首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was isolated from the malarial parasite, Plasmodium lophurae. The apparent pI, as determined by chromatofocusing, was 7.6. The native molecular weight was 79,000. The pH profile of HGPRT exhibited a broad pH optimum. With hypoxanthine as substrate maximal activity was achieved from pH 6.0-10.0, and with guanine as substrate maximal activity occurred from pH 7.5-9.5. The enzyme exhibited Michaelis-Menten kinetics with all substrates. The Km values were 3.8 microM (hypoxanthine), 2.4 microM (guanine), 6.2 microM (6-mercaptopurine), 7.6 microM (6-thioguanine), and 360 microM (8-azahypoxanthine). 6-Thioinosine, 9-beta-arabinofuranosylhypoxanthine, 6-chloropurine, xanthine and azaguanine were inhibitors of the P. lophurae enzyme. From the substrate and inhibitor data it appears that the sixth position on the purine ring plays a major role in enzyme activity.  相似文献   

2.
Leishmania cannot synthesize purines de novo and therefore must scavenge purines from its host for survival and growth. Biochemical and genomic analyses have indicated that Leishmania species express three potential routes for the synthesis of guanylate nucleotides: (1) a two-step pathway that converts IMP to GMP; (2) a three-step pathway that starts with the deamination of guanine to xanthine, followed by phosphoribosylation to XMP and then conversion to GMP; or (3) direct guanine phosphoribosylation by HGPRT. To determine the role of the first of these pathways to guanylate nucleotide synthesis, an L. donovani line deficient in IMP dehydrogenase (IMPDH), the first step in the IMP to GMP pathway, was constructed by targeted gene replacement. The Δimpdh lesion triggered a highly restrictive growth phenotype in promastigotes in culture but did not impact parasitemias in mice. The dispensability of IMPDH in vivo is the first definitive demonstration that intracellular L. donovani amastigotes have access to a sufficient pool of guanine, xanthine, or guanylate precursors from the host.  相似文献   

3.
Tritrichomonas foetus, an anaerobic, flagellated protozoan parasite, is incapable of de novo purine nucleotide synthesis, and depends primarily on the salvage of purine bases from the host. The hypoxanthine-guanine-xanthine phosphoribosyl-transferase (HGXPRTase) from this organism has been purified to homogeneity by ammonium sulfate precipitation and Sephacryl-HR100 gel filtration, followed by anion exchange FPLC. Hypoxanthine, guanine and xanthine phosphoribosyl-transferase activities co-eluted in all the purification steps, suggesting that they are associated with the same enzyme protein. The molecular mass of the native protein, as estimated by gel filtration, is 24 kDa. The molecular mass estimated from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is also 24 kDa. Non-denaturing polyacrylamide gel electrophoresis of the purified protein, followed by activity staining with either [14C]hypoxanthine, [14C]guanine or [14C]xanthine, also demonstrates that the enzyme is a monomer of 24 kDa. This monomeric structure is distinctive from all the other reported PRTases which are either dimers or tetramers. Furthermore, unlike the mammalian HGPRTase, which is heat stable, the T. foetus enzyme is heat labile. Kinetic studies with the purified T. foetus HGXPRTase showed that the apparent Kms for hypoxanthine, guanine and xanthine were 4.1 μM, 3.8 μM and 52.4 μM respectively. This recognition of xanthine as a substrate by the parasite enzyme with only about a 10-fold higher Km value than those for hypoxanthine and guanine distinguishes it from the mammalian HGPRTase, which cannot use xanthine as a substrate, as well as the HGXPRTases of Eimeria tenella and Plasmodiumfalciparum, which are dimers, with xanthine about 100-times less proficient as a substrate. T. foetus HGXPRTase is thus a unique enzyme with opportunity for specific inhibitor design.  相似文献   

4.
The properties of a purine phosphoribosyltransferase from late trophozoites of the human malaria parasite, Plasmodium falciparum, are described. Enzyme activity with hypoxanthine, guanine and xanthine as substrates eluted in parallel during hydroxylapatite, size exclusion and DEAE-Sephadex chromatography as well as during chromatofocusing experiments. Furthermore, enzyme activity with all three purine substrates changed in parallel during heat inactivation of enzyme preparations and upon cold storage (4 degrees C) of the enzyme. When considered together, these results support the view that the phosphoribosyltransferase is capable of utilizing all three purine bases as substrates. Additional characterization revealed that the apparent molecular weight and isoelectric point of this enzyme are 55,500 and 6.2, respectively, and that the apparent Km for 5-phosphoribosyl-1-pyrophosphate ranges from 13.3 to 21.4 microM, depending on the purine base serving as substrate. The apparent Km values for hypoxanthine, guanine and xanthine were found to be 0.46, 0.30 and 29 microM, respectively. Other experiments showed that several divalent cations and sulfhydryl reagents produce a marked reduction of enzyme activity whereas dithiothreitol activates the enzyme. It should be noted that the ability to utilize xanthine as a substrate serves to distinguish the P. falciparum enzyme from its counterpart in the parasite's host cell, the human erythrocyte. The human enzyme shows only barely detectable activity with xanthine while the parasite enzyme displays similarly high levels of activity with all three purine substrates. Thus, the parasite enzyme might prove to be selectively susceptible to inhibition by xanthine analogs and related compounds.  相似文献   

5.
Two very large Plasmodium falciparum proteins are identified as constituents of the infected erythrocyte membrane. Sera were obtained from Aotus monkeys that had been repeatedly infected with asexual P. falciparum from one of four strains. The capacity of these sera to block in vitro cytoadherence of infected erythrocytes and agglutinate intact infected cells was determined. The sera were also used to immunoprecipitate protein antigens from detergent extracts of 125I-surface labeled or biosynthetically radiolabeled infected erythrocytes. For each serum/antigen combination, precipitation of only one protein correlated with the ability of the serum to interfere with cytoadherence and agglutinate infected cells. This malarial protein, denoted Pf EMP 1 (P. falciparum-erythrocyte-membrane-protein 1) bore strain-specific epitope(s) on the cell surface and displayed size heterogeneity (Mr approximately 220,000-350,000). Pf EMP 1 was strongly labeled by cell-surface radioiodination but was a quantitatively very minor malarial protein. Pf EMP 1 was distinguished by its size, surface accessibility and antigenic properties from a more predominant malarial protein in the same size range (Pf EMP 2) that is under the infected erythrocyte membrane at knobs. Monoclonal antibodies and rabbit antisera raised against Pf EMP 2 were used to show that this size heterogeneous antigen was indistinguishable from the previously described MESA (mature parasite infected erythrocyte surface antigen), identified by precipitation with rabbit antisera raised against the MESA hexapeptide repeats. Antibodies raised against Pf EMP 2/MESA did not precipitate Pf EMP 1. We conclude that Pf EMP 1 is either directly responsible for the cytoadherence phenomenon, or is very closely associated with another as yet unidentified functional molecule. Pf EMP 2/MESA must have a structural property/function that is important under the host cell membrane.  相似文献   

6.
Of the human salvage enzymes that deaminate ribonucleosides, two--cytidine deaminase and adenosine deaminase--have been found particularly useful for diagnostic purposes. In humans, no enzymes are present that can directly deaminate the bases of these ribonucleosides. Indeed, the only enzyme present that can directly deaminate a base is guanine deaminase, and the diagnostic usefulness of this enzyme has been well documented. The aim of this study is to identify the origin of the ammonia formed when human sera and tissue extracts are incubated with buffered guanosine, and to clarify whether the ammonia comes from the deamination of guanosine by guanosine deaminase or is produced as a result of deamination of guanine formed as a breakdown product of guanosine by purine nucleoside phosphorylase (PNP). Apparent deamination of guanosine by guanosine deaminase in human sera and tissue extracts was found to be due to two enzymes acting in tandem when the products of the reaction were examined by HPLC. The ribose was first removed from guanosine by PNP to form guanine, which was then deaminated to xanthine by guanine deaminase.  相似文献   

7.
We describe the group selective separation and quantification of unmodified and modified purines in human urine by high-performance reverse phase liquid chromatography. The pattern of oxypurines and methylated purines: hypoxanthine (Hx), xanthine (X), 1-methyl hypoxanthine (1-MHx), 1-methyl guanine (1-MG), 3-methyl guanine (3-MG), 7-methyl guanine (7-MG), 1-methyl xanthine (1-MX), 3-methyl xanthine (3-MX), 7-methyl xanthine (7-MX), 1,7-dimethyl guanine (1,7-dMG), 1,3-dimethyl xanthine (1,3-dMX), 1,7-dimethyl xanthine (3,7-dMX) and 1,3,7-trimethyl xanthine (1,3,7-tMX) were determined in a single run in urine of a healthy subject and a gout patient before and after treatment with allopurinol. This method may be useful to investigate the urinary pattern of methylated bases in diseases involving purine metabolism.  相似文献   

8.
Finding an appropriate adjuvant for human vaccination is crucial. Heat shock proteins (HSPs) act as adjuvants when coadministered with peptide antigens or given as fusion proteins. However, there is a potential risk of autoimmunity when using the complete molecules, because HSPs are evolutionary conserved. To overcome this, we first evaluated the adjuvant effect against two different antigens of a less-conserved fraction of Plasmodium falciparum HSP70 (Pf70C) and compared it to the whole HSP70 molecule from Trypanosoma cruzi (TcHSP70). We found that Pf70C exhibited similar adjuvant properties as the whole molecule. We later evaluated the adjuvant potential of Pf70C against the malarial antigen EB200 in a chimeric DNA construct. No appreciable levels of EB200-specific antibodies were detected in mice immunized only with the DNA constructs. However, DNA primed the immune system, because subsequent challenge with the corresponding recombinant fusion proteins elicited a strong Th-1 antibody response. In contrast, no priming effect was observed for ex vivo IFN-γ production but stimulation with the HSP-chimeric fusion protein induced a stronger secretion of IFN-γ in vitro than other proteins used. These results indicate that the use of HSPs is promising in the design of new vaccines.  相似文献   

9.
The glycosylphosphatidylinositol phospholipase C (GPI-PLC) from Trypanosoma brucei is particularly effective in hydrolysing the GPI-anchors of some proteins. The enzyme is inhibited by Zn2+ and p-chloromercurylphenylsulphonic acid, both of which can act as sulphydryl reagents, suggesting that a cysteine residue may be important in catalysis. Single cysteine to serine mutants have been produced for all eight cysteines in GPI-PLC; all the mutants were fully active in vitro and were still susceptible to p-chloromercurylphenylsulphonic acid inhibition. In contrast, a single histidine 34 to glutamine mutation totally inactivated GPI-PLC. The histidine was chosen after a sequence alignment with the Bacillus cereus phosphatidylinositol phospholipase C (PI-PLC) suggested a conservation of active site residues, including histidine 34 which is central to the proposed reaction mechanism (Heinz D.W., Ryan M., Bullock T.L., Griffith O.H. EMBO J 1995;14:3855–3863). The results suggest that the GPI-PLC and bacterial PI-PLCs have conserved active sites and that the inhibition of GPI-PLC by sulphydryl reagents can occur through more than one residue.  相似文献   

10.
Purine salvage by Tritrichomonas foetus   总被引:7,自引:0,他引:7  
The anaerobic protozoon Tritrichomonas foetus was found incapable of de novo purine synthesis by its failure to incorporate radiolabeled glycine or formate into the nucleotide pool. It had, on the other hand, high activities in incorporating adenine, hypoxanthine or inosine. Radiolabel pulse-chase experiments indicated that adenine, hypoxanthine and inosine all entered the pool through conversion to IMP. The parasite contained hypoxanthine phosphoribosyl transferase, adenine deaminase and inosine phosphorylase, but no adenine phosphoribosyl transferase, inosine kinase or inosine phosphotransferase activity. Adenine and inosine had to be converted to hypoxanthine before incorporation. Adenosine was also rapidly converted to hypoxanthine in T. foetus cell-free extracts, but the presence of adenosine kinase in the parasite allowed some conversion of adenosine directly to AMP. Guanine and xanthine were directly incorporated into GMP and XMP, probably due to the guanine and xanthine phosphoribosyl transferase. There were also strong enzyme activities which convert guanosine to guanine and guanine to xanthine. A guanosine phosphotransferase was found in the 10(5) X g sedimentable fraction of T. foetus, and was capable of converting some guanosine to GMP. This network of T. foetus purine salvage suggests the importance of hypoxanthine-guanine-xanthine phosphoribosyl transferase activities in the parasite.  相似文献   

11.
Histochemical studies of human guanase (guanine deaminase) have seldom been undertaken, in part because of technical difficulties which result in heavy background staining. We reported a modified procedure for histochemical demonstration of guanase in human tissues involving hydrolytic deamination of the substrate guanine to xanthine via guanase, and then oxidation of xanthine to uric acid, with concomitant reduction of nitrotetrazolium blue (NBT). In this report, we describe a modification of this method for cytochemical demonstration of guanase at the fine structural level using yellow tetrazolium in place of NBT for determination of the intracellular distribution of guanase in human hepatocytes. In the hepatocytes, the reaction products were seen to be concentrated in the nucleus, in mitochondria, cisternae of the smooth and/or rough-surfaced endoplasmic reticulum, and lysosomes. The precise locations of the reaction product in the cisternae of the nuclear envelope, chromosomes, and nucleus could not be determined. However, the reaction products in the mitochondria were clearly seen to be located in the spaces of cristae. This information of the intracellular distribution of guanase in normal hepatocytes will be useful in determining the physiological role of this enzyme and in further studies on diseased hepatocytes including those in non-A non-B hepatitis.  相似文献   

12.
Cerebral malaria is probably related to an overstimulation of the immune system and the cytokine network. We have previously demonstrated that tumour necrosis factor (TNF) secretion by human macrophages can be induced by soluble and heat-stable malarial antigens. Indirect evidence from epidemiological and in vitro studies suggests that Pf155/RESA can be considered as a candidate for triggering TNF secretion. Thus we conducted experiments to investigate the relationship between Pf155/RESA and TNF production. The SGE1 strain of Plasmodium falciparum was compared with the P. falciparum FCR3 strain, which does not express Pf155/RESA protein, for ability to induce TNF secretion by normal human macrophages in vitro. Synthetic peptides from the Pf155/RESA antigen ((EENV)4, (EENVEHDA)4, (DDEHVEEPTVA)3), were used in some experiments. TNF levels were measured by an immunoradiometric assay. We observed that the RESA-defective strain induces lower levels of TNF after schizont rupture than the SGE1 strain. Moreover, substantial TNF secretion was detected when macrophages were incubated with all three peptides, maximum levels being obtained with the (EENV)4 peptide. Although previous reports have described TNF-inducing activity of phospholipid from P. falciparum, these findings strengthen the evidence for Pf155/RESA antigens also being involved in TNF production during malaria.  相似文献   

13.
The human malaria parasite Plasmodium falciparum is auxotrophic for purines and relies on the purine salvage pathway for the synthesis of its purine nucleotides. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is a key purine salvage enzyme in P. falciparum, making it a potential target for chemotherapy. Previous attempts to purify this enzyme have been unsuccessful because of the difficulty in obtaining cultured parasite material and because of the inherent instability of the enzyme during purification and storage. Other groups have tried to express recombinant P. falciparum HGXPRT but only small amounts of activity were obtained. The successful expression of recombinant P. falciparum HGXPRT in Escherichia coli has now been achieved and the enzyme purified to homogeneity in mg quantities. The measured molecular mass of 26 229+/-2 Da is in excellent agreement with the calculated value of 26232 Da. A method to stabilise the activity and to reactivate inactive samples has been developed. The subunit structure of P. Jilciparum HGXPRT has been determined by ultracentrifugation in the absence (tetramer) and presence (dimer) of KC1. Kinetic constants were determined for 5-phospho-alpha-D-ribosyl-1-pyrophosphate, for the three naturally-occurring 6-oxopurine bases guanine, hypoxanthine, and xanthine and for the base analogue, allopurinol. Differences in specificity between the purified P. falciparum HGXPRT and human hypoxanthine guanine phosphoribosyltransferase enzymes were detected which may be able to be exploited in rational drug design.  相似文献   

14.
The humoral immune responses elicited by priming with a DNA plasmid and boosting with either the plasmid or the corresponding recombinant protein in alum adjuvant were compared. The plasmid DNA encoded a sequence (M3) derived from the Plasmodium falciparum antigen Pf155/RESA, and the recombinant protein consisted of the identical malarial sequence fused to an albumin-binding region (BB) of streptococcal protein G. Mice of different genetic backgrounds (CBA, Balb/c and C57Bl/6) were primed with plasmid DNA and boosted with either plasmid or recombinant protein. In all strains of mice, boosting with protein elicited higher anti-M3 antibody levels than obtained by boosting with plasmid, yet the kinetics and longevity of the secondary responses were comparable. Antiserum obtained after protein boosting displayed an immunoglobulin (Ig)G subclass profile skewed to the IgG1 isotype, regardless of the mouse strain. In contrast, mice receiving a second injection with plasmid responded with a more mixed IgG subclass profile. Inclusion of a P. falciparum circumsporozoite protein-derived T-helper epitope (CS.T3) in the immunization plasmid as well as in the fusion protein, did not significantly change the humoral responses to M3. The results show the potential of DNA vaccination for the purpose of priming an antibody response against the malarial blood-stage antigen Pf155/RESA. When combined with a protein boost, this DNA priming results in high-titred and long-lasting anamnestic responses.  相似文献   

15.
The mutation of diploid human lymphoblasts by methylnitronitrosoguanidine (MNNG) was measured over the range of 0–45 ng of MNNG/ml of medium. We found a 12-day lag in the phenotypic expression of 6-thioguanine resistance; the occurrence of this lag was independent of MNNG concentration. We hypothesize that the unexpectedly long lag period reflects a requirement for the loss of previously existing molecules of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) after mutation at the HGPRT locus.  相似文献   

16.
The enzyme hypoxanthine phosphoribosyl transferase of Plasmodium falciparum has been overexpressed in Escherichia coli. The protein was found to be active enzymatically. When the recombinant expression vector (pPfPRT2) was transformed and expressed in a Salmonella typhimurium mutant KP1684 (purE deoD hpt gpt), the active expressed protein complemented the hpt mutation in the bacteria. We discuss the practical value of this strain. Assays of the expressed protein in the mutant extract showed that the enzyme is able to use hypoxanthine, guanine and xanthine as substrates. A specificity study using the competitive inhibitor, 6-thioguanine, showed that of these hypoxanthine is the most favourable substrate. The biological significance of xanthine utilisation by the enzyme is discussed.  相似文献   

17.
The in vitro susceptibility of chloroquine and the genomic profile of dihydrofolate reductase (DHFR) codon 108 was determined against african isolates of P. falciparum (Pf) from imported malaria cases without previous drug intake by an isotopic microtest or PCR + RFLP. Pf resistance to chloroquine or to the DHFR inhibitor was present in 49% and 46% of isolates, respectively. Pf drug resistance was more frequent in permanent than in seasonal malarial transmission areas and chloroquine plus DHFR resistance reached 28% in years 1995-97. Updating the guidelines for the prevention of malaria in travellers to Africa is necessary.  相似文献   

18.
Kang H  Yun HS  Song MY  Lee JK  Kwack K 《Tissue antigens》2007,70(6):529-530
We identified the novel human leukocyte antigen-G*0109 allele in the Korean population by direct sequencing. This allele has a single-nucleotide substitution at nucleotide residue 547 in codon 159 that results in an amino acid change from tyrosine to histidine.  相似文献   

19.
We have adapted the enzyme-linked immunospot assay (ELISPOT) to enumerate the cells from Plasmodium falciparum-primed donors that produce IgG in vitro in response to malaria antigens. In vitro activation of cell cultures with two synthetic peptides (EENVEHDA)4, and (LGRSGGDIIKMQTL) corresponding to immunodominant T cell epitopes of the ring-infected erythrocyte surface antigen (Pf155/RESA) gave specific antibody-secreting cells (ASC) in five and six of the 15 P. falciparum-primed donors from Cameroon. Antibodies produced after a stimulation by synthetic peptides reacted also with total parasite proteins. However, crude P. falciparum antigen did not trigger a higher number of cells than did synthetic peptides. The absence of significant relation between the presence of sera antibodies and in vitro ASC against the same peptide suggests that the kinetics of circulating primed lymphocytes and antibodies are different. We evaluated 0.04-0.29% of peripheral blood B cells to be the frequency of memory cells specific to a single Pf155/RESA epitope in these donors. This study suggests that the ELISPOT assay should permit the analysis of B cell responses to malarial antigens at the single-cell level and its applicability to epidemiological field studies. This assay should be well suited to the identification of T helper epitopes capable of inducing the production of antibodies by human B cells, and will constitute an important tool for the selection of immunogens to be included in a subunit vaccine.  相似文献   

20.
1. A method is described for the histochemical demonstration of the purine catabolizing enzyme guanase, employing glutaraldehyde fixation and Nitro blue tetrazolium (NBT). Parallel biochemical studies confirm that enzyme activity is not significantly inhibited by exposure to glutaraldehyde. 2. By this procedure guanase activity has been visualized in neurons and glial elements of the human central nervous system (CNS). 3. Controls consisted of direct incubation of cryostat sections with a specific inhibitor of guanase (5-amino-4-imidazole carboxamide) and omission successively of the substrate guanine, of xanthine oxidase and of NBT. Enzyme activity was completely inhibited by the above procedures, and by boiling of tissues for 10 min prior to fixation. 4. Levels of enzyme activity in spinal cord and brain were assessed by a subjective scoring method, and showed close comparability with biochemical assay data in brainstem and cerebral hemispheres; whereas a low correlation for enzyme activity was observed in spinal cord and cerebellum. Differences between biochemical and histochemical assessments of CNS guanase activity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号