首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitral and tufted cells in the mammalian olfactory bulb are principal neurons, each type having distinct projection pattern of their dendrites and axons. The morphological difference suggests that mitral and tufted cells are functionally distinct and may process different aspects of olfactory information. To examine this possibility, we recorded odorant-evoked spike responses from mitral and middle tufted cells in the aliphatic acid- and aldehyde-responsive cluster at the dorsomedial part of the rat olfactory bulb. Homologous series of aliphatic acids and aldehydes were used for odorant stimulation. In response to adequate odorants, mitral cells showed spike responses with relatively low firing rates, whereas middle tufted cells responded with higher firing rates. Examination of the molecular receptive range (MRR) indicated that most mitral cells exhibited a robust inhibitory MRR, whereas a majority of middle tufted cells showed no or only a weak inhibitory MRR. In addition, structurally different odorants that activated neighboring clusters inhibited the spike activity of mitral cells, whereas they caused no or only a weak inhibition in the middle tufted cells. Furthermore, responses of mitral cells to an adequate excitatory odorant were greatly inhibited by mixing the odorant with other odorants that activated neighboring glomeruli. In contrast, odorants that activated neighboring glomeruli did not significantly inhibit the responses of middle tufted cells to the adequate excitatory odorant. These results indicate a clear difference between mitral and middle tufted cells in the manner of decoding the glomerular odor maps.  相似文献   

2.
Egaña JI  Aylwin ML  Maldonado PE 《Neuroscience》2005,134(3):1069-1080
Olfactory perception initiates in the nasal epithelium wherefrom olfactory receptor neurons--expressing the same receptor protein--project and converge in two different glomeruli within each olfactory bulb. Recent evidence suggests that glomeruli are isolated functional units, arranged in a chemotopic manner in the olfactory bulb. Exposure to odorants leads to the activation of specific populations of glomeruli. In rodents, about 25-50 mitral/tufted cells project their primary dendrites to a single glomerulus receiving similar sensory input. Yet, little is known about the properties of neighboring mitral/tufted cells connected to one or a few neighboring glomeruli. We used tetrodes to simultaneously record multiple single-unit activity in the mitral cell layer of anesthetized, freely breathing rats while exposed to mixtures of chemically related compounds. First, we characterized the odorant-induced modifications in firing rate of neighboring mitral/tufted cells and found that they do not share odorant response profiles. Individual units showed a long silent (11.01 ms) period with no oscillatory activity. Cross-correlation analysis between neighboring mitral/tufted cells revealed negligible synchronous activity among them. Finally, we show that respiratory-related temporal patterns are dissimilar among neighboring mitral/tufted cells and also that odorant stimulation results in an individual modification that is not necessarily shared by neighboring mitral/tufted cells. These results show that neighboring mitral/tufted cells frequently exhibit dissimilar response properties, which are not consistent with a precise chemotopic map at the mitral/tufted cell layer in the olfactory bulb.  相似文献   

3.
Extracellular single-unit responses to odorants with various properties were recorded from mitral/tufted cells over large areas of the olfactory bulb of anesthetized rats. Each cell was exposed to one stimulus set consisting of five different odorants each at five concentrations. The resulting concentration-response profiles were compared. All mitral/tufted cells examined responded to two or more odorants, and the largest proportion of the cells were sensitive to all five odorants. Cells unresponsive to all five odorants regardless of concentration were not observed. Mitral/tufted cells sensitive to all three of the odorants that are known to evoke maximal electro-olfactograms in different regions of the olfactory epithelium were distributed widely throughout the olfactory bulb. There were no significant differences in latencies of odor responses either across recording sites or across odorants. A comparison of the concentration-response profiles suggested that all of the mitral/tufted cells were equally capable of responding to any odorant with their own distinctive pattern, but that the cells tended to show an identical pattern rather than variable pattern of response to different odorants. Five mitral/tufted cells isolated within 800 m of one electrode track showed different concentration-response profiles. Of 18 simultaneously recorded spike pairs with different amplitudes and discharge patterns recorded incidentally through one electrode at different sites, 10 had different and 8 had identical response patterns to odorants. These results suggest that: (1) mitral/tufted cells are sensitive to a broad spectrum of odorants, but respond with their own patterns to odorants; (2) odor discrimination is not uniform in neighboring cells, and a discrimination unit is comprised of a single cell.  相似文献   

4.
Detection and discrimination of odors generally, if not always, occurs against an odorous background. On any given inhalation, olfactory receptor neurons will be activated by features of both the target odorant and features of background stimuli. To identify a target odorant against a background therefore, the olfactory system must be capable of grouping a subset of features into an odor object distinct from the background. Our previous work has suggested that rapid homosynaptic depression of afferents to the anterior piriform cortex (aPCX) contributes to both cortical odor adaptation to prolonged stimulation and habituation of simple odor-evoked behaviors. We hypothesize here that this process may also contribute to figure-ground separation of a target odorant from background stimulation. Single-unit recordings were made from both mitral/tufted cells and aPCX neurons in urethan-anesthetized rats and mice. Single-unit responses to odorant stimuli and their binary mixtures were determined. One of the odorants was randomly selected as the background and presented for 50 s. Forty seconds after the onset of the background stimulus, the second target odorant was presented, producing a binary mixture. The results suggest that mitral/tufted cells continue to respond to the background odorant and, when the target odorant is presented, had response magnitudes similar to that evoked by the binary mixture. In contrast, aPCX neurons filter out the background stimulus while maintaining responses to the target stimulus. Thus the aPCX acts as a filter driven most strongly by changing stimuli, providing a potential mechanism for olfactory figure-ground separation and selective reading of olfactory bulb output.  相似文献   

5.
1. A unitary study has been carried out of mitral and tufted cell responses to olfactory nerve volleys in the olfactory bulb of rabbits lightly anaesthetized with urethane-chloralose. 2. With volleys of different strengths, some mitral cells responded with a spike whose latency decreased considerably as the strength increased (elastic response); other cells responded at an invariant latency (inelastic response). The former may reflect diffuse olfactory nerve inputs to the dendritic tufts in the olfactory glomeruli, while tha latter may reflect input from discrete bundles of fibres. 3. The shortest spike latencies are consistent with monosynaptic excitation by the olfactory nerves; longer latencies may be due to longer pathways through the nerves, or polysynaptic pathways within the glomerular layer. 4. Facilitation, in terms of lower threshold and shorter spike latency, was found when testing with paired volleys of weak intensity at relatively short intervals (less than 40 msec). Suppression, in terms of raised threshold, longer latency and briefer repetitive discharges, was found at intervals up to several hundred msec. The facilitation and suppression are consistent with the hypothesis of synaptic excitation and inhibition, respectively, mediated through interneurones in the olfactory bulb. 5. Presumed tufted cells were similar in response properties to identified mitral cells. 6. Intracellular recordings revealed long-lasting hyperpolarization and in some cases, an initial depolarization leading to spike initiation, in response to an olfactory nerve volley.  相似文献   

6.
Discrimination among odorants by single neurons of the rat olfactory bulb   总被引:5,自引:0,他引:5  
1. Intracellular and extracellular recordings were made from rat olfactory bulb mitral and tufted cells during odor stimulation and during electrical stimulation of the olfactory nerve. Neurons were identified by horseradish peroxidase injections and/or antidromic activation. The presentation of multiple concentrations of at least one odorant in a cyclic artificial sniff paradigm, as reported previously (10), allowed the study of odor responses. This approach was extended to multiple odorants to compare their concentration-response profiles. This procedure avoids the problems of interpretation resulting from nonequivalence of the effective concentrations of different odorants used as stimuli that have characterized previous studies of odor quality effects. Comparisons of intracellular events and responses to electrical stimulation with the odor-induced spike train activity allow us to begin to delineate the local circuitry involved in generating odor-induced responses. 2. The concentration-response profiles of the 72 cells in the present study are comparable to those previously reported for output neurons of the olfactory bulb, showing ordered changes in the temporal patterning of spike activity with step changes in odor concentration. However, eight of the neurons exhibited inhibitory responses to lower concentrations, but excitation, at similar latency, to higher concentrations of the same odorant. These data emphasize that to study pattern changes induced by changing odor quality the influence of stimulus intensity must also be carefully examined. The data also provide evidence that the temporal pattern evoked by an odorant is probably not in itself the code for odor quality recognition. 3. Complete concentration-response profiles, including subthreshold concentrations, to more than one odorant show that, although responses to the different odorant can evolve systematically with concentration, the responses to different odorants can evolve through very different patterns. For example, in some cells, the response patterns to different odors were complementary in form. These results demonstrate that the patterned responses of olfactory bulb neurons can reflect changes in odor quality as well as intensity. 4. Intracellular recording was employed to compare the temporal patterning of spikes during odor stimulation with membrane potential changes. In some cases, the spike pattern was closely correlated with apparent postsynaptic potentials. However, there were several clear exceptions. In five cells, a prominent hyperpolarization, seen in the first sniff of a series of 10 consecutive sniffs, was associated with pauses in spike activity. In the following  相似文献   

7.
Kosaka T  Kosaka K 《Neuroscience》2005,131(3):611-625
Glomeruli of the main olfactory bulb are considered to serve as functional units in processing the olfactory information. Thus the fine tuning of the output level from each glomerulus is important to the information processing in the olfactory system. The interactions among neuronal elements in glomeruli might be one of main mechanisms regulating this output level. In the mouse main olfactory bulb neuronal connections via chemical synapses and gap junction in glomeruli were analyzed by the serial electron microscopical reconstruction. Gap junctions were encountered between diverse types of dendritic processes, between mitral/tufted cell dendrites, between mitral/tufted cell dendrites and periglomerular cell dendrites and between mitral/tufted cell dendrites and dendrites of some interneurons different from periglomerular cells. Then these morphological observations indicate that we must consider both direct coupling between mitral/tufted cells via gap junctions and indirect coupling between mitral/tufted cells via intervening interneuronal processes. One of gap junction-forming processes presynaptic in asymmetrical synapses was traced back to the soma of its origin located in the glomerular layer, which was thus identified as an external tufted cell. However, interestingly, it showed apparently different ultrastructural features from other external tufted cells located at the border between the glomerular and external plexiform layers; the latter resemble so-called mitral/tufted cells located in the external plexiform and mitral cell layers. Then external tufted cells were assumed to be heterogeneous in their ultrastructural features. We occasionally encountered several dendrites connected by gap junctions, which furthermore made chemical synapses with each other and with other surrounding processes. Thus both chemical synapses and gap junctions interconnect complexly various processes in the glomerulus, where the local circuit among intermingled olfactory nerves, mitral/tufted cell dendrites and interneuron dendrites is far more complex than previously schematized.  相似文献   

8.
1. The molecular specificities of single mitral cells and their locations in the rabbit olfactory bulb were studied using extracellular recordings of single-unit spike discharges and oscillatory local field potentials. A panel of carboxylic acid molecules including a homologous series of fatty acids was used as odor stimuli. 2. Mitral cells showing excitatory responses to fatty acid molecules of different hydrocarbon chain length were localized near each other in a region in the dorsomedial part of the olfactory bulb. 3. Individual mitral cells in the dorsomedial region tended to respond to subsets of fatty acid odor molecules having similar hydrocarbon chain length or structure. Mitral cells responding to subsets of fatty acids of different chain length were distributed with partially shifted overlaps in this region. 4. The results show that stereochemical features of odor molecules are encoded by individual bulbar neurons.  相似文献   

9.
1. Recordings of extracellular spike responses were made from single mitral/tufted cells in the main olfactory bulb of urethan-anesthetized rabbits. Olfactory epithelium ipsilateral to the recorded olfactory bulb was stimulated with homologous series of aliphatic compounds using periodic artificial inhalations. 2. In the dorsomedial part of the main olfactory bulb, single mitral/tufted cells were activated by subsets of n-fatty acids with similar hydrocarbon chain lengths. Response selectivities of single mitral/tufted cells were examined in detail using a series of n-fatty acids at five different concentrations. The results indicate that although the range of effective fatty acids is broader at the higher concentrations, the best response at higher concentrations was similar to that determined at lower concentrations. 3. Analysis of single-unit responses to the panel of fatty acids, including those with branched hydrocarbon chains, suggested that the determinants for the response specificities of individual mitral/tufted cells in the dorsomedial region include the overall size of hydrocarbon chains of the odor ligand molecules. 4. Single mitral/tufted cells in the dorsomedial region tended to be activated not only by fatty acids but also by n-aliphatic aldehydes. For a panel of a homologous series of n-aldehydes at five different concentrations, individual mitral/tufted cells showed response selectivity to subsets of aldehydes with similar hydrocarbon chain lengths. 5. In most cases, normal aliphatic alcohols and alkanes were ineffective in activating mitral/tufted cells in the dorsomedial region. This suggests that carbonyl group (--C = O) in the odor molecules plays an important role in determining response specificity of these neurons. 6. Examination with an expanded panel of stimulus odor molecules that included ketones and esters indicated that single mitral/tufted cells sensitive to subsets of fatty acids and n-aliphatic aldehydes were also responsive to subsets of ketones and/or esters having hydrocarbon chain lengths similar to those of the effective fatty acids and aldehydes. 7. The present results show a clear correlation between the tuning specificity of individual mitral/tufted cells and the stereochemical structure of the odor molecules, with respect to 1) length and/or structure of hydrocarbon chain, 2) difference in functional group, and 3) position of the functional group within the molecule. 8. A hypothetical diagram suggesting functional convergence of olfactory nerve input to individual glomeruli is proposed to explain the mechanism for selective activation of individual mitral/tufted cells by a range of odor molecules with similar stereochemical structures.  相似文献   

10.
Information processing in the brain may rely on temporal correlations in spike activity between neurons. Within the olfactory bulb, correlated spiking in output mitral cells could affect the odor code by either binding or amplifying signals from individual odorant receptors. We examined the timing of spike trains in mitral cells of rat olfactory bulb slices. Depolarization of mitral cell pairs elicited spikes that were correlated on a rapid timescale (< or =10 ms) for cells whose primary dendrites projected to the same glomerulus. Correlated spiking was driven by a novel mechanism that depended on electrical coupling at mitral cell primary dendrites; the specific synchronizing signal was a coupled depolarization ( approximately 20 ms) that was mediated by dendritic AMPA autoreceptors. We suggest that glomerulus-specific correlated spiking in mitral cells helps to preserve the fidelity of odor signals that are delivered to the olfactory cortex.  相似文献   

11.
Odor perception depends on a constellation of molecular, cellular, and network interactions in olfactory brain areas. Recently, there has been better understanding of the cellular and molecular mechanisms underlying the odor responses of neurons in the olfactory epithelium, the first-order olfactory area. In higher order sensory areas, synchronized activity in networks of neurons is known to be a prominent feature of odor processing. The perception and discrimination of odorants is associated with fast (20-70 Hz) electroencephalographic oscillations. The cellular mechanisms underlying these fast network oscillations have not been defined. In this study, we show that synchronous fast oscillations can be evoked by brief electrical stimulation in the rat olfactory bulb in vitro, partially mimicking the natural response of this brain region to sensory input. Stimulation induces periodic inhibitory synaptic potentials in mitral cells and prolonged spiking in GABAergic granule cells. Repeated stimulation leads to the persistent enhancement in both granule cell activity and mitral cell inhibition. Prominent oscillations in field recordings indicate that stimulation induces high-frequency activity throughout networks of olfactory bulb neurons. Network synchronization results from chemical and electrical synaptic interactions since both glutamate-receptor antagonists and gap junction inhibitors block oscillatory intracellular and field responses. Our results demonstrate that the olfactory bulb can generate fast oscillations autonomously through the persistent activation of networks of inhibitory interneurons. These local circuit interactions may be critically involved in odor processing in vivo.  相似文献   

12.
Olfactory receptor neurons of the nasal epithelium project via the olfactory nerve (ON) to the glomeruli of the main olfactory bulb, where they form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the olfactory bulb, and with juxtaglomerular interneurons. The glomerular layer contains one of the largest population of dopamine (DA) neurons in the brain, and DA in the olfactory bulb is found exclusively in juxtaglomerular neurons. D2 receptors, the predominant DA receptor subtype in the olfactory bulb, are found in the ON and glomerular layers, and are present on ON terminals. In the present study, field potential and single-unit recordings, as well as whole cell patch-clamp techniques, were used to investigate the role of DA and D2 receptors in glomerular synaptic processing in rat and mouse olfactory bulb slices. DA and D2 receptor agonists reduced ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells. Spontaneous and ON-evoked spiking of mitral cells was also reduced by DA and D2 agonists, and enhanced by D2 antagonists. DA did not produce measurable postsynaptic changes in juxtaglomerular cells, nor did it alter their responses to mitral/tufted cell inputs. DA also reduced 1) paired-pulse depression of ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells and 2) the amplitude and frequency of spontaneous, but not miniature, excitatory postsynaptic currents in juxtaglomerular cells. Taken together, these findings are consistent with the hypothesis that activation of D2 receptors presynaptically inhibits ON terminals. DA and D2 agonists had no effect in D2 receptor knockout mice, suggesting that D2 receptors are the only type of DA receptors that affect signal transmission from the ON to the rodent olfactory bulb.  相似文献   

13.
Sensory inputs frequently converge on the brain in a spatially organized manner, often with overlapping inputs to multiple target neurons. Whether the responses of target neurons with common inputs become decorrelated depends on the contribution of local circuit interactions. We addressed this issue in the olfactory system using newly generated transgenic mice that express channelrhodopsin-2 in all of the olfactory sensory neurons. By selectively stimulating individual glomeruli with light, we identified mitral/tufted cells that receive common input (sister cells). Sister cells had highly correlated responses to odors, as measured by average spike rates, but their spike timing in relation to respiration was differentially altered. In contrast, non-sister cells correlated poorly on both of these measures. We suggest that sister mitral/tufted cells carry two different channels of information: average activity representing shared glomerular input and phase-specific information that refines odor representations and is substantially independent for sister cells.  相似文献   

14.
Current views of odorant discrimination by the mammalian olfactory system suggest that the piriform cortex serves as a site of odor object synthesis. Given the enormous number of odorant feature combinations possible in nature, however, it seems unlikely that cortical synthetic receptive fields (RFs) are innate but rather require experience for their formation. The present experiment addressed two issues. First, we made a direct comparison of mitral/tufted cell and anterior piriform cortex (aPCX) neuron abilities to discriminate odorant mixtures from their components to further test whether aPCX neurons can treat collections of features different from the features themselves (synthetic coding). Second, we attempted to determine the minimum duration of experience necessary for formation of cortical synthetic RFs. Single-unit recordings were made from mitral/tufted cells and aPCX layer II/III neurons in urethan-anesthetized rats. Cross-habituation between novel binary mixtures and their novel components was used to determine odor discrimination abilities. The results suggest that after >/=50 s of experience with a binary mixture, aPCX neurons can discriminate the mixture from its components, whereas mitral/tufted cells cannot. However, when limited to 10 s of experience with the mixture, aPCX neurons appear similar to mitral/tufted cells and do not discriminate mixtures from components. These results suggest experience-dependent synthetic processing in aPCX and suggest an important role for perceptual learning in normal odor discrimination.  相似文献   

15.
In the mammalian olfactory bulb, glomeruli are surrounded by a heterogeneous population of interneurons called juxtaglomerular neurons. As they receive direct input from olfactory receptor neurons and connect with mitral cells, they are involved in the initial stages of olfactory information processing, but little is known about their detailed physiological properties. Using whole cell patch-clamp techniques, we recorded from juxtaglomerular neurons in rat olfactory bulb slices. Based on their response to depolarizing pulses, juxtaglomerular neurons could be divided into two physiological classes: bursting and standard firing. When depolarized, the standard firing neurons exhibited a range of responses: accommodating, nonaccommodating, irregular firing, and delayed to firing patterns of action potentials. Although the firing pattern was not rigorously predictive of a particular neuronal morphology, most short axon cells fired accommodating trains of action potentials, while most delayed to firing cells were external tufted cells. In contrast to the standard firing neurons, bursting neurons produced a calcium-channel-dependent low-threshold spike when depolarized either by current injection or by spontaneous or evoked postsynaptic potentials. Bursting neurons also could oscillate spontaneously. Most bursting cells were either periglomerular cells or external tufted cells. Based on their mode of firing and placement in the bulb circuit, these bursting cells are well situated to drive synchronous oscillations in the olfactory bulb.  相似文献   

16.
17.
Temporally correlated spike discharges are proposed to be important for the coding of olfactory stimuli. In the olfactory bulb, correlated spiking is known in two classes of output neurons, the mitral cells and external tufted cells. We studied a third major class of bulb output neurons, the middle tufted cells, analyzing their bursting and spike timing correlations, and their relation to mitral cells. Using patch-clamp and fluorescent tracing, we recorded spontaneous spiking from tufted-tufted or mitral-tufted cell pairs with visualized dendritic projections in mouse olfactory bulb slices. We found peaks in spike cross-correlograms indicating correlated activity on both fast (peak width 1–50 ms) and slow (peak width>50 ms) time scales, only in pairs with convergent glomerular projections. Coupling appeared tighter in tufted-tufted pairs, which showed correlated firing patterns and smaller mean width and lag of narrow peaks. Some narrow peaks resolved into 2–3 sub-peaks (width 1–12 ms), indicating multiple modes of fast correlation. Slow correlations were related to bursting activity, while fast correlations were independent of slow correlations, occurring in both bursting and non-bursting cells. The AMPA receptor antagonist NBQX (20 μM) failed to abolish broad or narrow peaks in either tufted-tufted or mitral-tufted pairs, and changes of peak height and width in NBQX were not significantly different from spontaneous drift. Thus, AMPA-receptors are not required for fast and slow spike correlations. Electrical coupling was observed in all convergent tufted-tufted and mitral-tufted pairs tested, suggesting a potential role for gap junctions in concerted firing. Glomerulus-specific correlation of spiking offers a useful mechanism for binding the output signals of diverse neurons processing and transmitting different sensory information encoded by common olfactory receptors.  相似文献   

18.
1. Intracellular recordings were made from 28 granule cells and 6 periglomerular cells of the rat olfactory bulb during odor stimulation and electrical stimulation of the olfactory nerve layer (ONL) and lateral olfactory tract (LOT). Neurons were identified by injection of horseradish peroxidase (HRP) or biocytin and/or intracellular response characteristics. Odorants were presented in a cyclic sniff paradigm, as reported previously. 2. All interneurons could be activated from a wide number of stimulation sites on the ONL, with distances exceeding their known dendritic spreads and the dispersion of nerve fibers within the ONL, indicating that multisynaptic pathways must also exist at the glomerular region. All types of interneurons also responded to odorant stimulation, showing a variety of responses. 3. Granule cells responded to electrical stimulation of the LOT and ONL as reported previously. However, intracellular potential, excitability, and conductance analysis suggested that the mitral cell-mediated excitatory postsynaptic potential (EPSP) is followed by a long inhibitory postsynaptic potential (IPSP). An early negative potential, before the EPSP, was also observed in every granule cell and correlated with component I of the extracellular LOT-induced field potential. We have interpreted this negativity as a "field effect," that may be diagnostic of granule cells. 4. Most granule cells exhibited excitatory responses to odorant stimulation. Odors could produce spiking responses that were either nonhabituating (response to every sniff) or rapidly habituating (response to first sniff only). Other granule cells, while spiking to electrical stimulation, showed depolarizations that did not evoke spikes to odor stimulation. These depolarizations were transient with each sniff or sustained across a series of sniffs. These physiological differences to odor stimulation correlated with granule cell position beneath the mitral cell layer for 12 cells, suggesting that morphological subtypes of granule cells may show physiological differences. Some features of the granule cell odor responses seem to correlate with some of the features we have observed in mitral/tufted cell intracellular recordings. Only one cell showed inhibition to odors. 5. Periglomerular (PG) cells showed a response to ONL stimulation that was unlike that found in other olfactory bulb neurons. There was a long-duration hyperpolarization after a spike and large depolarization or burst of spikes (20-30 ms in duration). Odor stimulation produced simple bursts of action potentials, Odor stimulation produced simple bursts of action potentials, suggesting that PG cells may simply follow input from the olfactory nerve.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
The structural features of neuronal gap junction-forming processes in the rat olfactory bulb were analyzed electron microscopically. Gap junctions were present in glomeruli and extraglomerular regions. In extraglomerular regions, mitral/tufted cell somata, dendrites and axon hillock-initial segments made gap junctions and mixed synapses with interneuronal processes, some of which were confirmed to be GABA positive. In glomeruli gap junctions were encountered mainly between mitral/tufted cell dendrites and diverse types of processes; a small population of them were conclusively identified as periglomerular cell dendrites. Gap junction-forming processes frequently received synapses from olfactory nerve terminals, suggesting that they could be type 1 periglomerular cells. However, the majority were GABA negative or only faintly positive and none were tyrosine hydroxylase positive, indicating that they were different from previously reported type 1 periglomerular cells. Furthermore serial sectioning analyses revealed that the majority of those processes forming gap junctions with mitral/tufted dendrites were smooth cylindrical and had few presynaptic sites, indicating that they were different from previously described periglomerular cells. These findings revealed that mitral/tufted cells make gap junctions with diverse types of neurons; and some of these gap junction-forming processes originated from some types of periglomerular cells but others from hitherto uncharacterized neuron type(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号