首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Headache》2004,44(7):741-742
The suprachiasmatic nucleus (SCN) of the hypothalamus has been termed the master circadian pacemaker of mammals. Recent discoveries of damped circadian oscillators in other tissues have led to the hypothesis that the SCN synchronizes and sustains daily rhythms in these tissues. We studied the effects of constant lighting (LL) and of SCN lesions on behavioral rhythmicity and Period 1 (Per 1) gene activity in the SCN and olfactory bulb (OB). We found that LL had similar effects on cyclic locomotor and feeding behaviors and Per 1 expression in the SCN but had no effect on rhythmic Per 1 expression in the OB. LL lengthened the period of locomotor and SCN rhythms by approximately 1.6 hr. After 2 weeks in LL, nearly 35% of rats lost behavioral rhythmicity. Of these, 90% showed no rhythm in Per 1-driven expression in their SCN. Returning the animals to constant darkness rapidly restored their daily cycles of running wheel activity and gene expression in the SCN. In contrast, the OB remained rhythmic with no significant change in period, even when cultured from animals that had been behaviorally arrhythmic for 1 month. Similarly, we found that lesions of the SCN abolished circadian rhythms in behavior but not in the OB. Together, these results suggest that LL causes the SCN to lose circadian rhythmicity and its ability to coordinate daily locomotor and feeding rhythms. The SCN, however, is not required to sustain all rhythms because the OB continues to oscillate in vivo when the SCN is arrhythmic or ablated.
Comments: As the central generator for cluster appears to be near the hypothalamic circadian nuclei (May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ. PET and MRA findings in cluster headache and MRA in experimental pain. Neurology. 2000;55:1328-1335), it behooves us to follow the work on understanding the training of circadian and circannual rhythms in order to better understand cluster. Stewart J. Tepper  相似文献   

4.
《Annals of medicine》2013,45(4):481-490
Circadian rhythms are a cardinal feature of living organisms. The stereotypical organization of homeostatic, endocrine and behavioural variables around the 24-hour cycle constitutes one of the most conserved attributes among species. It is now well established that circadian rhythmicity is not a learned behaviour, but is genetically transmitted and therefore subject to genetic manipulations. Recent advances in the circadian field have demonstrated that circadian oscillations are cell autonomous, that the circadian mechanism operates through a negative feedback loop and that a growing number of genes is under circadian control. Furthermore, single-gene mutations have been isolated in mammals that have profound effects on circadian behaviour. The production and mapping of one of these mutations in the mouse, an organism about which there exists a wealth of genetic information, should accelerate the elucidation of the molecular events involved in the generation of circadian rhythms in mammals.  相似文献   

5.
6.
Summary.  Background:  Circadian rhythms control a vast array of biological processes in a broad spectrum of organisms. The contribution of circadian rhythms to the development of megakaryocytes and the regulation of platelet biology has not been defined. Objectives:  This study tested the hypothesis that murine megakaryocytes exhibit hallmarks of circadian control. Methods:  Mice expressing a PER2::LUCIFERASE circadian reporter protein and C57BI/6 mice were used to establish if megakaryocytes expressed circadian genes in vitro and in vivo . Mice were also subjected to 3 weeks on a restricted feeding regime to separate food-entrained from light-entrained circadian rhythms. Quantitative real time polymerase chain reaction (PCR), flow cytometry and imunohistochemistry were employed to analyse gene expression, DNA content and cell-cycle behavior in megakaryocytes collected from mice over a 24-h period. Results:  Megakaryocytes exhibited rhythmic expression of the clock genes mPer2 and mBmal1 and circadian rhythms in megakaryopoiesis. mPer2 and mBmal1 expression phase advanced 8 h to coincide with the availability of food; however, food availability had a more complex effect on megakaryopoiesis, leading to a significant overall increase in megakaryocyte ploidy levels and cell-cycle activity. Conclusions:  Normal megakaryopoiesis requires synchrony between food- and light-entrained circadian oscillators.  相似文献   

7.
Circadian rhythm evolved to allow organisms to coordinate intrinsic physiological functions in anticipation of recurring environmental changes. The importance of this coordination is exemplified by the tight temporal control of cardiac metabolism. Levels of metabolites, metabolic flux, and response to nutrients all oscillate in a time-of-day–dependent fashion. While these rhythms are affected by oscillatory behavior (feeding/fasting, wake/sleep) and neurohormonal changes, recent data have unequivocally demonstrated an intrinsic circadian regulation at the tissue and cellular level. The circadian clock — through a network of a core clock, slave clock, and effectors — exerts intricate temporal control of cardiac metabolism, which is also integrated with environmental cues. The combined anticipation and adaptability that the circadian clock enables provide maximum advantage to cardiac function. Disruption of the circadian rhythm, or dyssynchrony, leads to cardiometabolic disorders seen not only in shift workers but in most individuals in modern society. In this Review, we describe current findings on rhythmic cardiac metabolism and discuss the intricate regulation of circadian rhythm and the consequences of rhythm disruption. An in-depth understanding of the circadian biology in cardiac metabolism is critical in translating preclinical findings from nocturnal-animal models as well as in developing novel chronotherapeutic strategies.  相似文献   

8.
9.
It is increasingly recognized that obesity is an important health problem. The mechanisms that underlie obesity have not been fully elucidated, and effective therapeutic approaches are currently of general interest. Recent studies have provided evidence that circadian clock is a crucial factor in the development of obesity and related metabolic disease. Genetic disruption of clock genes in mice displayed metabolic dysfunctions of specific tissues at distinct phases of the sleep/wake cycle. In addition, circadian desynchrony, a characteristic of shift work and short sleep, are associated with obesity in human. Here, I describe the advances in understanding the interrelationship among circadian disruption, sleep deprivation and obesity.  相似文献   

10.
11.
For many years, researchers have suggested that abnormalities in circadian rhythms may underlie the development of mood disorders such as bipolar disorder (BPD), major depression and seasonal affective disorder (SAD). Furthermore, some of the treatments that are currently employed to treat mood disorders are thought to act by shifting or "resetting" the circadian clock, including total sleep deprivation (TSD) and bright light therapy. There is also reason to suspect that many of the mood stabilizers and antidepressants used to treat these disorders may derive at least some of their therapeutic efficacy by affecting the circadian clock. Recent genetic, molecular and behavioral studies implicate individual genes that make up the clock in mood regulation. As well, important functions of these genes in brain regions and neurotransmitter systems associated with mood regulation are becoming apparent. In this review, the evidence linking circadian rhythms and mood disorders, and what is known about the underlying biology of this association, is presented.  相似文献   

12.
Abstract: Research efforts on non coding RNAs have grown exponentially in the past decade. We are now beginning to witness the achievements that have been made in better understanding the roles of miRNAs in human diseases such as cancer and cardiovascular diseases. miRNAs show great promise as biomarkers for cancer diagnosis and prognosis. In addition, miRNAs, due to their critical function as either oncogenes or tumor suppressor genes and their broad impact on target genes and pathways, have great potential as therapeutic agents for novel cancer drug development. Several miRNA molecules and mimics are getting close to clinical trials. In this review, we summarize and highlight some of the important findings relating to miRNA and anticancer therapeutic development.  相似文献   

13.
Temperature and other circadian rhythms are disrupted following surgery and other traumatic events. During recovery, coordination between temperature rhythms and other rhythmic physiologic processes is reduced. Studies of animals and humans have shown that return of synchrony is not immediate, but that it is important in the recovery process. The purpose of this study was to test a combination of cues that have been shown to adjust the timing of circadian temperature rhythm. The combined cues consisted of timed ingestion of caffeine and protein foods and adjustment of the sleep/wake cycle. The intervention was tested in 26 age- and gender-matched maxillofacial surgery patients. Patients were randomly assigned to control or experimental groups. Circadian temperature rhythm was measured by continuous monitoring with axillary probes and miniature recorders before and after surgery. Following surgery, both experimental and control subjects displayed 24-hour circadian temperature rhythms; however, the peak-to-trough difference was decreased more following surgery in the control subjects than in the subjects who had prepared for surgery by practicing the intervention. Control subjects also had less day-to-day stability in the phase of their rhythms following surgery. These results suggest that the intervention reduced circadian disruption following surgery and provides a way for patients to prepare themselves to resist rhythm changes.  相似文献   

14.
Stability and circadian variation in core body temperature (Tc) were believed to be homeostatic responses until well into the 20th century. Defense of a narrow thermoneutral range was well documented, whereas circadian oscillations were attributed to episodic biochemical and environmental stimuli or chronological stressors in life routines. Research in thermal physiology has illuminated several of the "black boxes" in the understanding of temperature regulation, and advances in chronobiology have shattered old paradigms. While these discoveries are still evolving, existing information provides valuable clues about physiological responses to heat loss or over-heating that could improve clinical assessment and intervention. Discoveries that circadian rhythm of Tc is regulated by an endogenous "clock" and is remarkably stable have helped to make it the most widely used circadian indicator. More recently, Tc was found to exert its own cyclic rhythm under free-running conditions. While some investigators claim that circadian and homeostatic processes are independent, there are conditions in which clinical distinctions are less clear. This overview reviews contemporary scientific findings about circadian and homeostatic processes in thermoregulation. Examples are drawn from human and animal research. Physiological responses and mechanisms are explained in relation to their relevance to clinical treatment or health care. Gaps in existing research and application are discussed.  相似文献   

15.
There is now reason to speculate that disruption of circadian rhythms of physiology and behavior may have broader implications for human health. A long history of clinical epidemiology in humans demonstrates an increased incidence of obesity, cardiovascular disease and cancer among shift workers. Clues from studies on the molecular genetics of circadian clock genes may offer insight into the molecular mechanisms underlying the circadian variation of metabolic coordination. A better understanding of the impact of circadian gene networks on nutrient balance at the molecular, cellular, and system levels promises to shed light on the emerging association between disorders of diabetes, obesity, sleep, and circadian timing.  相似文献   

16.
17.
Bipolar disorder (BD) is a chronic, potentially disabling illness with a lifetime morbid risk of approximately 1%. There is substantial evidence for a significant genetic etiology, but gene-mapping efforts have been hampered by the complex mode of inheritance and the likelihood of multiple genes of small effect. In view of the complexity, it may be instructive to understand the biological bases for pathogenesis. Extensive disruption in circadian function is known to occur among patients in relapse. Therefore, it is plausible that circadian dysfunction underlies pathogenesis. Evidence for such a hypothesis is mounting and is reviewed here. If circadian dysfunction can be established as an 'endophenotype' for BD, this may not only enable identification of more homogenous sub-groups, but may also facilitate genetic analyses. For example, it would be logical to investigate polymorphisms of genes encoding key proteins that mediate circadian rhythms. Association studies that analyzed circadian genes in BD have been initiated and are reviewed. Other avenues for research are also discussed.  相似文献   

18.
Recent advances in circadian biology are identifying key genes and the molecular clockworks they command. These biochemical systems provide new tools for evaluating clinically observed, intrinsic circadian rhythm sleep disorders. A striking example was last year's discovery of a point mutation in a human clock gene that produces a sleep phase syndrome. This finding suggested that other intrinsic sleep disorders may have genetic underpinnings, and that less debilitating variations in sleep/wake behavior may be revealed by molecular screening of known clock genes in broader human populations.  相似文献   

19.
《Annals of medicine》2013,45(4):208-220
Abstract

Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.  相似文献   

20.
Recent advances in circadian biology are identifying key genes and the molecular clockworks they command. These biochemical systems provide new tools for evaluating clinically observed, intrinsic circadian rhythm sleep disorders. A striking example was last year's discovery of a point mutation in a human clock gene that produces a sleep phase syndrome. This finding suggested that other intrinsic sleep disorders may have genetic underpinnings, and that less debilitating variations in sleep/wake behavior may be revealed by molecular screening of known clock genes in broader human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号