗前明显缩短(P<0.05),其中B组患者MEP皮质潜伏期较A组明显缩短,CMCT较A组、C组均明显缩短。治疗4周后3组患者上肢FMA、MI评分和FTHUE-HK分级均较治疗前明显改善(P<0.05),其中B组患者上肢FMA评分明显优于A组和C组(P<0.05),FTHUE-HK分级明显优于A组(P<0.05)。 结论 单纯MT或10Hz rTMS联合MT治疗均可改善脑卒中慢性期患者大脑运动皮质兴奋性和上肢运动功能,并以rTMS治疗结束后辅以MT的联合干预方案效果更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号