首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of the xanthine oxidase (XO)-hypoxanthine (HX) system and the various kinds of amino acids in Eagle's minimum essential medium on chromosomal aberrations were studied in Chinese hamster V79 cells. Among 13 amino acids tested, only histidine significantly increased the number of aberrant chromosomes and cytotoxicity in combination with the XO-HX system. This enhancing effect of histidine on chromosomal aberrations was dose-dependent at 0.063% - 0.25%; it was not affected by superoxide dismutase, but was strongly inhibited by catalase.  相似文献   

2.
Oxypurinol, an inhibitor of xanthine oxidase (XO), is being studied to block XO-catalyzed superoxide radical formation and thereby treat and protect failing heart tissue. Allopurinol, a prodrug that is converted to oxypurinol by xanthine oxidase, is also being studied for similar purposes. Because allopurinol, itself, may be generating superoxide radicals, we currently studied the reaction of allopurinol with xanthine oxidase and confirmed that allopurinol does produce superoxide radicals during its conversion to oxypurinol. At pH 6.8 and 25 degrees C in the presence of 0.02 U/ml of XO, 10 and 20 microM allopurinol both produced 10 microM oxypurinol and 2.8 microM superoxide radical (determined by cytochrome C reduction). The 10 microM allopurinol was completely converted to oxypurinol, while the 20 microM allopurinol required a second addition of xanthine oxidase to complete the conversion. Fourteen percent of the reducing equivalents donated from allopurinol or xanthine reacted with oxygen to form superoxide radicals. Superoxide dismutase prevented the reduction of cytochrome C by these substrates. At higher xanthine oxidase concentrations, or at lower temperatures, more of the 20 microM allopurinol was converted to oxypurinol during the initial reaction. At lower xanthine oxidase concentrations, or higher temperatures, less conversion occurred. At pH 7.8, the amount of superoxide radicals produced from allopurinol and xanthine was nearly doubled. These results indicate that allopurinol is a conventional substrate that generates superoxide radicals during its oxidation by xanthine oxidase. Oxypurinol did not produce superoxide radicals.  相似文献   

3.
We have developed a photometric, platereader-based microassay for superoxide anion scavening activity in vitro. Superoxide anions were generated using a xanthine oxidase/hypoxanthine system and detected by following the reduction of ferricytochrome c at 550 nM. Inhibitory activity was assessed for superoxide dismutase (SOD) and the superoxide anion scavengers tiron and TEMPO together with a number of TEMPO derivatives. The initial rate of change in optical density (OD) at 550 nm, i.e., initial reaction rate, generated by xanthine oxidase (20 mU/ml)/hypoxanthine (100 μM) coupled to ferricytochrome c (100 μM) was effectively abolished by SOD (200 U/ml), tiron (10 mM) and TEMPO (0.3 mM), indicating the involvement of superoxide anions. TEMPO derivatives inhibited the initial reaction rate with the potency order: TEMPO > 4-hydroxy-TEMPO = 4-carboxy-TEMPO. In contrast, 4-hydroxy-TEMPO, which lacks the free radical nitroxide function, was inactive up to 1 mM.  相似文献   

4.
We examined whether slight oxidative stress and/or damage in cells could be amplified by subsequent ionizing irradiation and thus become detectable as obvious chromosomal damage. WIL2-NS cells, a human B lymphoblastoid cell line, were pretreated with an oxidant and then exposed to X-rays at 0.25 or 0.5 Gy. The chromosomal damage in the cells was evaluated by cytokinesis-block micronucleus (CBMN) assay. Pretreatment with a superoxide-generating system (hypoxanthine (HX)/xanthine oxidase (XO), 1 and 2 mU/ml of XO), tert-butyl hydroperoxide (t-BuOOH, 10 and 100 microM) or H2O2 (5 microM) alone did not induce significant chromosomal damage, but the oxidant-induced damage increased significantly with subsequent irradiation. The tested dose of these oxidants did not induce significant changes in cell viability, the nuclear division index, and the concentration of antioxidants, indicating that only weak oxidative stress was introduced into the cells. These results suggest that low-dose oxidant-induced chromosomal damage becomes detectable as obvious chromosomal damage with subsequent ionizing irradiation in vitro.  相似文献   

5.
Thiol compounds have been reported to abolish hypoxanthine/xanthine oxidase induced luminol chemiluminescence and this effect has been attributed to scavenging of superoxide (O2-)/(H2O2) produced from hypoxanthine/xanthine oxidase. Yet other workers have reported that thiol compounds have shown little, if any, reactivity towards O2-/H2O2. The aim of this study was to examine the discrepancy between these two sets of findings further. Captopril (a thiol angiotensin-converting enzyme (ACE) inhibitor) and MPG (a simple thiol) were observed to abolish hypoxanthine/xanthine oxidase induced chemiluminescence. The reactivity of captopril and MPG towards O2-/H2O2 was then determined by measurement of thiol oxidation in captopril and MPG after their incubation with hypoxanthine/xanthine oxidase. Incubation (at 10 min, 37 degrees C) with 4 mM hypoxanthine/0.03 u ml-1 xanthine oxidase resulted in 7% and 20% thiol oxidation in captopril and MPG (at 1 mM) respectively. Captopril and MPG, therefore, appeared to be ineffective scavengers of oxidants produced by hypoxanthine/xanthine oxidase. Captopril and MPG also did not affect urate production or oxygen consumption by xanthine oxidase which indicated that captopril and MPG quench luminol chemiluminescence by a mechanism that excludes the inhibition of xanthine oxidase. Hypoxanthine/xanthine oxidase induced luminol chemiluminescence may, therefore, be an unsuitable method for measuring free radical scavenging activity by drugs.  相似文献   

6.
Chronic administration of acrylonitrile to rats resulted in an increase in the incidence of glial neoplasms of the brain. Recent studies have shown that acrylonitrile induces oxidative stress in rat brain and cultured rat glial cells. Acrylonitrile also induces morphological transformation concomitant with an increase in the formation of oxidized DNA in Syrian Hamster Embryo (SHE) cells in a dose-dependent manner. The mechanism for the induction of oxidative stress in SHE cells remains unresolved. The present study examined the effects of acrylonitrile on enzymatic and nonenzymatic antioxidants in SHE cells. SHE cells were treated with subcytolethal doses of acrylonitrile (0, 25, 50, and 75 microg/ml) for 4, 24, and 48 h. Acrylonitrile (50 microg/ml and 75 microg/ml) increased the amount of reactive oxygen species in SHE cells at all time points. Glutathione (GSH) was depleted and catalase and superoxide dismutase activities were significantly decreased in SHE cells after 4 h of treatment. The inhibition of these antioxidants was temporal, returning to control values or higher after 24 and 48 h. Xanthine oxidase activity was increased following 24 and 48 h treatment with acrylonitrile. 1-aminobenzotriazole, a suicidal P450 enzyme inhibitor, attenuated the effects of acrylonitrile on catalase and xanthine oxidase in SHE cells, suggesting that P450 metabolism is required for acrylonitrile to produce its effects on these enzymes. Additional studies showed that in the absence of metabolic sources acrylonitrile had no effect on either catalase or superoxide dismutase activity. These results suggest that the induction of oxidative stress by acrylonitrile involves a temporal decrease in antioxidants and increase in xanthine oxidase activity that is mediated by oxidative metabolism of acrylonitrile.  相似文献   

7.
Purified ferredoxin-(cytochrome c)-NADP+ oxidoreductase and xanthine oxidase were found to catalyse the reduction of nitrofurantoin to the free radical. Under aerobic conditions, the nitrofurantoin radical underwent autoxidation to regenerate the parent compound with the concomitant production of superoxide and eventually hydrogen peroxide. The nitrofurantoin radical was also shown to react with hydrogen peroxide to generate a highly reactive species which was capable of oxidising methionine to ethylene. This active oxygen radical appeared to be identical with the crypto-OH . radical, previously proposed as being formed from the analogous reaction of the methyl viologen radical with hydrogen peroxide [R.J. Youngman and E.F. Elstner, FEBS Lett. 129, 265 (1981)]. Catalase inhibited nitrofurantoin-dependent ethylene formation in both enzyme systems, whereas superoxide dismutase was only inhibitory in the xanthine oxidase mediated reaction. Although the primary function of the respective enzyme systems is to generate the nitrofurantoin radical, the xanthine oxidase reaction is markedly more complex than that of ferredoxin-(cytochrome c)-NADP+ oxidoreductase. The differences between the two enzyme reactions appear to be due to the endogenous autoxidation of xanthine oxidase. The aerobic activation of nitrofurantoin by xanthine oxidase involved the superoxide anion as an intermediate, whereas the nitrofuran was directly reduced by ferredoxin-(cytochrome c)-NADP+ oxidoreductase without a requirement for active oxygen species.  相似文献   

8.
The oxidation of 2’,7’-dichlorofluorescin (DCFH) to a fluorescent product is currently used to evaluate oxidant stress in cells. However, there is considerable uncertainty as to the enzymatic and nonenzymatic pathways that may result in DCFH oxidation. Iron/hydrogen peroxide-induced DCFH oxidation was inhibited by catalase or by the hydroxyl radical scavenger dimethylsulfoxide; however, superoxide dismutase (SOD) had no effect on DCFH oxidation. The formation of hydroxyl radical (indicated by the oxidation of salicylic acid to 2,3-dihydroxybenzoic acid) was proportional to DCFH oxidation, suggesting that the hydroxyl radical is responsible for the iron/peroxide-mediated oxidation of DCFH. Utilizing a superoxide generating system consisting of hypoxanthine/xanthine oxidase, oxidation of DCFH was unaffected by SOD, catalase or desferoxamine, and stimulated by removing hypoxanthine from the reaction mixture. In contrast, SOD or elimination of hypoxanthine abolished superoxide formation. In addition, potassium superoxide did not support the oxidation of DCFH. Thus, superoxide is not involved in DCFH oxidation. Boiling xanthine oxidase eliminated its concentration-dependent oxidation of 1 μM DCFH, indicating that xanthine oxidase can enzymatically utilize DCFH as a high affinity substrate. Kinetic studies of the oxidation of DCFH by xanthine oxidase indicated a K m (app) of 0.62 μM. Hypoxanthine competed with DCFH with a K i (app) of 1.03 mM. These studies suggest that DCFH oxidation may be a useful indicator of oxidative stress. However, other types of cellular damage may produce DCFH oxidation. For example, conditions or chemicals that damage intracellular membranes may release to the cytoplasm oxidases or peroxidases that might use DCFH as a substrate, similar to xanthine oxidase Received: 25 October 1993 / Accepted: 14 March 1994  相似文献   

9.
Tartrazine (FD & C Yellow No.5) has been shown to induce chromosomal aberrations in fibroblast cells of Muntiacus muntjac in vitro. M. muntjac cells were exposed to various concentrations of tartrazine (in the 5-20 micrograms/ml range) and were evaluated for induced chromosomal aberrations after two different periods of culture. Total percentages of chromosomal aberrations were significantly increased above control levels in all experimental groups. The results suggest that further studies are needed to determine the potential mutagenic effects of tartrazine.  相似文献   

10.
Studies were made on chromosome aberrations induced by benzo(a)pyrene (Bp) in V79 cells in the presence or absence of feeder cells. In the presence of feeder cells, chromosome aberrations at Bp concentrations of 1.0–20.0 μg/ml depended on feeder cell density. The highest incidences of chromosome aberrations (aberrant cells) and of aberrant chromosomes per 100 metaphase cells were 24.0% and 38.0%, respectively, and were obtained at 20.0 μg/ml Bp in the presence of 2.0 · 106 feeder cells/60-mm plastic dish. In the absence of feeder cells, chromosome aberrations were not induced; the incidences of aberrant cells and chromosomes on treatment with Bp in the absence of a feeder layer were 3.0–5.0 and 3.0–6.0%, respectively, while the spontaneous rates (of both) were 5.0%.  相似文献   

11.
The aim of the present study was to test whether levamisole acts as a superoxide scavenger. The drug was incubated at four different concentrations (range 1, 5, 10, 20 micrograms/ml) with purified rat mast cells which were then induced to generate superoxide ions, by challenge with compound 48/80 (1 microgram/ml). Ten minutes preincubation with the drug completely abolished superoxide ions production. Addition of levamisole to the cell suspension simultaneously with the releaser caused full inhibition of O2(-) generation at the lowest dose, while higher doses failed to suppress 48/80 induced O2(-) generation. In a cell-free superoxide-generating system, like xanthine-xanthine oxidase, levamisole did not act as a superoxide scavenger at any of the doses tested.  相似文献   

12.
Mouse thioglycollate-induced peritoneal macrophages effectively, in the absence of serum, recognized mouse polymorphonuclear leukocytes (PMNs) mildly oxidized with diamide, superoxide (hypoxanthine/xanthine oxidase) or t-butyhydroperoxide, or modified with N-ethylmaleimide (NEM). The recognition reached a maximum when PMNs were treated wtih each of the reagents at relatively low concentrations, and the recognition was decreased on treatment with reagents at higher concentrations. Glutathione depletion in the diamide-oxidized PMNs may cause enhanced adhesion to macrophages. Sialylated sugar chains attached to a peptide chain in glycophorin A and sialylated poly-N-acetyllactosaminyl sugar chains in lactoferrin and band 3 glycoprotein effectively inhibited the increased adhesion of the diamide-oxidized PMNs. Enzymatic removal of sialyl residues and the degradation of poly-N-acetyllactosaminyl sugar chains by pretreatment of PMNs with neuraminidase or endo-beta-galactosidase, respectively, lost their increasing ability for macrophage adhesion after oxidation with diamide, superoxide or t-butylhydroperoxide. Clustered sialylated poly-N-acetyllactosaminyl sugar chains on the cell surface may be involved in the increased adhesion of the oxidized PMNs to macrophages.  相似文献   

13.
人参皂苷保护小鼠精原细胞氧化损伤的研究   总被引:1,自引:0,他引:1  
目的观察人参皂苷对活性氧引起的小鼠睾丸生殖细胞氧化损伤的保护作用。方法利用体外培养的小鼠精原细胞建立氧化应激模型,通过检测生殖细胞活性、脂质过氧化产物丙二醛(MDA)生成、超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)水平评价人参皂苷对精原细胞氧化损伤的缓解作用。结果次黄嘌呤/黄嘌呤氧化酶(HX/XO)体系产生的活性氧可引起生殖细胞活性降低、MDA的生成量增加、SOD活性和GSH水平降低,而添加人参皂苷(10mg·L-1)能恢复HX/XO引起的生殖细胞活性、SOD活性和GSH水平的下降以及MDA生成的增加。结论人参皂苷可通过抗氧化作用保护活性氧引起的小鼠精原细胞氧化损伤。  相似文献   

14.
A recent study of the mechanism by which oxypurinol inhibits uric acid generation [T. Spector, W. W. Hall and T. A. Krenitsky, Biochem. Pharmac. 35, 3109(1986)] showed that xanthine is ineffective in impeding the binding of oxypurinol to reduced xanthine oxidase. This study prompted the present hypothesis that, at elevated concentrations of substrates, oxypurinol would be superior to allopurinol as an inhibitor of the xanthine oxidase-catalyzed production of superoxide radical. It was found that the potency of allopurinol was attenuated by elevated concentrations of xanthine and hypoxanthine, whereas the potency of oxypurinol was relatively unaffected. Oxypurinol produced immediate inhibition of superoxide radical production as well as progressive inhibition with time. In contrast, allopurinol, which is also a substrate for xanthine oxidase, produced very little immediate inhibition and caused progressive inhibition only after conversion to oxypurinol. The theoretical advantages of treating ischemic tissues with oxypurinol are discussed.  相似文献   

15.
A combination of purine and xanthine oxidase (XOD) dose-dependently elicited sustained contraction of porcine coronary arterial rings and resulted in increased concentrations of superoxide anions and hydrogen peroxide. These contractile responses appeared, with a delay, after the application of purine and XOD, used as a reactive oxygen species (ROS)-generating system. Coronary arteries precontracted with prostaglandin F(2alpha) failed to relax in response to substance P after exposing the arterial preparation to this ROS-generating system. The contractile response of the coronary artery to the ROS-generating system was almost completely inhibited by catalase (130 U/ml), and was partially inhibited by superoxide dismutase (60 U/ml), or mannitol (30 mM). A voltage-dependent L-type Ca(2+) channel antagonist, nicardipine, had no effect on contraction. Dysfunction of endothelial cells was completely prevented by catalase, but not by superoxide dismutase or mannitol. These results suggest that superoxide anions, hydrogen peroxide and hydroxyl radicals might be involved in eliciting sustained, delayed-onset coronary artery contraction, which is not related to L-type Ca(2+) channels. They also suggest that hydrogen peroxide might play a major role in endothelial dysfunction of the porcine coronary artery.  相似文献   

16.
1. Nilvadipine (FK 235, FR 34235) suppressed ischemia (20 min)-reflow (20 min)-induced paw edema of mice (ED30:0.4 mg/kg i.v. and 2 mg/kg p.o.). Other calcium entry blockers of dihydropyridine-type also suppressed the edema, but 30-fold higher doses were required. 2. Oral dosing of nilvadipine suppressed carrageenan-induced paw edema (ED30:15 mg/kg in rats and 20 mg/kg in mice) at a potency corresponding to that of an anti-inflammatory drug, ibuprofen. Nifedipine, nicardipine and nimodipine resulted in a suppression of 30% only with 100 mg/kg oral dosing in rats. Nitrendipine, diltiazem and verapamil were without effect. 3. Nilvadipine inhibited superoxide radical (O-2production from xanthine oxidase (XOD) both with lactate dehydrogenase + NADH method and cytochrome c method (IC50:90 and 100 micrograms/ml, respectively). Nifedipine and nicardipine showed some inhibition, but the other calcium entry blockers failed to inhibit significantly even at 320 micrograms/ml. As uric acid formation was not reduced by the tested drugs, the inhibitory action might be due to their O-2scavenging effects. 4. Superoxide production of neutrophils from casein-induced peritoneal fluid in rats was most strongly inhibited by nilvadipine when the cells were stimulated by a calcium ionophore, A23187 (IC50:4 micrograms/ml). Inhibition by this drug when stimulated by f-methonyl-leucyl-phenylalanine and phorbol myristate acetate was less effective (IC50:20 and 30 micrograms/ml, respectively). Nifedipine and nicardipine inhibited neutrophil O-2production at higher concentrations (30-200 micrograms/ml) with all stimulants. Inhibitory actions by other drugs were weak. 5. Triggering of atherosclerosis depends largely on the oxidative stress on blood vessels after recently established concept.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The inhibition by anti-inflammatory drugs of the production of Superoxide anions (O2?) by isolated guinea pig macrophages was studied spectrophotometrically using NADH and lactate dehydrogenase. id50 values were: 4 × 10?7M (diclophenac sodium), 1 × 10?6M (oxyphenbutazone), 1 × 10?5M (indomethacin), 4 × 10?5M (phenylbutazone), 7 × 10?5M (mefenamic acid), 8 × 10?5 M (flufenamic acid), 8 × 10?5M (colchicine), 3 × 10?4M (aspirin), 3 × 10?4M (benzydamine), 10?3M < (dexamethasone) and 10?3M < (gold sodium thiomalate). They seemed to block the cell membrane-associated mechanism to produce Superoxide anions, since most of them did not abolish the generation of superoxide anions from the xanthine oxidase plus hypoxanthine system. Cytochalasin B, pyrogallol, ascorbate, NEM, l-epinephrine and chlorpromazine also inhibited, the production of Superoxide anion, but many non anti-inflammatory drugs were ineffective. This technique was evaluated as a screening method in vitro for nonsteroidal anti-inflammatory drugs.  相似文献   

18.
Solanum lycocarpum A. St. Hil. (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado. S. lycocarpum fruits are commonly used in traditional medicine in powder form or as folk preparations for the treatment of diabetes and obesity, as well as for controlling cholesterol levels. The aim of the present study was to chemically characterize the hydroalcoholic extract (SL) of S. lycocarpum by determination of total flavonoids and total poyphenols and quantification of steroidal alkaloids, as well as to evaluate its mutagenic and/or antimutagenic potential on V79 cells and Swiss mice using chromosomal aberrations and bone marrow micronucleus assays, respectively. Three concentrations of SL (16, 32, and 24?μg/mL) were used for the evaluation of its mutagenic potential in V79 cells and four doses (0.25, 0.50, 1.0, and 2.0?g/kg body weight) were used for Swiss mice. In the antimutagenicity assays, the different concentrations of SL were combined with the chemotherapeutic agent doxorubicin (DXR). HPLC analysis of SL gave contents of 6.57?%?±?0.41 of solasonine and 4.60?%?±?0.40 of solamargine. Total flavonoids and polyphenols contents in SL were 0.04 and 3.60?%, respectively. The results showed that not only SL exerted no mutagenic effect, but it also significantly reduced the frequency of chromosomal aberrations induced by DXR in both V79 cells and micronuclei in Swiss mice at the doses tested.  相似文献   

19.
Anti- and prooxidant properties of quercetin under different conditions were investigated using glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme containing essential cysteine residues. Quercetin was shown to produce hydrogen peroxide in aqueous solutions at pH 7.5, this resulting in the oxidation of the cysteine residues of the enzyme. Quercetin significantly increased oxidation of GAPDH observed in the presence of ferrous ions, particularly when FeSO(4) was added to the solution containing GAPDH and quercetin. The results suggest the formation of hydroxyl radical in the case of the addition of FeSO(4) to a quercetin solution. At the same time, quercetin protects GAPDH from oxidation in the presence of ascorbate and Fe(3+). In the absence of metals, quercetin protects SH-groups of GAPDH from oxidation by the superoxide anion generated by the system containing xanthine/xanthine oxidase.  相似文献   

20.
Biphasic regulation of angiogenesis by reactive oxygen species   总被引:1,自引:0,他引:1  
Huang SS  Zheng RL 《Die Pharmazie》2006,61(3):223-229
Reactive oxygen species (ROS) are believed to be important molecules in the regulation of angiogenesis. However, direct evidence is obtained from hydrogen peroxide only. The comparison of superoxide anion (O2-), hydrogen peroxide (H202) and hydroxyl radical (HO*) effects on angiogenesis in one angiogenic model were studied. Tube formation, migration and adhesion of endothelial cells were enhanced with a low concentration of O2 generated by 500 [microM xanthine (X) and 1 mU/ml xanthine oxidase (XO), but significantly inhibited as the XO increased to 10 mU/ml or more. Low concentrations of H2O2 (0.01-1 microM) induced tube formation and the maximal tube formation was achieved at 0.1 microM which also induced cell migration and adhesion, while high concentrations of H2O2 (100 microM) inhibited tube formation and cell migration. Both H2O2 and O2 inhibited cell proliferation at high concentration only. HO* at low concentration neither inhibited nor stimulated the tube formation, cell proliferation and migration but inhibited at high concentration. The effects of O2 were significantly abolished by catalase (CAT) alone or in combination with superoxide dismutase (SOD), but not by inactive CAT or SOD alone. Active CAT, but not inactive CAT, also reversed the effects of H2O2. Pretreatment with GSH effectively reversed the inhibitory effects of HO*. Therefore, our results suggest that ROS have biphasic effects on angiogenesis, which indicated that pharmacologically regulating cellular ROS levels might serve as an anti-angiogenic or angiogenic principles. They also provide a theoretical basis for the development and rational use of novel angiogenic and anti-angiogenic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号