首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cholinergic innervation of the interpeduncular nucleus was investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. Following propidium iodide or Evans Blue infusion into the interpeduncular nucleus, brains were processed for co-localization of transported fluorescent label and ChAT and AChE. Control infusions of tracers were made into the ventral tegmental area. In order to delimit the course of putative cholinergic afferents to the interpeduncular nucleus from extra-habenular sources, knife cuts surrounding the habenular nuclei were performed. Somata containing propidium iodide that were highly immunoreactive for ChAT were found primarily in the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, and the dorsolateral tegmental nucleus, also referred to as the laterodorsal tegmental nucleus. A few such co-labeled somata were also detected in the medial septal nucleus, substantia innominata, nucleus basalis, and pedunculopontine tegmental nucleus. A good correlation was observed between intensely-staining, AChE-containing and ChAT-positive neurons projecting to the interpeduncular nucleus from the aforementioned structures. Although the medial habenula contained numerous cells demonstrating transported label following interpeduncular infusion of fluorescent tracers, the ChAT-positivity associated with somata in that nucleus was weak compared to ChAT-like immunoreactivity in known cholinergic neurons in the basal forebrain and brainstem. Knife cuts that separated the habenular nuclei from the stria medullaris and neural regions lateral and posterior to those nuclei while leaving the fasciculus retroflexus intact resulted in a reduction of ChAT-like immunoreactivity in the medial habenular nucleus, fasciculus retroflexus, and interpeduncular nucleus. These data suggest (1) that the cholinergic innervation of the interpeduncular nucleus derives primarily from ChAT-positive cells in the basal forebrain and dorsolateral tegmental nucleus and (2) that putative cholinergic fibers having their origin in the medial habenula, if they exist, constitute a minor portion of the cholinergic input to the interpeduncular nucleus.  相似文献   

2.
The ascending cholinergic projections of the pedunculopontine and dorsolateral tegmental nuclei, referred to collectively as the pontomesencephalotegmental (PMT) cholinergic complex, were investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. Propidium iodide, true blue, or Evans blue was infused into the anterior, reticular, mediodorsal, central medial, and posterior nuclear areas of the thalamus; the habenula; lateral geniculate; superior colliculus; pretectal/parafascicular area; subthalamic nucleus; caudate-putamen complex; globus pallidus; entopeduncular nucleus; substantia nigra; medial septal nucleus/vertical limb of the diagonal band area; magnocellular preoptic/ventral pallidal area; and lateral hypothalamus. In some animals, separate injections of propidium iodide and true blue were made into two different regions in the same rat brain, usually a dorsal and a ventral target, in order to assess collateralization patterns. Retrogradely transported fluorescent labels and ChAT and/or AChE were analyzed microscopically on the same brain section. All of the above-delimited targets were found to receive cholinergic input from the PMT cholinergic complex, but some regions were preferentially innervated by either the pedunculopontine or dorsolateral tegmental nucleus. The former subdivision of the PMT cholinergic complex projected selectively to extrapyramidal structures and the superior colliculus, whereas the dorsolateral tegmental nucleus was observed to provide cholinergic input preferentially to anterior thalamic regions and rostral portions of the basal forebrain. The PMT cholinergic neurons showed a tendency to collateralize extensively.  相似文献   

3.
The topographical distribution of cholinergic cell bodies has been studied in the rat brain and spinal cord by choline acetyltransferase (ChAT)-immunohistochemistry and acetylcholinesterase (AChE)-pharmacohistochemistry using diisopropylfluorophosphate (DFP). The ChAT-containing cells and the cells that stained intensely for AChE 4-8 hr after DFP were mapped in detail on an atlas of the forebrain (telencephalon, diencephalon) hindbrain (mesencephalon, rhombencephalon) and cervical cord (C2, C6). Striking similarities were observed between ChAT-positive cells and neuronal soma that stained intensely for AChE both in terms of cytoarchitectural characteristics, and with respect to the distribution of the labelled cells in many areas of the central nervous system (CNS). In the forebrain these areas include the caudatoputamen, nucleus accumbens, medial septum, nucleus of the diagonal band, magnocellular preoptic nucleus and nucleus basalis magnocellularis. In contrast, a marked discrepancy was observed in the hypothalamus and ventral thalamus where there were many neurons that stained intensely for AChE, but where there was an absence of ChAT-positive cells. No cholinergic perikarya were detected in the cerebral cortex, hippocampus, amygdala and dorsal diencephalon by either histochemical procedure. In the hindbrain, all the motoneurons constituting the well-established cranial nerve nuclei (III-VII, IX-XII) contained ChAT and exhibited intense staining for AChE. Further, a close correspondence was observed in the distribution of labeled neurons obtained by the two histochemical procedures in the midbrain and pontine tegmentum, including the laterodorsal tegmental nucleus, some areas in the caudal pontine and bulbar reticular formation, and the central gray of the closed medulla oblongata. On the other hand, AChE-intense cells were found in the nucleus raphe magnus, ventral part of gigantocellular reticular nucleus, and flocculus of the cerebellum, where ChAT-positive cells were rarely observed. According to both techniques, no positive cells were seen in the cerebellar nuclei, the pontine nuclei, or the nucleus reticularis tegmenti pontis. Large ventral horn motoneurons and, occasionally, cells in the intermediomedial zone of the cervical cord displayed ChAT-immunoreactivity and intense AChE staining. On the other hand, AChE-intense cells were detected in the dorsal portion of the lateral funiculus, but immunoreactive cells were not found in any portion of the spinal cord white matter.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Immunoreactivity for choline acetyltransferase (ChAT) was analyzed in unoperated cats and in cats in which stereotaxic lesions were made in the pedunculopontine and laterodorsal tegmental nuclei. The fine reaction product revealed moderate to dense ChAT-immunoreactive fiber plexuses throughout the telencephalon, diencephalon, and midbrain. A pontomesencephalic origin of cholinergic innervation to virtually every nucleus of the diencephalon, as well as to various midbrain and basal telencephalic sites was indicated in the cats with lesions, in which the optical density of ChAT-immunoreactivity was significantly decreased as compared to controls. Pontomesencephalic lesions produced no changes, however, in the density of ChAT staining in the cerebral cortex, basolateral amygdala, or caudate nucleus. In addition to ChAT-positive terminal fiber arborizations which were widely distributed, cholinergic fibers-of-passage were traced in the unoperated and operated feline brains. The general course of ChAT fibers cut in cross-section was followed in successive transverse levels, and although pathways originating from the pedunculopontine nucleus demonstrated orientations in every direction, many demonstrated a rostral course. A particularly dense aggregate of ascending ChAT-positive fibers was localized in the dorsolateral sector of the pedunculopontine area which could be followed at more rostral levels into the central tegmental fields and the compact part of the substantia nigra. From the central tegmental fields, numerous ChAT-immunopositive fibers cut in cross-section continued to course rostrally in the intralaminar, reticular and lateroposterior nuclei of the thalamus, and a distinct bundle of ChAT fibers coursing dorsolaterally was observed medial to the optic tract ascending to the lateral geniculate. ChAT fibers with dorsolateral orientations were additionally observed in the zona incerta, ventral anterior thalamus, and ansa lenticularis on route to the reticular thalamus, the globus pallidus, and the substantia innominata. Pathways consisting of fibers traced from ChAT-containing cells in the laterodorsal tegmental nucleus could be traced to medial structures such as the periaqueductal gray, ventral tegmental area and dorsal raphe. Medially placed ChAT fibers were additionally followed through the ventral tegmental area, the midline thalamus, and the hypothalamus, up to the medial and lateral septal nuclei. The trajectories of the ascending cholinergic pathways from the pontomesencephalon are discussed in relation to locally generated electrophysiological responses in the cat.  相似文献   

5.
Brainstem afferents to the magnocellular basal forebrain were studied by using tract tracing, immunohistochemistry and extracellular recordings in the rat. WGA-HRP injections into the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic area (MgPA) retrogradely labelled many neurons in the pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe nucleus, and ventral tegmental area. Areas with moderate numbers of retrogradely labelled neurons included the median raphe nucleus, and area lateral to the medial longitudinal fasciculus in the pons, the locus ceruleus, and the medial parabrachial nucleus. A few labelled neurons were seen in the substantia nigra pars compacta, mesencephalic and pontine reticular formation, a midline area in the pontine central gray, lateral parabrachial nucleus, raphe magnus, prepositus hypoglossal nucleus, nucleus of the solitary tract, and ventrolateral medulla. A similar but not identical distribution of labelled neurons was seen following WGA-HRP injections into the nucleus basalis magnocellularis. The possible neurotransmitter content of some of these afferents to the HDB/MgPA was examined by combining retrograde Fluoro-Gold labelling and immunofluorescence. In the mesopontine tegmentum, many retrogradely labelled neurons were immunoreactive for choline acetyltransferase. In the dorsal raphe nucleus, some retrogradely labelled neurons were positive for serotonin and some for tyrosine hydroxylase (TH); however, the majority of retrogradely labelled neurons in this region were not immunoreactive for either marker. The ventral tegmental area, substantia nigra pars compacta, and locus ceruleus contained retrogradely labelled neurons which were also immunoreactive for TH. Of the retrogradely labelled neurons occasionally observed in the nucleus of the solitary tract, prepositus hypoglossal nucleus, and ventrolateral medulla, some were immunoreactive for either TH or phenylethanolamine-N-methyltransferase. To characterize functionally some of these brainstem afferents, extracellular recordings were made from antidromically identified cortically projecting neurons, mostly located in the HDB and MgPA. In agreement with most previous studies, about half (48%) of these neurons were spontaneously active. Electrical stimulation in the vicinity of the pedunculopontine tegmental and dorsal raphe nuclei elicited either excitatory or inhibitory responses in 21% (13/62) of the cortically projecting neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Kainic acid was injected bilaterally (4.8 micrograms in 1.2 microliter each side) into the dorsolateral pontomesencephalic tegmentum of cats in order to destroy cholinergic cells which are located within the pedunculopontine tegmental (PPT), laterodorsal tegmental (LDT), parabrachial (PB), and locus ceruleus (LC) nuclei in this species. The neurotoxic lesions resulted in the destruction of the majority (approximately 60%) of choline acetyltransferase (ChAT)-immunoreactive neurons and a minority (approximately 35%) of tyrosine hydroxylase (TH)-immunoreactive neurons, as well as in the destruction of other chemically unidentified neurons, in the region. The effects of these lesions upon the cholinergic innervation of the brain were investigated by comparison of brains with and without lesions which were processed for acetylcholinesterase (AChE) silver, copper thiocholine histochemistry and ChAT radio-immunohistochemistry. In the forebrain, a major and significant decrease in AChE staining, measured by microdensitometry, and associated with a decrease in ChAT immunoreactivity was found in certain thalamic nuclei, including the dorsal lateral geniculate, lateral posterior, pulvinar, intralaminar, mediodorsal and reticular nuclei. All of these nuclei receive a rich cholinergic innervation evident in both AChE histochemistry and ChAT immunohistochemistry. No significant difference in AChE staining or ChAT immunoreactivity was detected in other thalamic nuclei or in the subthalamus, hypothalamus or basal forebrain. In the brainstem, a significant decrease of AChE staining and ChAT immunoreactivity was found in the superior colliculus and the medullary reticular formation, where ChAT-immunoreactive fibers were moderately dense in the normal animal. These results indicate that the pontomesencephalic cholinergic neurons may influence the forebrain by major projections to the thalamus, involving both relay and non-specific thalamocortical projection systems, and thus act as an integral component of the ascending reticular system. They may influence the brainstem by projections onto deep tectal neurons and other reticular neurons, notably those in the medullary reticular formation, and thus also affect bulbar and bulbospinal systems.  相似文献   

7.
This study was designed to determine whether axons of cholinergic dorsal tegmental neurons terminate on cells in the anterior thalamus in rabbits as in other species, and to localize projecting tegmental cells for future studies of their contributions to anterior thalamic learning-relevant neuronal activity. The distribution of retrogradely labeled neurons was examined following injections of wheat germ agglutinin horseradish peroxidase (WGA-HRP) centered in the anterior ventral (AV) thalamic nucleus. The results confirm past findings in rabbits indicating projections to anterior thalamus from the mammillary nuclei, the posterior cingulate cortex, presubiculum and postsubiculum. Demonstrated for the first time in rabbits were projections from the lateral dorsal and the pedunculopontine tegmental nuclei, locus coeruleus, dorsal raphe nucleus, Gudden's dorsal tegmental nucleus, pretectum and reticular thalamic nucleus.  相似文献   

8.
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.  相似文献   

9.
Following minor concussive brain injury when there is an otherwise general suppression of CNS activity, the ventral tegmental nucleus of Gudden (VTN) demonstrates increased functional activity (32). Electrical or pharmacological activation of a cholinoceptive region in this same general area of the medial pontine tegmentum contributes to certain components of reversible traumatic unconsciousness, including postural atonia (31, 32, 45). Therefore, in an effort to examine the neuroanatomical basis of the behavioral suppression associated with a reversible traumatic unconsciousness, the afferent and efferent connections of the VTN and putative cholinoceptive medial pontine reticular formation (cmPRF) were studied in the cat using the retrograde horseradish peroxidase (HRP), HRP/choline acetyltransferase (ChAT) double-labeling immunohistochemistry, and anterograde HRP and autoradiographic techniques. Based upon retrograde HRP labeling, the principal afferents to the VTN region of the cmPRF originated from the medial and lateral mammillary nuclei, and lateral habenular nucleus, and to a lesser extent from the interpeduncular nucleus, lateral hypothalamus, dorsal tegmental nucleus, superior central nucleus, and contralateral nucleus reticularis pontis caudalis. Other afferents, which were thought to have been labeled through spread of HRP into the medial longitudinal fasciculus (MLF), adjacent paramedian pontine reticular formation, or uptake by transected fibers descending to the inferior olive, included the nucleus of Darkschewitsch, interstitial nucleus of Cajal, zona incerta, prerubral fields of Forel, deep superior colliculus, nucleus of the posterior commissure, nucleus cuneiformis, ventral periaqueductal gray, vestibular complex, perihypoglossal complex, and deep cerebellar nuclei. In HRP/ChAT double labeling studies, only a very small number of cholinergic VTN afferent neurons were found in the medial parabrachial region of the dorsolateral pontine tegmentum, although the pedunculopontine and laterodorsal tegmental nuclei contained numerous single-labeled ChAT-positive cells. Anterograde HRP and autoradiographic findings demonstrated that the VTN gave rise almost exclusively to ascending projections, which largely followed the course of the mammillary peduncle (16,21) and medial forebrain bundle, or the tegmentopeduncular tract (4). The majority of fibers ascended to terminate in the medial and lateral mammillary nuclei, interpeduncular complex (especially paramedian subnucleus), ventral tegmental area, lateral hypothalamus, and the medial septum in the basal forebrain. Labeling that joined the mammillothalamic tract to terminate in the anterior nuclear complex of the thalamus was thought to occur transneuronally. Some projections were also observed to nucleus reticularis pontis oralis and caudalis, superior central nucleus, and dorsal tegmental nucleus adjacent to the VTN...  相似文献   

10.
The present study was undertaken to examine the cholinergic innervation of the brainstem reticular formation in an effort to understand the potential role of cholinergic neurons in processes of sensory-motor modulation and state control. The cholinergic cells and processes within the pontomedullary reticular formation were studied in the rat by application of peroxidase-antiperoxidase immunohistochemistry with silver intensification for choline-acetyltransferase (ChAT). ChAT-immunoreactive cells were located in the pontomesencephalic tegmentum within the laterodorsal and pedunculopontine tegmental (LDT and PPT) nuclei, where they numbered approximately 3,000 on each side and were scattered in the midline, medial, and lateral medullary reticular formation, where they numbered approximately 10,000 in total on each side. The cholinergic neurons within the reticular formation were commonly medium in size and gave rise to multiple dendrites that extended for considerable distances within the periventricular gray or the reticular formation, as is typical of other isodendritic reticular neurons. A prominent innervation of the entire pontomedullary reticular formation was evident by varicose ChAT-immunoreactive fibers that often surrounded large noncholinergic reticular neurons in a typical perisomatic pattern of termination, suggesting a potent influence of the cholinergic innervation on pontomedullary reticular neurons. The contribution of the pontomesencephalic cholinergic neurons to the innervation of the medial medullary and lateral pontine reticular formation was studied by retrograde transport of horseradish peroxidase conjugated wheat germ agglutinin (WGA-HRP) in combination with ChAT immunohistochemistry. A proportion of the cholinergic neurons within the laterodorsal tegmental nucleus (pars alpha) and the pedunculopontine tegmental nucleus were retrogradely labelled on the ipsilateral (10-15%) and contralateral (5-10%) sides from the medial medullary reticular formation, indicating a significant contribution to the cholinergic innervation of this region, which, however, also appeared to derive in part from intrinsic medullary cholinergic neurons. The major fiber system by which the medial medullary reticular formation was reached by the pontomesencephalic cholinergic neurons appeared to correspond to the lateral tegmentoreticular tract. Fibers passed from these cholinergic cells ventrally through the lateral pontine tegmentum, in the region of the subcoeruleus, where they also appeared to innervate by fibres en passage the noncholinergic neurons of the region. A significant proportion of the pontomesencephalic cholinergic neurons were retrogradely labelled from the lateral pontine tegmentum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The present study was undertaken to determine the frequency and distribution of GABAergic neurons within the rat pontomesencephalic tegmentum and the relationship of GABAergic cells to cholinergic and other tegmental neurons projecting to the hypothalamus. In sections immunostained for glutamic acid decarboxylase (GAD), large numbers of small GAD-positive neurons (~50,000 cells) were distributed through the tegmentum and associated with a high density of GAD-positive varicosities surrounding both GAD-positive and GAD-negative cells. Through the reticular formation, ventral tegmentum, raphe nuclei, and dorsal tegineritum, GAD-positive cells were codistributed with larger cells, which included neurons immunostained on adjacent sections for glutamate, tyrosine hydroxylase (TH), serotonin, or choline acetyltransferase (ChAT). In sections dual-immunostained for GAD and ChAT, GABAergic neurons were seen to be intermingled with less numerous cholinergic cells (~2,600 GAD+ to ~ 1,400 ChAT+ cells in the laterodorsal tegmental nucleus, LDTg). Retrograde transport of cholera toxin (CT) was examined from the posterior lateral hypothalamus, where a major population of cortically projecting neurons are located. A small number of GABAergic cells were retrogradely labeled, representing a small percentage of all the GABAergic neurons (~1%) and of all the hypothalamically projecting neurons (~6%) in the tegmentum. The double-labeled GAD+/CT+ cells were commonly found ipsilaterally within (1) the deep mesencephalic reticular field, codistributed with putative glutamatergic projection neurons; (2) the ventral tegmental area, substantia nigra coinpacta, and retrorubral field, codistributed with dopaminergic projection neurons; (3) dorsal raphe, codistributed with serotonergic projection neurons; and (4) laterodorsal and pedunculopontine tegmental nuclei, codistributed with and in similar proportion to cholinergic projection cells (20–30% in LDTg). Acting as both projection and local neurons, the pontomesencephalic GABAergic cells would have the capacity to modulate the influence of the “ascending reticular activating system” and its chemically specific constituents upon cortical activation. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The origins of the cholinergic and other afferents of several thalamic nuclei were investigated in the rat by using the retrograde transport of wheat germ agglutinin conjugated-horseradish peroxidase in combination with the immunohistochemical localization of choline acetyltransferase immunoreactivity. Small injections placed into the reticular, ventral, laterodorsal, lateroposterior, posterior, mediodorsal, geniculate, and intralaminar nuclei resulted in several distinct patterns of retrograde labelling. As expected, the appropriate specific sensory and motor-related subcortical structures were retrogradely labelled after injections into the principal thalamic nuclei. In addition, other basal forebrain and brainstem structures were also labelled, with their distribution dependent on the site of injection. A large percentage of these latter projections was cholinergic. In the brainstem, the cholinergic pedunculopontine tegmental nucleus was retrogradely labelled after all thalamic injections, suggesting that it provides a widespread innervation to the thalamus. Neurons of the cholinergic laterodorsal tegmental nucleus were retrogradely labelled after injections into the anterior, laterodorsal, central medial, and mediodorsal nuclei, suggesting that it provides a projection to limbic components of the thalamus. Significant basal forebrain labelling occurred only with injections into the reticular and mediodorsal nuclei. Only injections into the reticular nucleus resulted in retrograde labelling of the cholinergic neurons in the nucleus basalis of Meynert. The results provide evidence for an organized system of thalamic afferents arising from cholinergic and noncholinergic structures in the brainstem and basal forebrain. The brainstem structures, especially the cholinergic pedunculopontine tegmental nucleus, appear to project directly to principal thalamic nuclei, thereby providing a possible anatomical substrate for mediating the well-known facilitory effects of brainstem stimulation upon thalamocortical transmission.  相似文献   

13.
A survey was made of the density of the cholinergic innervation of different parts of the brainstem of the rat and ferret. Sections of rat and ferret brainstems were stained for choline acetyltransferase (ChAT) immunoreactivity by using a sensitive immunocytochemical method. Adjacent sections were stained for acetylcholinesterase activity or Nissl substance. The density of the distribution of fine calibre, varicose ChAT-positive axons, assumed to represent cholinergic terminals, was categorised arbitrarily into high, medium, or low. A high density of ChAT-positive terminals was found in all or parts of these structures: interpeduncular nucleus, superficial grey layer of the superior colliculus (ferret), intermediate layers of the superior colliculus, lateral part of the central grey (rat), an area medial to the parabigeminal nucleus (rat), pontine nuclei, ventral tegmental nucleus (rat), midline pontine reticular formation, and an area ventral to the exit point of the 5th nerve (ferret). A medium density of ChAT-positive terminals was observed in all or parts of: the substantia nigra zona compacta (ferret), ventral tegmental area (ferret), superficial grey layer of the superior colliculus, intermediate and deep layers of the superior colliculus, lateral central grey, area medial to the parabigeminal nucleus, inferior colliculus, dorsal tegmental nucleus, ventral tegmental nucleus (ferret), pontine nuclei, ventral nucleus of the lateral lemniscus (ferret), midline pontine reticular formation, ventral cochlear nucleus, dorsal cochlear nucleus, lateral superior olive, spinal trigeminal nuclei, prepositus hypoglossal nucleus, lateral reticular nucleus, paragigantocellular nucleus, and the dorsal column nuclei including the cuneate, external cuneate, and gracile nuclei. A low density of ChAT-positive terminals was seen throughout the remainder of the brainstem of the rat and ferret, but these terminals were absent from the medial superior olive, substantia nigra zona reticulata (rat), and the central part of the ferret lateral superior olive. A pericellular-like distribution of ChAT-positive terminals was observed in the ventral cochlear nucleus and in association with some of the cells of the nucleus of the mesencephalic tract of the trigeminal nerve. A climbing fibre type arrangement of ChAT-positive terminals was found in the substantia nigra zona compacta (ferret) and medial reticular formation. In general, the distribution of staining for AChE activity reflected that of the distribution of ChAT immunoreactivity in the brainstem, except in a few regions where there were also species differences in the distribution of ChAT-positive terminals, e.g., in the superficial grey layer of the superior colliculus and in the substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This study demonstrates that the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) are sources of cholinergic projections to the cat pontine reticular formation gigantocellular tegmental field (PFTG). Neurons of the LDT and PPT were double-labeled utilizing choline acetyltransferase immunohistochemistry combined with retrograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP). In the LDT the percentage of cholinergic neurons retrogradely labeled from PFTG was 10.2% ipsilaterally and 3.7% contralaterally, while in the PPT the percentages were 5.2% ipsilaterally and 1.3% contralaterally. These projections from the LDT and PPT to the PFTG were confirmed and their course delineated with anterograde labeling utilizing Phaseolus vulgaris leucoagglutinin (PHA-L) anterograde transport.  相似文献   

15.
Early studies that used older tracing techniques reported exceedingly few projections from the dorsal raphe nucleus (DR) to the brainstem. The present report examined DR projections to the brainstem by use of the anterograde anatomical tracer Phaseolus vulgaris leucoagglutinin (PHA-L). DR fibers were found to terminate relatively substantially in several structures of the midbrain, pons, and medulla. The following pontine and midbrain nuclei receive moderate to dense projections from the DR: pontomesencephalic central gray, mesencephalic reticular formation, pedunculopontine tegmental nucleus, medial and lateral parabrachial nuclei, nucleus pontis oralis, nucleus pontis caudalis, locus coeruleus, laterodorsal tegmental nucleus, and raphe nuclei, including the central linear nucleus, median raphe nucleus, and raphe pontis. The following nuclei of the medulla receive moderately dense projections from the DR: nucleus gigantocellularis, nucleus raphe magnus, nucleus raphe obscurus, facial nucleus, nucleus gigantocellularis-pars alpha, and the rostral ventrolateral medullary area. DR fibers project lightly to nucleus cuneiformis, nucleus prepositus hypoglossi, nucleus paragigantocellularis, nucleus reticularis ventralis, and hypoglossal nucleus. Some differences were observed in projections from rostral and caudal parts of the DR. The major difference was that fibers from the rostral DR distribute more widely and heavily than do those from the caudal DR to structures of the medulla, including raphe magnus and obscurus, nucleus gigantocellularis-pars alpha, nucleus paragigantocellularis, facial nucleus, and the rostral ventrolateral medullary area. A role for the dorsal raphe nucleus in several brainstem controlled functions is discussed, including REM sleep and its events, nociception, and sensory motor control. © Wiley-Liss, Inc.  相似文献   

16.
We examined whether the dorsolateral pontine cholinergic cells project to the paramedian reticular nucleus (PRN) of the caudal medulla. In 3 cats, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the PRN and we noted cells in the dorsolateral pons that contained the HRP reaction product, cells that were immunolabeled for choline acetyltransferase (ChAT), and cells that contained the HRP reaction product and were ChAT positive. We found cholinergic projections from the pedunculopontine tegmental and laterodorsal tegmental nuclei to the PRN. This finding is consistent with studies indicating a cholinoceptive region in the medial medulla mediating suppression of muscle tone. Our results demonstrate that this medullary region has monosynaptic input from pontine neurons implicated in generating the atonia of rapid eye movement sleep.  相似文献   

17.
The present study describes the anatomical organization of projections from functionally defined cell groups of the lateral hypothalamic area. Cardiovascular pressor and depressor sites were identified following microinjection (5-50 nl) of 0.01-1.0 M L-glutamate or D,L-homocysteate into the anesthetized rat. Subsequent injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) or wheat germ agglutinin-horseradish peroxidase (WGA-HRP) were made into pressor or depressor sites and their connections with the brainstem and spinal cord were traced. Decreases in blood pressure (10-45 mmHg) and heart rate (20-70 bpm) were elicited from tuberal (LHAt) and posterior (LHAp) regions of the lateral hypothalamic area (LHA). Depressor neurons in the LHAt have descending projections to the central gray, dorsal and median raphe nuclei, pedunculopontine tegmental nucleus, pontine reticular formation, medial and lateral parabrachial nuclei, laterodorsal tegmental region, and medullary reticular formation including the region of the lateral tegmental field, nucleus ambigous, and rostrocaudal ventral lateral medulla. In contrast, descending projections from depressor neurons in the LHAp have dense terminal fields in the rostral, middle, and commissural portions of the nucleus of the solitary tract and the lateral tegmental field as well as the ventrolateral central gray, pedunculopontine tegmental nucleus, and medial and lateral parabrachial nuclei. Both the LHAt and LHAp have light projections to the intermediate region of the cervical and thoracic spinal cord. Increases in blood pressure (10-40 mmHg) and heart rate (20-70 bpm) were elicited almost exclusively from neurons located medial to the LHAt and LHAp in a region surrounding the fornix, termed the perifornical area (PFA). Pressor cells in the PFA have descending projections to the central gray, dorsal and median raphe nuclei, laterodorsal tegmental nucleus, and Barrington's nucleus as well as a light projection to the commissural portion of the nucleus of the solitary tract and the intermediate region of the cervical and thoracic spinal cord. The retrograde labeling observed in the WGA-HRP studies indicates that cells in most terminal fields have reciprocal projections to the pressor and depressor regions of the LHA. The results demonstrate that groups of neurons in the lateral hypothalamus with specific cardiovascular function have differential projections to the brain stem.  相似文献   

18.
The nuclear origins of projections from the brainstem reticular formation to the cerebellum were examined using four retrograde tracer substances: horseradish peroxidase, wheat germ agglutinin-horseradish peroxidase conjugate, Fluoro-Gold, and rhodamine beads. Tracer injections were made into each of the three major longitudinal zones of the cerebellar cortex (vermis, paravermal hemisphere, and lateral hemisphere) as well as into the various deep cerebellar nuclei. Counts of retrogradely labeled cells were done on a large sample of select cases. The data generated by these cell counts indicate that the strongest reticulocerebellar projections arise from the three specialized pre-cerebellar reticular nuclei: the lateral reticular nucleus, the medullary paramedian reticular nucleus, and the reticulotegmental nucleus. The presumed noradrenergic locus coeruleus (A6 cell group) was also densely packed with retrogradely labeled neurons. However, strong reticulocerebellar projections also arose from other presumed catecholamine cell groups such as those in the ventrolateral medulla (the A1/C1 complex) and the caudal pons (A5). Substantial cerebellar projections originated from most of the various presumed serotonergic brainstem raphe cell groups (particularly raphe obscurus in the medulla), as well as from the presumed cholinergic Ch5 cell group (the pedunculopontine pars compactus nucleus). Labeled cells were also seen in several nonaminergic isodendritic reticular nuclei thought to be involved in visuomotor activity (e.g. paragigantocellularis dorsalis, raphe interpositus, and the pontine dorsomedial tegmental area), as well as in the lateral reticular zone of the medulla and lower pons (reticularis dorsalis and parvocellularis). Tracer injections into the deep nuclei produced relatively greater numbers of labeled neurons in large-celled medial reticular nuclei associated with skeletomotor activity, such as gigantocellularis, magnocellularis, and pontis caudalis. Reticular nuclei conspicuous in their lack of projections to the cerebellum included reticularis ventralis in the medulla, pontis oralis, and both subdivisions of the midbrain reticular formation (cuneiformis and subcuneiformis). As a whole, the various isodendritic reticular nuclei project most strongly to midline cerebellar structures (vermal cortex or fastigial nuclei), less strongly to the paravermal cortex or interposed nuclei, and least strongly to the lateral cortex or dentate nucleus. Within individual reticular nuclei, the morphology of labeled neurons is identical to that reported previously by this laboratory subsequent to spinal or cortical HRP injections, thus strengthening this laboratory's hypothesis that the various brainstem reticular nuclei can be distinguished on the basis of neuronal morphology.  相似文献   

19.
By use of retrograde transport of horseradish peroxidase-wheat germ agglutinin (HRP-WGA) in combination with monoclonal antibodies against choline acetyltransferase (ChAT), we show that putative cholinergic inputs to the feline pontine nuclei originate from cells in the dorsolateral pontine tegmentum. These cells form a loosely arranged continuum that nevertheless may be subdivided into two groups on the basis of differences in cell morphology. One group consists of double-labeled cells in the periventricular gray substance medial to, and partly merging with, the nucleus locus coeruleus. The other group consists of double-labeled cells surrounding the brachium conjunctivum. In two cats with tracer injections in the pontine nuclei, 81% and 84%, respectively, of the retrogradely labeled cells in the dorsolateral pontine tegmentum are ChAT-like immunoreactive (ChAT-LI). In the same experiments, many ChAT-LI cells, but no retrogradely labeled cells, are seen in the basal telencephalon. The pontine nuclei contain a plexus of thin ChAT-LI fibers with varicosities resembling en passant as well as terminal boutons. These ChAT-LI fibers appear to branch extensively and cover all parts of the pontine nuclei. Following injections of rhodamine-B-isothiocyanate (RITC) in the thalamus and Fluoro-Gold in the pontine nuclei and surrounding regions in the same animal, all retrogradely labeled cells in the dorsolateral pontine tegmentum are labeled with both tracers, whereas most cells in the paramedian pontine reticular formation are labeled either with RITC or Fluoro-Gold. Thus it appears that all cells in the dorsolateral pontine tegmentum that project to the pontine nuclei also project to the thalamus. In analogy with findings by others in the dorsal lateral geniculate nucleus, we suggest that the putative cholinergic projections to the pontine nuclei may serve to modulate transmission of cerebellar afferent information in accordance with the behavioral state of the animal.  相似文献   

20.
The connections of the laterodorsal tegmental nucleus (LDTg) have been investigated using anterograde and retrograde lectin tracers with immunocytochemical detection. Inputs to LDTg were found from frontal cortex, diagonal band, preoptic areas, lateral hypothalamus, lateral mamillary nucleus, lateral habenula; the interpeduncular nucleus, ventral tegmental area, substantia nigra and retrorubral fields; the medial terminal nucleus, interstitial nucleus, supraoculomotor central grey, medial pretectum, nucleus of the posterior commissure, paramedian pontine reticular formation, paraabducens and paratrochlear region; the parabrachial nuclei and nucleus of the tractus solitarius. Terminal labelling from PHA-L injections of LDTg was found in infralimbic, cingulate and hippocampal cortex, lateral septum, septofimbrial and triangular nuclei, horizontal limb of diagonal band and preoptic areas; in the anterior, mediodorsal, reuniens, centrolateral, parafascicular, paraventricular and laterodorsal thalamic nuclei, rostral reticular thalamic nucleus, and zona incerta; the lateral habenula and the lateral hypothalamus. A number of brainstem structures apparently associated with visual functions were also innervated, mainly the superior colliculus, medial pretectum, medial terminal nucleus, paramedian pontine reticular formation, inferior olive, supraoculomotor, paraabducens and supragenual regions, prepositus hypoglossi and nucleus of the posterior commissure. Also innervated were substantia nigra compacta, ventral tegmental area, interfascicular nucleus, interpeduncular nucleus, dorsal and medial raphe, pedunculopontine tegmental region, parabrachial nuclei, and nucleus of the tractus solitarius. These findings suggest the LDTg to be a highly differentiated part of the ascending "reticular activating" system, concerned not only with specific cortical and thalamic regions, especially those associated with the limbic system, but also with the basal ganglia, and visual (particularly oculomotor) mechanisms. Additional links with the habenula-interpeduncular system are discussed in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号