首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible genotoxicity of small particulate matter has been under investigation for the last 10 years. Diesel exhaust particles (DEP) are considered as "probably carcinogenic" (IARC group 2A) and a number of studies show genotoxic effects of urban particulate matter (UPM). Carbon black (CB) is carcinogenic in rats. In this study the cytotoxic and genotoxic potency of these three particle types was investigated by exposing human cells (A549 and THP-1 cell lines) in vitro to CB, DEP (SRM 1650, NIST), and UPM (SRM 1648, NIST) for 48 hr. Cytotoxicity was assessed using the Alamar Blue assay, whereas genotoxicity was assessed using the single-cell gel electrophoresis (comet assay). The particles were characterized with regard to their mean diameter in tissue culture medium (CB 100 nm, DEP 400 nm, UPM 2 microm), their total carbon content (CB 99%, DEP 85%, UPM 15%), and their acid-soluble metal composition (UPM > CB approximately DEP). The concentrations ranged from 16 ng/ml to 16 microg/ml for cytotoxicity tests and from 16 ng/ml to 1.6 microg/ml for genotoxicity tests. In both assays, paraquat was used as a reference chemical. The CB, DEP, and UPM particles showed no significant cytotoxicity. However, all three particles were able to cause significant DNA damage, although to a different extent in the two cell lines. The genotoxicity of washed particles and dichloromethane extracts was also investigated. In THP-1 cells CB washed particles and DEP extracts caused significant DNA damage. This difference in effect may be related to differences in size, structure, and composition of the particles. These results suggest that CB, DEP, and UPM are able to cause DNA damage and, therefore, may contribute to the causation of lung cancer. More detailed studies on influence of size, structure, and composition of the particles are needed.  相似文献   

2.
BACKGROUND: The expression of HLA-DR on the cell membrane of antigen-presenting cells is of major importance for the induction of an allergic response in the airways. Environmental particulates are thought to play an important role in inducing or enhancing allergic sensitization, possibly by increasing the expression of HLA-DR on the cell membrane of antigen-presenting cells. In addition, these particulates may synergize with common sensitizing agents in inducing or enhancing HLA-DR and thus antigen presentation. OBJECTIVE: In this study, we investigated the potential of three particle types, namely carbon black, diesel exhaust particles and urban air particulates (0.1-1000 ng/cm(2)), to induce the expression of HLA-DR on differentiated THP-1 cells, taken as a model for alveolar macrophages. We also assessed the "adjuvant" potential of the particles on interferon (IFN)-gamma, a known enhancer of HLA-DR. RESULTS: By themselves, the particles (0.1-1000 ng/cm(2)) were not able to induce HLA-DR on the THP-1 cells after an incubation of 48 h. However, even at very low concentrations, carbon black (from 1 ng/cm(2) on) and diesel exhaust particles (from 0.1 ng/cm(2) on), interacted with IFN-gamma (100 U/mL) to enhance HLA-DR expression (up to 2.5-fold increase). CONCLUSION: This finding may reflect in vitro one of the mechanisms by which pollutant particles exert an "adjuvant" activity and may partially explain how exposure to particles can be related to the enhancement of allergic sensitization.  相似文献   

3.
Particulate matter of diesel engine exhaust from four different fuels was studied for content of polynuclear aromatic compounds and mutagenic effects. Two so-called biodiesel fuels, rapeseed oil methylesters (RME) and soybean oil methylesters (SME), were compared directly with two fossil diesel fuels with the normal (DF) and a low sulfur content (LS-DF). Diesel exhaust particles were sampled on filters from the diluted and cooled exhaust of a test engine at five different speeds and loads. Filters were weighed for total particulate matter, Soxhlet extracted with dichloromethane and the content of insoluble material determined. The soluble organic fraction was analysed for polynuclear aromatic compounds. Mutagenicity was determined using the Salmonella typhimurium/mammalian microsome assay with strains TA98 and TA100. Compared with DF, the exhaust particles of LS-DF, RME and SME contained less insoluble material, which consisted mainly of the carbon cores of diesel exhaust particles. The concentrations of individual polynuclear aromatic compounds varied widely among the different exhaust extracts, but total concentrations of the compounds were approximately double for DF and SME compared with LS-DF and RME. In TA98 significant increases in mutation rates were obtained for the soluble organic fractions of all fuels for engines running at full speed (load modes A and D), but for DF revertants were 2- to 10-fold more frequent as compared with LS-DF, RME and SME. Revertant frequencies for DF and partly for LS-DF were also elevated in TA100, while RME and SME gave no significant increase in mutations. The results indicate that diesel exhaust particles from RME, SME and LS-DF contain less black carbon and total polynuclear aromatic compounds and are significantly less mutagenic in comparison with DF. A high sulfur content of the fuel and high engine speeds (rated power) and loads are associated with an increase in mutagenicity of diesel exhaust particles.  相似文献   

4.
Respirable crystalline silica has been classified as a human lung carcinogen. Ultrafine (diameter < 100 nm) silica particles may be important in carcinogenesis, although the mechanisms remain unclear. In the present study, WIL2-NS cells were incubated for 6, 24, and 48 hr with 0, 30, 60, and 120 microg/ml ultrafine crystalline SiO(2) (UF-SiO(2)). The cytotoxic and genotoxic effects caused by UF-SiO(2) in cultured human cells were investigated via a set of bioassays. Significant dose- dependent decreases in percent cell viability were seen with increasing dose of UF-SiO(2) in the methyl tetrazolium assay. Significant decreases were seen at 120 microg/ml (58, 38, and 57% for 6, 24, and 48-hr exposure, respectively). During 4 days growth in the flasks, there was a slight recovery observed after washing off UF-SiO(2) as measured by the population growth assay. Significant dose-dependent reduction in the cytokinesis block proliferation index was observed by the cytokinesis block micronucleus assay. Treatment with 120 microg/ml UF-SiO(2) for 24 hr produced a fourfold increase in the frequency of micronucleated binucleated cells (MNBNC). The increase in MNBNC was dose-dependent. The lowest dose that gave a statistically significant increase in MNBNC was 30 microg/ml (24-hr treatment), which had cytotoxicity of less than 10%. There was no significant difference in DNA strand breakage as measured by the Comet assay. A significant increase in induced mutant frequency was found at 120 microg/ml as detected by the hypoxanthine guanine phosphoribosyltransferase mutation assay. The results indicate that UF-SiO(2) is cytotoxic and genotoxic in cultured human cells.  相似文献   

5.
Diesel exhaust particles (DEP) contain various carcinogens and mutagens, and chronic exposure to diesel exhaust (DE) induces pulmonary cancer in experimental animals. However, the oncogenes involved in pulmonary carcinogenesis have not been identified. After F344 rats were exposed to DE containing 6 mg/m3 DEP for 4 weeks, oncogenes and related genes expressed in their lungs were surveyed using a new technique, cDNA microarray, and the results were confirmed by northern blot analysis. Expression of A-raf and proliferating cell nuclear antigen (PCNA) mRNAs was induced in rat lung by exposure to DE. These results suggest that A-raf and PCNA might contribute to pulmonary carcinogenesis in rats.  相似文献   

6.
BACKGROUND: A reduction of IL-12 production by lung macrophages may partly explain the presumed adjuvant effect of diesel exhaust particles (DEP) in allergy and asthma. IL-12 stimulates T helper type 1 (Th1) lymphocytes, which inhibit Th2 cells via Th1-specific cytokines. The aim of this study was to investigate the influence of DEP on the production of IL-12 p40 in lipopolysaccharide (LPS)-activated monocytes. METHODS: The human monocytic cell line Mono-Mac-6 was stimulated with LPS (200 ng/ml) and grown with DEP (0-200 microg/ml) for 0, 6 or 24 h. IL-12 p40 and the pro-inflammatory cytokine TNF were analysed in the cell supernatants by ELISA and a cell assay, respectively. RESULTS: Levels of IL-12 p40 correlated inversely with the DEP exposure concentrations, whereas TNF increased in parallel to the DEP concentrations. At a DEP concentration of 200 microg/ml, the amount of IL-12 p40 was 35% of that observed without DEP. The corresponding TNF value was 230% of the control. Reduced viability, binding of cytokines to DEP or endotoxin in the DEP samples cannot fully explain the changes in the concentrations of these two cytokines. CONCLUSION: DEP seem to inhibit the production of IL-12 p40 and stimulate that of TNF in activated monocytes. This may partly explain the presumed adjuvant effect of DEP in atopy; by altering the Th1/Th2 balance via down-regulation of IL-12, the Th2 response characteristic of allergy and asthma may be favoured.  相似文献   

7.
Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon‐based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in‐depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2–3 graphene layers with lateral sizes of 1–2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few‐layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5–200 µg/ml). Environ. Mol. Mutagen. 57:469–482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.  相似文献   

8.
Markovic Z  Trajkovic V 《Biomaterials》2008,29(26):3561-3573
Fullerene (C60), a third carbon allotrope, is a classical engineered material with the potential application in biomedicine. One of the biologically most relevant features of C60 is the ability to quench various free radicals, behaving as a "free radical sponge". Conversely, photosensitization of C60 leads to its transition to a long-lived triplet excited state and the subsequent energy or electron transfer to molecular oxygen, yielding highly reactive singlet oxygen (1O2) or superoxide anion (O2-), respectively. These reactive oxygen species (ROS) react with a wide range of biological targets and are known to be involved in both cellular signaling and cell damage. Therefore, the dual property of fullerenes to either quench or generate cell-damaging ROS could be potentially exploited for their development as cytoprotective or cytotoxic anticancer/antimicrobial agents. However, the attempts to that effect have been hampered by the extremely low water solubility of C60, and by the fact that solubilization procedures profoundly influence the ROS-generating/quenching properties of C60, either through chemical modification or through formation of complex nanoscale particles with different photophysical properties. We here analyze the mechanisms and biological consequences of ROS generation/quenching by C60, focusing on the influence that different physico-chemical alterations exert on its ROS-related biological behavior.  相似文献   

9.
Diesel exhaust (DE) is a pulmonary carcinogen in rats. One potential mechanism for DE-induced carcinogenicity involves the interaction of the organic chemicals associated with DE soot with DNA in target cells. The purpose of this study was to determine whether peripheral lung cells, specifically alveolar type II cells, are at risk from inhaled DE. Rats were exposed 16 hr/day, 5 days/week to filtered air (controls), carbon black (CB) (6.2 mg/m3), or to diluted DE (6.2 mg/m3) for 12 weeks. CB particles were used for comparison with DE soot, because the CB particles are morphologically similar to soot particles, but are virtually devoid of adsorbed organic compounds. Type II alveolar cells were isolated by flow cytometry and DNA in the cells was analyzed for DNA adducts using the 32P-postlabeling assay. There was a significant increase (approximately 4-fold) in the level of total adducts in type II cells of rats exposed to DE and CB, compared with sham-exposed rats. While exposure to CB and DE induced the formation of adducts that were not consistently seen in sham-exposed rats, exposure to these materials also appeared to increase the intensity of adducts present in type II cells from sham-exposed rats. These data underscore the importance of investigating molecular dosimetry at the biological level of the cell. We conclude that the type II alveolar cell may be a risk for damage from inhaled DE.  相似文献   

10.
BACKGROUND: In conjunction with allergens, diesel exhaust particles act as an adjuvant to enhance IgE responses, inducing expression of cytokines/chemokines and adhesion molecules, and increasing airway hyper-responsiveness (AHR). As most studies were designed to expose animals to diesel exhaust throughout the periods of both sensitization and allergen challenge, it remains unclear whether diesel exhaust (DE) exposure exaggerates airway responses in asthmatic animals. OBJECTIVE: To study effects of exposure to low-dose DE on AHR and allergic airway inflammation in asthmatic mice. METHODS: BALB/c mice were sensitized by intraperitoneal injection of ovalbumin and challenged by intranasal administration with ovalbumin. They were exposed to low-dose DE for 7 h/day, 5 days/week, for up to 12 weeks. AHR to methacholine was evaluated by whole-body plethysmography as well as bronchoalveolar lavage cell analysis and cytokine gene expression in lungs. RESULTS: Repeated exposure of asthmatic mice to low-dose DE resulted in increased AHR and gene expression of several pro-asthmatic cytokines/chemokines, but these effects rapidly subsided with continued exposure to DE. CONCLUSION: Repeated exposure to low-dose DE after ovalbumin challenge exaggerates allergic responses in mice, but effects are not prolonged with continuous DE exposure.  相似文献   

11.
Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity.  相似文献   

12.
The involvement of platelet activating factor (PAF) in antigen-induced bronchial hyperresponsiveness was investigated by the use of the PAF antagonists BN 52021 and BN 50730, in a guinea-pig model where sensitization and challenge were performed by aerosol. Male Hartley guinea-pigs were sensitized by two aerosol exposures at 48 hr intervals to a 0.9% NaCl solution (saline) containing 2 mg/ml ovalbumin for 30 min. Fifteen to 20 days later, guinea-pigs were challenged by exposure to five successive aerosols of increasing concentrations of ovalbumin (OA) or respectively, 10 microg/ml, 100 microg/ml, 1 mg/ml, 5 mg/ml and 10 mg/ml for 15 min each, or saline alone. Three to four hr and 18-24 hr after the aerosol challenge the guinea-pigs were prepared for recording of bronchopulmonary response and aerosol administrations were then generated with an ultrasonic nebulizer. The bronchopulmonary responses induced by successive 1-min aerosol bursts of acetylcholine (ACh) was assessed. As compared with saline-challenged guinea-pigs, an enhanced bronchopulmonary response to aerosol administration of cumulative doses of ACh was observed, 3-4 hr and 18-24 hr post-ovalbumin challenge. When the sensitized guinea-pigs were pretreated 1 hr before ovalbumin exposure with BN 52021 or BN 50730 (25 mg/kg, per os), a significant inhibition of the increase in the bronchopulmonary response to ACh was observed, both at 3-4 hr and 18-24 hr. Furthermore, when guinea-pigs were treated 3-4 hr after the ovalbumin exposure with BN 52021 or BN 50730, a significant inhibition of the hyperresponsiveness to ACh was recorded at 18-24 hr. A marked accumulation of eosinophils in the peribronchial regions was observed on histological preparations of lung specimens collected 4 hr or 24 hr after ovalbumin exposure. Pretreatment of the guinea-pigs by BN 50730 or BN 52021 did not modify the eosinophil accumulation in the peribronchial area. No significant difference in the number of eosinophils collected in the bronchoalveolar lavage fluid is observed, 24 hr post-ovalbumin challenge, under the pretreatment with BN 52021 or BN 50730. Pretreatment of guinea-pigs by BN 50730 or BN 52021 significantly reduced the PAF-induced (100 microg/ml) increase in eosinophil number in the peribronchial area. By contrast, they did not inhibit the eosinophilia induced by aerosol administration of LTB4 (5 microg/ml). These results suggest that the bronchial hyperresponsiveness observed in this study is associated with eosinophil accumulation in the lung. The potent inhibition of the bronchial hyperresponsiveness by the two unrelated antagonists of PAF suggests that the lipid mediator is involved in its triggering and duration, but not in the eosinophil infiltration.  相似文献   

13.
14.
Air pollution has long been associated with health risks such as increased susceptibility to respiratory infections and potentiation of asthmatic-type responses. Experimental evidence in rodents indicates that air pollutants including diesel exhaust particles (DEPs), gases, and metals cause lung injury, inflammation, reduce aspects of host defense, and may potentiate allergic airway responses. Here we present evidence that diesel exhaust particles delivered by inhalation or aspiration can exacerbate allergic lung disease depending on the material's chemical properties. Genomic analysis of mouse lungs following instillation or inhalation of DEPs shows an alteration spectrum of pathways associated with immune signaling, cell metabolism, and oxidative stress. Diesel exposure also may worsen respiratory infections through depression of protective immune responses. Here we show that mice exposed to diesel and co-infected with influenza had increased influenza virus titers as well as higher levels of lung injury and inflammation in association with increased Th2 cytokines, and a concomitant decrease in Th1 polarization. A simplified model explains how the potentiation of the Th2 arm of immunity by diesel exhaust results in increased allergic sensitization, whereas cell-mediated (protective) immunity against viral infections is simultaneously reduced.  相似文献   

15.
The release and recovery of mutagenic activity and 1-nitropyrene from diesel particles phagocytized and cultured with lung macrophages were studied. The Ames Salmonella typhimurium plate incorporation assay was used to measure mutagenic activity. Quantitative analysis of 1-nitropyrene was performed with liquid chromatography/fluorescence analysis. The cytotoxicity and phagocytosis of diesel particles with and without fetal calf serum were evaluated to select exposure concentrations that resulted in minimal toxicity and maximal engulfment of particles by the macrophages. The diesel-particle exposure concentrations for the mutagenicity studies were 200 micrograms/ml in the absence of serum and 375 micrograms/ml in the presence of serum. Engulfment and incubation of diesel particles with lung macrophages resulted in the loss of considerable mutagenic activity (97-98%) and significantly less 1-nitropyrene (10-25%). These studies suggest that lung macrophages have the capability to metabolize mutagenic nitroaromatics found in diesel particles.  相似文献   

16.
Rhodiola imbricata is a medicinal plant having immunostimulating properties. The anti-proliferative effects of Rhodiola aqueous extract (RAE), were studied in human erythroleukemic cell line K-562 using MTT cell proliferation assay. The proliferation of K-562 was significantly decreased after 72h incubation with RAE at 100 and 200microg/ml. However, almost no suppressive effects could be detected in normal human peripheral blood lymphocytes or mouse macrophage cell line RAW-264.7. RAE was also found to induce intracellular reactive oxygen species (ROS) in K-562 cells at 200microg/ml when incubated overnight. The increased ROS generation may cause apoptosis, which was observed in AnnexinV-FITC and propidium iodide (PI) staining of cells treated with RAE for 72h in K-562 cells. Moreover, RAE arrested cell cycle progression in G2/M phase in early and late period of exposure. The anti-cancer activity of RAE was also confirmed by increased NK cell cytotoxicity. These observations suggest that aqueous extract of R. imbricata rhizome has very potent anti-cancer activities, which might be useful in leukemia cancer treatment.  相似文献   

17.
The rising incidence of allergic disorders in developed countries is unexplained. Exposure to traffic related air pollutants may be an important cause of wheezing and asthma in childhood. Experimental evidence from human studies suggests that diesel exhaust particles, constituents of fine particulate matter less than 2.5 microns (PM2.5), may act to enhance IgE mediated aeroallergen sensitization and Th2 directed cytokine responses. To date, epidemiologic investigations indicate that children living in close proximity to heavily travelled roads are more likely to be atopic and wheeze. The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) birth cohort study was initiated to test the hypothesis that early high exposure to traffic related air pollutants is associated with early aeroallergen sensitization and allergic respiratory phenotypes. Using an exposure cohort design, more than 700 infants born to atopic parents were recruited at age 1 living either less than 400 meters (high traffic pollutant exposure) or greater than 1,500 meters (low exposure) from a major road. Children were medically evaluated and underwent skin prick testing with aeroallergen at screening, and re-evaluated sequentially at ages 1, 2, 3, 4, and 7. In this study, both proximity and land use regression (LUR) models of traffic air pollutant exposure have been assessed. Proximity to stop and go traffic with large concentrations of bus and truck traffic predicted persistent wheezing during infancy. The LUR model estimated elemental carbon attributable to traffic (ECAT) as a proxy for diesel exhaust particulate exposure. High ECAT was significantly associated with wheezing at age 1 as well as persistent wheezing at age 3. High mold exposure predicted a well defined asthma phenotype at age 7.  相似文献   

18.
BACKGROUND: The ability of combustion products, such as diesel exhaust particles (DEPs), to modulate the immune system has now been firmly established. DEPs can synergize with allergen at the human upper respiratory mucosa to enhance allergen-specific IgE production, initiate a T(H)2 cytokine environment, and even promote primary allergic sensitization. Experiments suggest that these effects result from the initial activation of mast cells to produce IL-4. OBJECTIVE: We sought to demonstrate that in vivo mast cell activation by DEPs plus allergen will also affect the release of classic mast cell mediators and consequently enhance the immediate-phase response. METHODS: Dust mite-sensitive subjects were challenged intranasally with allergen, and symptom scores and histamine levels in nasal wash samples were compared after prechallenge with 0.3 mg of DEPs. RESULTS: If the subjects were first sprayed with DEPs, mean symptom scores rose from 3.7 to 9.9; additionally, only one fifth of the amount of intranasal dust mite allergen was required to induce clinical symptoms. DEPs alone had no effect. The changes in symptoms correlated with histamine levels measured in nasal lavage specimens from these subjects. Although challenge with DEPs alone did not induce histamine release, challenge with both DEPs and allergen resulted in 3-fold higher histamine concentrations than those seen with allergen alone. In contrast, carbon black particles (elemental carbon devoid of chemicals) had no effect. The role of chemicals was confirmed because degranulation of a murine mast cell line by FcepsilonRI cross-linking was increased significantly (by 72%) by the soluble organic chemicals extracted from DEPs. CONCLUSIONS: Overall, these results suggest that exposure to DEPs can enhance the severity of clinical symptoms to allergen by enhancing mast cell degranulation.  相似文献   

19.
Carbon black and quartz are relatively inert solid particulate materials that are carcinogenic in laboratory animals. Quartz is a human carcinogen, whereas data on carbon black are contradictory, and there are few data on mammalian mutagenesis. We determined the mutant frequency following eight repeated 72-hr incubations with 75 mug/ml carbon black (Printex 90) or 100 mug/ml quartz (SRM1878a) particles in the FE1 Muta Mouse lung epithelial cell line. For carbon black exposed cells, the mutant frequency was 1.40-fold (95% CI: 1.22-1.58) for cII and 1.23-fold (95% CI: 1.10-1.37) for lacZ compared with identically passaged untreated cells. Quartz did not significantly affect the mutant frequency. Carbon black also induced DNA strand breaks (P = 0.02) and oxidized purines (P = 0.008), as measured by the Comet assay. Quartz induced marginally more oxidized purines, but no change in strand breaks. We detected five (phenanthrene, flouranthene, pyrene, benzo[a]anthracene, and chrysene) of the 16 EPA priority polycyclic aromatic hydrocarbons (PAHs) in an extract of carbon black. The detected PAHs are only weakly mutagenic compared with benzo[a]pyrene, and were present in very low amounts. In conclusion, carbon black was weakly mutagenic in vitro at the cII and lacZ loci. It also induced DNA strand breaks and oxidized DNA bases. More studies are essential for understanding the biological significance of these findings, and clearly documenting DNA sequence changes. The results do not necessarily imply that other carbonaceous nano materials are genotoxic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号