首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Neural stem cells (NSCs) derived from human fetal striatum and transplanted as neurospheres survive in stroke-damaged striatum, migrate from the implantation site, and differentiate into mature neurons. Here, we investigated how various steps of neurogenesis are affected by intrastriatal transplantation of human NSCs at different time points after stroke and with different numbers of cells in each implant. Rats were subjected to middle cerebral artery occlusion and then received intrastriatal transplants of NSCs. Transplantation shortly after stroke (48 hours) resulted in better cell survival than did transplantation 6 weeks after stroke, but the delayed transplantation did not influence the magnitude of migration, neuronal differentiation, and cell proliferation in the grafts. Transplanting greater numbers of grafted NSCs did not result in a greater number of surviving cells or increased neuronal differentiation. A substantial number of activated microglia was observed at 48 hours after the insult in the injured striatum, but reached maximum levels 1 to 6 weeks after stroke. Our findings show that the best survival of grafted human NSCs in stroke-damaged brain requires optimum numbers of cells to be transplanted in the early poststroke phase, before the inflammatory response is established. These findings, therefore, have direct clinical implications.  相似文献   

2.
目的 观察心肌营养素1(CT1)修饰的神经干细胞(NSCs)移植到癫(癎)持续状态(SE)大鼠海马后的存活、迁移和分化情况,探讨CT1-NSCs移植对海马神经元损伤及苔状纤维发芽(MFS)的影响.方法 建立氯化锂-匹罗卡品致SE大鼠模型,随机分为CTI-NSCs移植组、单纯NSCs移植组、模型组和正常对照组,每组18只.各组再分为移植后1、4、8周3个时间点,每个时间点6只.共聚焦免疫荧光显微镜下观察移植的NSCs在脑内存活、分化及迁移情况;Nissl染色观察海马神经元形态并计数CA1区神经细胞数;Timm染色检测海马齿状回MFS形成.结果 (1)移植后4周及8周,CT1-NSCs移植组双标阳性细胞数量明显多于单纯NSCs移植组,前者可见神经细胞向周围迁移,后者未见明显迁移现象.(2)SE后大鼠CA1区神经细胞数随时间推移进行性减少,CTI-NSCs移植组细胞数(移植后1、4,8周分别为68.85±11.49、60.89±12.17和51.51±13.34)多于单纯NSCs移植组(67.92±10.78、42.56±11.47和30.49±10.12),4、8周时差异有统计学意义(t=4.650、5.334,P<0.05).(3)SE后大鼠齿状回内分子层可见MFS形成,且MP3评分随时间推移进行性增高;移植后1、4,8周时CT1-NSCs移植组MFS分值(0.77±0.04、2.48±0.89和2.39±0.82)明显低于单纯NSCs移植组(1.12±0.62、3.17±0.64和3.88±0.51,t=6.059、9.511、9.728,P<0.05).结论 CT1能够促进NSCs在SE大鼠脑内存活、迁移和分化,CTI-NSCs移植对SE大鼠海马损伤有修复作用,并可抑制海马MFS形成.  相似文献   

3.
Background Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa‐derived NSCs are accessible endoscopically and could be used autologously. Brain‐derived Nestin‐positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa‐derived NSCs, determine their relationship to Nestin‐expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. Methods Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa–submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin‐GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut‐derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. Key Results Musc‐ and MSM‐derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co‐labelled with glial fibrillary acid protein (GFAP), neurosphere‐derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain‐ and gut‐derived NSCs were able to differentiate into neurons. Conclusions & Inferences Nestin‐expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.  相似文献   

4.
We previously reported that hepatocyte growth factor (HGF) promoted proliferation of neurospheres and neuronal differentiation of neural stem cells (NSCs) derived from mouse embryonic brain. In this study, spheres from mouse embryonic stem (ES) cells were generated by floating culture following co-culture on PA6 stromal cells. In contrast to the behavior of the neurospheres derived from embryonic brain, addition of HGF to the growth medium of the floating cultures decreased the number of spheres derived from ES cells. When spheres were stained using a MAP-2 antibody, more MAP-2-positive cells were observed in spheres cultured with HGF. When HGF was added to the growth and/or differentiation medium, more MAP-2-positive cells were also obtained. These results suggest that HGF promotes neuronal differentiation of NSCs derived from ES cells.  相似文献   

5.
The neurological deficits that are characteristic of Alzheimer's Disease (AD) are ultimately a result of neuronal loss in distinct anatomical regions of the brain. This neuronal loss is thought to be due, in large part to the presence of the neurotoxic beta-amyloid (Abeta) deposits, that are characteristic of the AD brain. Transplantation therapy, in which neural stem cells (NSCs) or neural progenitor cells (NPCs) are introduced into damaged regions of the brain and induced to differentiate into replacement neurons, has been proposed as a possible therapeutic approach to treat AD. However, in the AD brain Abeta plaques, which remain in the area of neuronal degeneration, may affect the viability or differentiation potential of transplanted NSCs. Currently there is contradictory evidence concerning the effect of Abeta on NSCs. To further investigate the effect of Abeta on NSCs, we compared the mitochondrial function, proliferation and cellular differentiation of two populations of hippocampal NSCs (embryonic and adult derived) after Abeta exposure. Our results highlight the heterogeneity between different populations of NSCs even when derived from the same brain region. Our data also demonstrate that while mitochondrial function of NSCs is affected by Abeta, their proliferation and differentiation are not significantly influenced. Considered with previous studies, our results suggest that while NSCs do respond to the presence of Abeta, proliferation and differentiation of certain populations are not affected. Further study of the differences between susceptible vs. resistant populations of NSCs may provide crucial clues for the development of effective therapies to combat AD.  相似文献   

6.
Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted into the adult spinal cord, NSCs are restricted to the glial lineage, indicating that the host spinal cord environment is not permissive for neuronal differentiation. To identify the stage at which neuronal differentiation is inhibited we examined the survival, differentiation, and integration of neuronal restricted precursor (NRP) cells, derived from the embryonic spinal cord of transgenic alkaline phosphatase rats, after transplantation into the adult spinal cord. We found that grafted NRP cells differentiate into mature neurons, survive for at least 1 month, appear to integrate within the host spinal cord, and extend processes in both the gray and white matter. Conversely, grafted glial restricted precursor cells did not differentiate into neurons. We did not observe glial differentiation from the grafted NRP cells, indicating that they retained their neuronal restricted properties in vivo. We conclude that the adult nonneurogenic CNS environment does not support the transition of multipotential NSCs to the neuronal commitment stage, but does allow the survival, maturation, and integration of NRP cells.  相似文献   

7.
Fetal spinal cord from embryonic day 14 (E14/FSC) has been used for numerous transplantation studies of injured spinal cord. E14/FSC consists primarily of neuronal (NRP)- and glial (GRP)-restricted precursors. Therefore, we reasoned that comparing the fate of E14/FSC with defined populations of lineage-restricted precursors will test the in vivo properties of these precursors in CNS and allow us to define the sequence of events following their grafting into the injured spinal cord. Using tissue derived from transgenic rats expressing the alkaline phosphatase (AP) marker, we found that E14/FSC exhibited early cell loss at 4 days following acute transplantation into a partial hemisection injury, but the surviving cells expanded to fill the entire injury cavity by 3 weeks. E14/FSC grafts integrated into host tissue, differentiated into neurons, astrocytes, and oligodendrocytes, and demonstrated variability in process extension and migration out of the transplant site. Under similar grafting conditions, defined NRP/GRP cells showed excellent survival, consistent migration out of the injury site and robust differentiation into mature CNS phenotypes, including many neurons. Few immature cells remained at 3 weeks in either grafts. These results suggest that by combining neuronal and glial restricted precursors, it is possible to generate a microenvironmental niche where emerging glial cells, derived from GRPs, support survival and neuronal differentiation of NRPs within the non-neurogenic and non-permissive injured adult spinal cord, even when grafted into acute injury. Furthermore, the NRP/GRP grafts have practical advantages over fetal transplants, making them attractive candidates for neural cell replacement.  相似文献   

8.
背景:体外培养神经干细胞,在悬浮培养时由于自身增殖特性会形成球,传代时将会面临如何将细胞球分离成单细胞的问题。 目的:寻求理想的大鼠海马神经干细胞传代方法,以获得大量可增生的神经干细胞以供研究。 方法:分离新生1 d SD大鼠海马神经干细胞,原代培养至五六天时,分别用机械吹打法、胰蛋白酶、TrypLE和Accutase消化法分离神经干细胞球。之后每7 d传代1次,连续传代3次。分别于每次传代后第1天和传代后第4天计数活细胞比例和细胞球数目,实验重复3次。 结果与结论:神经干细胞球经3种酶消化后获得的均是单细胞;经机械吹打后既有单个细胞,也有小细胞球分布于培养液中。在酶消化法中,Accutase消化法传代后神经干细胞的活细胞比例明显高于胰蛋白酶消化(P < 0.01)和TrypLE消化法 (P < 0.05)。同时,Accutase消化法传代后新形成的细胞球数目也较其余各组多(P < 0.01)。提示在实验条件下,Accutase消化法能够较好地将神经干细胞球分离成存活率较高、能快速形成新的克隆球的单个细胞,是较为理想的神经干细胞分离传代方法。  相似文献   

9.
While neural stem/progenitor cells (NSCs) in the dentate gyrus of the hippocampus have been extensively characterized, the behavior of NSCs in the CA1 and CA3 subfields of the hippocampus is mostly unclear. Therefore, we compared the in vitro behavior of NSCs expanded from the micro-dissected CA1 and CA3 subfields of postnatal day (PND) 4 and 12 Fischer 344 rats. A small fraction (∼1%) of dissociated cells from CA1 and CA3 subfields of both PND 4 and 12 hippocampi formed neurospheres in the presence of EGF and FGF-2. A vast majority of neurosphere cells expressed NSC markers such as nestin, Sox-2 and Musashi-1. Differentiation assays revealed the ability of these NSCs to give rise to neurons, astrocytes, and oligodendrocytes. Interestingly, the overall neuronal differentiation of NSCs from both subfields decreased with age (23–28% at PND4 to 5–10% at PND12) but the extent of oligodendrocyte differentiation from NSCs increased with age (24–32% at PND 4 to 45–55% at PND 12). Differentiation of NSCs into astrocytes was however unchanged (40–48%). Furthermore, NSCs from both subfields gave rise to GABA-ergic neurons including subclasses expressing markers such as calbindin, calretinin, neuropeptide Y and parvalbumin. However, the fraction of neurons that expressed GABA decreased between PND4 (59–67%) and PND 12 (25–38%). Additional analyses revealed the presence of proliferating NSC-like cells (i.e. cells expressing Ki-67 and Sox-2) in different strata of hippocampal CA1 and CA3 subfields of both PND4 and PND 12 animals. Thus, multipotent NSCs persist in both CA1 and CA3 subfields of the hippocampus in the postnatal period. Such NSCs also retain their ability to give rise to both GABA-ergic and non-GABA-ergic neurons. However, their overall neurogenic potential declines considerably in the early postnatal period.  相似文献   

10.
Proliferating single cells were isolated from various CNS regions (telencephalon, diencephalon, midbrain, cerebellum, pons and medulla, and spinal cord) of human fetal cadavers at 13 weeks of gestation and grown as neurospheres in long-term cultures. We investigated whether neural stem cells (NSCs) or progenitors within spheres have specific regional or temporal characteristics with regard to growth, differentiation, and region-specific gene expression, and whether these molecular specifications are reversible. Regardless of regional origin, all of the neurospheres were found to contain cells of different subtypes, which suggests that multipotent NSCs, progenitors or radial glial cells co-exist with restricted neuronal or glial progenitors within the neurospheres. Neurospheres from the forebrain grew faster and gave rise to significantly more neurons than did those from either the midbrain or hindbrain, and regional differences in neuronal differentiation appeared to be sustained during long-term passage of neurospheres in culture. There was also a trend towards a reduction in neuronal emergence from the respective neurospheres over time in culture, although the percentages of neurons generated from cerebellum-derived neurospheres increased dramatically. These results suggest that differences in neuronal differentiation for the various neurospheres are spatially and temporally determined. In addition, the properties of glial fibrillary acidic protein (GFAP)-, glutamate-, and gamma-aminobutyric acid (GABA)-expressing cells derived from neurospheres of the respective CNS regions appear to be regionally and temporally different. Isolated human neurospheres from different CNS compartments expressed distinctive molecular markers of regional identity and maintained these patterns of region-specific gene expression during long-term passage in vitro. To determine the potential of human neurospheres for regional fate plasticity, single spheres from the respective regions were co-cultured with embryonic day 16.5 (E16.5 d) mouse brain slices. Specific cues from the developing mouse brain tissues induced the human neurospheres to express different marker genes of regional identity and to suppress the expression of their original marker genes. Thus, even the early regional identities of human neurospheres may not be irreversible and may be altered by local inductive cues. These findings have important implications for understanding the characteristics of growth, differentiation, and molecular specification of human neurospheres derived from the developing CNS, as well as the therapeutic potential for neural repair.  相似文献   

11.
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle‐aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle‐aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1‐CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4–15 using 5′‐bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (~three fold increase) in the deafferented young and middle‐aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU‐DCX dual immunofluorescence demonstrated no changes in neuronal fate‐choice decision of newly born cells after deafferentation, in comparison to the age‐matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Lou Sj  Gu P  Chen F  He C  Wang Mw  Lu Cl 《Brain research》2003,968(1):114-121
There are numerous parallels between the heamatolymphopoietic and nervous systems in terms of the mechanisms regulating their development. We proposed that neural stem cells (NSCs) may respond to the microenvironmental signals provided by bone marrow stromal cells (BMSCs) which regulate the differentiation and maturation of hematolymphopoietic stem cells. First, we isolated and proliferated BMSCs from the femur and tibia, and NSCs from the midbrain of Sprague-Dawley (SD) rats, and then investigated the effects of BMSCs on the differentiation of NSCs into neurons, astrocytes and oligodendrocytes by directly plating neurospheres on BMSC monolayers in serum-free conditions. The results confirmed that BMSCs induced NSCs to differentiate selectively into neurons. The percentage of neurons significantly increased in 7 days in vitro co-cultures of NSCs and BMSCs as compared to NSCs cultures alone. When the duration of the cultures was extended to 12 days in vitro, BMSCs enhanced the survival of neurons derived from these NSCs; our investigation then focused on the underlying mechanism for this effect of BMSCs. NSCs were cultured with BMSC conditioned-medium and co-cultured with membrane fragments of live BMSCs or paraformaldehyde fixed BMSCs, the inducing activity of BMSCs was solely detectable in BMSC conditioned-medium, indicating that soluble factors secreted by BMSCs were responsible for its effect on the neuronal differentiation of NSCs. Therefore, BMSCs may provide a powerful tool for therapeutic neurological applications.  相似文献   

13.
目的 评价大脑、骨髓和脂肪组织3种不同来源的神经干细胞对大鼠脊髓挫伤的治疗效果.方法 选取来源于同一大鼠成体中大脑、骨髓和脂肪的3个部位的组织,分离、诱导分化为不同来源的神经干细胞;应用自由落体损伤模型装置造成大鼠脊髓挫伤.将不同来源的神经干细胞分别移植入大鼠脊髓损伤部位,通过BBB评分比较修复脊髓损伤功能的效果,应用免疫荧光染色检测不同移植细胞在损伤脊髓中的存活、分布、迁移的情况.另设假手术对照组和生理盐水对照组.结果 与假手术对照组和生理盐水对照组比较,3个细胞处理组BBB评分在2~8周开始增加,9周以后更加明显,差异开始有统计学意义(P<0.05).在移植后1周和4周,细胞移植组中脑源性神经干细胞(SVZ-NSs)组Brdu/nestin+>神经元存活的数目明显高于其他2组.但差异没有统计学意义(P>0.05);到了第8周,3组均仅有少量Brdu/nestin+>细胞存活,相互之间比较差异无统计学意义(P>0.05).结论 植入来源于大脑、骨髓和脂肪组织的神经干细胞都可以在一定程度上提高脊髓损伤后运动功能恢复,但SVZ-NSs组的脊髓损伤大鼠运动功能恢复要比脂肪来源的神经干细胞(AD-NSs)组及骨髓来源的神经干细胞(BM-NSs)组更好.AD-NSs由于来源广泛和强有力的增殖能力,相比其他来源的神经干细胞,可能是更好的选择.  相似文献   

14.
C6细胞和星形细胞对神经干细胞体外迁移分化的不同影响   总被引:2,自引:0,他引:2  
目的观察C6细胞和星形细胞在体外对神经干细胞(NSCs)迁移和分化是否有不同影响,为进一步研究调节NSCs迁移、分化的因子打下基础。方法取处于指数生长期的C6细胞、星形细胞分别与NSCs限定区域培养,观察NSCs的形态变化和迁移方向。并用二者的无血清培养上清和无血清培养基分别加入“Transwell Inserts”细胞培养系统的下室,培养室的上室加NSCs悬液,共培养36h,光镜下计数位于培养系统中间膜上的细胞球数,并观察其形态变化。结果与C6细胞共培养的NSCs向C6细胞生长的方向迁移,而与星形细胞共培养的NSCs则呈分化现象。C6细胞的上清引起神经球迁移的数目明显多于星形细胞的上清和无血清培养基(P〈0.01),星形细胞的上清则明显引起NSCs突起生长。结论C6细胞主要引起NSCs迁移,而星形细胞主要引起NSCs分化。  相似文献   

15.
Cell transplants that successfully replace the lost neurons and facilitate the reconstruction of the disrupted circuitry in the injured aging hippocampus are invaluable for treating acute head injury, stroke and status epilepticus in the elderly. This is because apt graft integration has the potential to prevent the progression of the acute injury into chronic epilepsy in the elderly. However, neural transplants into the injured middle-aged or aged hippocampus exhibit poor cell survival, suggesting that apt graft augmentation strategies are critical for robust integration of grafted cells into the injured aging hippocampus. We examined the efficacy of pre-treatment and grafting of donor fetal CA3 cells with a blend of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) for lasting survival and integration of grafted cells in the injured middle-aged (12 months old) hippocampus of F344 rats. Grafts were placed at 4 days after the kainic-acid-induced hippocampal injury and were analyzed at 6 months post-grafting. We demonstrate that 80% of grafted cells exhibit prolonged survival and 71% of grafted cells differentiate into CA3 pyramidal neurons. Grafts also receive a robust afferent input from the host mossy fibers and project efferent axons into the denervated zones of the dentate gyrus and the CA1 subfield. Consequently, the aberrant sprouting of the dentate mossy fibers, an epileptogenic change that typically ensues after the hippocampal injury, was suppressed. Thus, grafts of fetal CA3 cells enriched with FGF-2 and BDNF exhibit robust integration and dampen the abnormal mossy fiber sprouting in the injured middle-aged hippocampus. Because the aberrantly sprouted mossy fibers contribute to the generation of seizures, the results suggest that the grafting intervention using FGF-2 and BDNF is efficacious for suppressing epileptogenesis in the injured middle-aged hippocampus.  相似文献   

16.
Stem cell therapy is a hope for the treatment of some childhood neurological disorders. We examined whether human neural stem cells (hNSCs) replace lost cells in a newborn mouse model of brain damage. Excitotoxic lesions were made in neonatal mouse forebrain with the N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid (QA). QA induced apoptosis in neocortex, hippocampus, striatum, white matter, and subventricular zone. This degeneration was associated with production of cleaved caspase-3. Cells immunopositive for inducible nitric oxide synthase were present in damaged white matter and subventricular zone. Three days after injury, mice received brain parenchymal or intraventricular injections of hNSCs derived from embryonic germ (EG) cells. Human cells were prelabeled in vitro with DiD for in vivo tracking. The locations of hNSCs within the mouse brain were determined through DiD fluorescence and immunodetection of human-specific nestin and nuclear antigen 7 days after transplantation. hNSCs survived transplantation into the lesioned mouse brain, as evidenced by human cell markers and DiD fluorescence. The cells migrated away from the injection site and were found at sites of injury within the striatum, hippocampus, thalamus, and white matter tracts and at remote locations in the brain. Subsets of grafted cells expressed neuronal and glial cell markers. hNSCs restored partially the complement of striatal neurons in brain-damaged mice. We conclude that human EG cell-derived NSCs can engraft successfully into injured newborn brain, where they can survive and disseminate into the lesioned areas, differentiate into neuronal and glial cells, and replace lost neurons. (c) 2005 Wiley-Liss, Inc.  相似文献   

17.
Traumatic brain injury (TBI) often produces cognitive impairments by primary or secondary neuronal loss. Stem cells are a potential tool to treat TBI. However, most previous studies using rodent stem or progenitor cells failed to correlate cell grafting and cognitive improvement. Furthermore, the efficacy of fetal human neural stem cells (hNSCs) for ameliorating TBI cognitive dysfunction is undetermined. This study therefore characterized phenotypic differentiation, neurotrophic factor expression and release and functional outcome of grafting hNSCs into TBI rat brains. Adult Sprague-Dawley rats underwent a moderate parasagittal fluid percussion TBI followed by ipsilateral hippocampal transplantation of hNSCs or vehicle 1 day post-injury. Prior to grafting, hNSCs were treated in vitro for 7 days with our previously developed priming procedure. Significant spatial learning and memory improvements were detected by the Morris water maze (MWM) test in rats 10 days after receiving hNSC grafts. Morphological analyses revealed that hNSCs survived and differentiated mainly into neurons in the injured hippocampus at 2 weeks after grafting. Furthermore, hNSCs expressed and released glial-cell-line-derived neurotrophic factor (GDNF) in vitro and when grafted in vivo, as detected by RT-PCR, immunostaining, microdialysis and ELISA. This is the first direct demonstration of the release of a neurotrophic factor in conjunction with stem cell grafting. In conclusion, human fetal neural stem cell grafts improved cognitive function of rats with acute TBI. Grafted cells survived and differentiated into neurons and expressed and released GNDF in vivo, which may help protect host cells from secondary damage and aid host regeneration.  相似文献   

18.
To identify and characterize the lineage potential of rat neural retina progenitor cells (NRPCs) in vitro and engrafted into rats with retinal degeneration, NRPCs were isolated from neural retinas of embryonic day 17 Long Evans rats and cultured in serum-free or serum-containing media with fibroblast growth factor 2 and neurotrophin 3. After expansion, cellular differentiation was initiated by the withdrawal of these growth factors. Despite forming primary neurospheres, NRPCs cultured in serum-free medium survived poorly after passage. In contrast, NRPCs cultured in serum-containing medium could be expanded for up to 12 passages and differentiated into glial fibrillary acidic protein-positive glial cells and retina-specific neurons expressing rhodopsin, S-antigen, calbindin, recoverin, and calretinin. For in vivo analysis, passage 1 (P1) undifferentiated NRPCs were labeled with bromodeoxyuridine (BrdU), implanted into the subretinal space of Royal College of Surgeons (RCS) rats, and analyzed immunohistochemically 4 weeks postgrafting. The grafted NRPCs showed extensive glial differentiation, irrespective of their topographic localization. A few BrdU-labeled grafted NRPCs expressed protein kinase C, a marker for bipolar and amacrine interneuron-specific differentiation. Other retina-specific or oligodendrocytic differentiation was not detected in the grafted cells. Although NRPCs are capable of self-renewal and multilineage differentiation in vitro, they developed mostly into glial cells following engraftment into the adult retina. These data suggest that the adult retina retains epigenetic signals that are either restrictive for neuronal differentiation or instructive for glial differentiation. Induction of lineage-specific cell differentiation of engrafted NRPCs to facilitate retinal repair will likely require initiation of specific differentiation in vitro prior to grafting and/or modification of the host environment concomitantly with NRPC grafting.  相似文献   

19.
人胚海马神经干细胞体外培养及分化研究   总被引:11,自引:3,他引:8  
目的 研究人胚胎海马神经干细胞体外长期培养的条件和其在自主分化条件下的分化能力和分化特点。方法 从人胚胎海马分离神经干细胞。采用无血清培养法,进行体外培养、扩增,形成神经球。使神经球贴壁分化,分化培养基不含有任何细胞有丝分裂促进剂。使用5-溴脱氧尿嘧啶核苷(BrdU)标记分裂增生的细胞,观察细胞的分裂增殖情况。使用免疫细胞化学法鉴定神经干细胞及其在不加诱导剂下的自主分化能力。结果 从人胚胎海马分离的神经干细胞具有增殖能力,细胞倍增时间为3.2d。BrdU检测有正在分裂、增殖的细胞。细胞贴壁分化后可以出现Nestin、GFAP、Tuj-1表达阳性的细胞。神经干细胞共培养6个月,传代14代。结论 分离培养的海马神经干细胞具有自我更新和增殖能力,可以长期培养。在不加任何诱导剂的自主分化条件下可以向神经元、胶质细胞分化。少突胶质细胞的培养需要不同的培养条件。分离培养的干细胞具有神经干细胞的特征。可用于基础和临床的相关研究。  相似文献   

20.
Hepatocyte growth factor (HGF), originally cloned as a hepatocyte mitogen, has recently been reported to exhibit neurotrophic activity in addition to being expressed in different parts of the nervous system. At present, the effects of HGF on neural stem cells (NSCs) are not known. In this study, we first report the promoting effect of HGF on the proliferation of neurospheres and neuronal differentiation of NSCs. Medium containing only HGF was capable of inducing neurosphere formation. Addition of HGF to medium containing fibroblast growth factor 2 or epidermal growth factor increased both the size and number of newly formed neurospheres. More neurons were also obtained when HGF was added in differentiation medium. In contrast, neurosphere numbers were reduced after repeated subculture by mechanical dissociation, suggesting that HGF-formed neurospheres comprised predominantly progenitor cells committed to neuronal or glial lines. Together, these results suggest that HGF promotes proliferation of neurospheres and neuronal differentiation of NSCs derived from mouse embyos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号