首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Excitotoxicity, which is mediated by the excessive activation of glutamate receptors, has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). There is substantial information about the distribution and function of ionotropic glutamate receptors in the spinal cord, although the role of metabotropic glutamate receptors (mGluRs) is poorly understood in this region of the brain, particularly under pathological conditions. We used immunocytochemistry to study the general distribution of group I and group II mGluR immunoreactivity in the human spinal cord, as well as the cell-specific expression of these receptors. We also investigated whether mGluR expression was altered in the spinal cord of patients with sporadic and familial ALS. Immunocytochemical analysis of control human spinal cord demonstrated that mGluR1alpha and mGluR5 (group I mGluRs) were highly represented in neuronal cells throughout the spinal cord. mGluR1alpha showed the highest relative level of expression in ventral horn neurons (laminae VIII and IX), whereas intense mGluR5 immunoreactivity was observed within the dorsal horn (superficial laminae I and II). Group II mGluRs (mGluR2/3) immunoreactivity was mainly concentrated in the inner part of the lamina II. With respect to specific neuronal populations, mGluR2/3 and mGluR5 appeared to be most frequently expressed in calbindin-containing and calretinin-containing cells, respectively. In control spinal cord only sparse astrocytes showed a weak to moderate mGluR immunoreactivity. Regional differences in immunoreactivity were apparent in ALS compared to control. In particular, mGluR expression was increased in reactive glial cells in both gray (ventral horn) and white matter of ALS spinal cord. Upregulation of mGluRs in reactive astrocytes may represent a critical mechanism for modulation of glial function and changes in glial-neuronal communication in the course of neurodegenerative diseases.  相似文献   

2.
3.
TDP-43 is ubiquitously expressed in the nucleus of motor neurons and is closely associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). However, little is known about alterations in the subcellular or intracellular localization of TDP-43, either under normal conditions or in ALS. We examined the anterior horn neurons of the spinal cord in patients with sporadic ALS and age-matched controls immunohistochemically and immunoelectron-microscopically using anti-TDP-43 antibody. Immunohistochemically, the present study showed a decrease in TDP-43 immmunoreactivity in the nucleus and, by contrast, an increase in the cytoplasm in ALS patients. Immunoelectron-microscopically, we demonstrated the consistent presence of TDP-43-immunogold-labeled deposits primarily in the nucleus, particularly in the nucleolus, and frequently in the rough endoplasmic reticulum (rER), and, to a lesser extent, in the mitochondria and the synaptic vesicles of the presynaptic terminals on the surface of anterior horn neurons both in controls and ALS subjects. In ALS, a reduced number of TDP-43-immunogold-labeled deposits were observed in the nuclei, particularly in the nucleoli of even normal-looking motor neurons. In contrast, the number of TDP-43-immunogold-labeled deposits in the rER of the normal-appearing motor neurons was significantly larger in ALS than in the controls (p = 0.0036). These findings suggest that TDP-43 is synthesized in the rER and translocates to the nucleus, particularly to the nucleolus, and in ALS, TDP-43 trafficking between the nucleus and the cytoplasm is disturbed, resulting in an accumulation of TDP-43 in the cytoplasm in the form of insoluble aggregates.  相似文献   

4.
Using immunohistochemistry, we detected the expression of neuronal nitric oxide synthase (nNOS) in ventral medullary gigantocellular reticular nuclei and in the lumbosacral spinal cord 10 days after thoracic transection in experimental rabbits. We tried to determine whether neurons located below the site of injury are protected by the calcium binding protein parvalbumin (PV). Changes of nNOS immunoreactivity (IR) in spinal cord were correlated with the level of nNOS protein in dorsal and ventral horns. Ten days after transection, nNOS was upregulated predominantly in lateral gigantocellular nuclei. In the spinal cord, we revealed a significant increase of nNOS protein in the dorsal horn. This is consistent with a higher density of punctate and fiber-like immunostaining for nNOS in laminae III-IV and the up-regulation of nNOS-IR in neurons of the deep dorsal horn. After surgery, the perikarya of motoneurons remained nNOS immunonegative. Contrary to nNOS, the PV-IR was upregulated in α-motoneurons and small-sized neurons of the ventral horn. However, its expression was considerably reduced in neurons of the deep dorsal horn. The findings indicate that spinal transection affects nNOS and PV in different neuronal circuits.  相似文献   

5.
本研究采用抗缝隙连接蛋白 43 ( Cx43 )和抗缝隙连接蛋白 3 2 ( Cx3 2 )免疫电镜双标记方法 ,观察了一侧胫、腓骨骨折后大鼠腰髓背角星形胶质细胞与神经元的超微结构改变。结果发现 ,在脊髓背角星形胶质细胞与神经元之间的结合区域存在着如下的超微结构 :( 1)轴突终末直接与星形胶质细胞突起 ( Cx43阳性 )形成一种突触样结构 ;( 2 )由神经元突触前膜、突触后膜及星形胶质细胞突起形成的“三方突触结构”;( 3 )星形胶质细胞与星形胶质细胞之间的缝隙连接 ;( 4 )新发现的由一侧的神经元( Cx3 2阳性 )和另一侧的星形胶质细胞突起 ( Cx43阳性 )组成的一种超微结构 ,骨折后此结构数目显著增高 ,可能是缝隙连接的同源结构 ,暂称为异源性缝隙连接。结果提示 :异源性缝隙连接结构可被疼痛刺激激活 ,并极有可能是神经元与星形胶质细胞之间密切接触并进行物质交流的结构基础之一  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss and astrogliosis. We studied the immunohistochemical expression of S-100beta, a calcium-binding protein with both neurotrophic and neurotoxic activities, in the spinal cord of patients with ALS. Adjacent sections were processed with an in situ end-labeling technique for the demonstration of apoptosis-related DNA fragmentation. In controls, low expression of S-100beta was found in astrocytes but not motor neurons. Compared to controls, S-100beta was overexpressed in ALS. Most stained cells were reactive astrocytes, but a minority of motor neurons was also labeled. Neuronal labeling was unrelated to the presence of signs of atrophy/degeneration. S-100beta expression was also unrelated to neuronal or glial apoptosis. S-100beta upregulation in ALS spinal cord suggests that the protein might be involved in cellular defense mechanisms against oxidative stress.  相似文献   

7.
Prostaglandins are important mediators in spinal nociceptive processing. They are produced by cyclo-oxygenase isoforms, cyclo-oxygenase-1 and -2, which are both constitutively expressed in the central nervous system. The present immunohistochemical study details localization and regulation of cyclo-oxygenase-1 and -2 and neuronal nitric oxide synthase in lumbar spinal cord before and after induction of a painful paw inflammation in mice. Cyclo-oxygenase-1 immunoreactivity was found in glial cells of the dorsal and ventral horns, but not in neurons. In unstimulated mice, cyclo-oxygenase-2 immunoreactivity was found in motoneurons of the ventral horns and in lamina X, but not in dorsal horn neurons. After induction of a paw inflammation with zymosan, cyclo-oxygenase-2 immunoreactivity increased dramatically in dorsal horn neurons of laminae I-VI and X, paralleled by a significant increase in prostaglandin E(2) release from lumbar spinal cord. Cyclo-oxygenase-2 was co-localized with neuronal nitric oxide synthase immunoreactivity in several neurons in superficial laminae of the dorsal horns and in the area surrounding the central canal. Nitric oxide synthase was distributed in the cytoplasm and extended to processes of some neurons. In contrast, electron microscopy revealed that cyclo-oxygenase-2 immunoreactivity was restricted to the nuclear membrane and rough endoplasmic reticulum.It is shown in the present study that both cyclo-oxygenase isoforms are constitutively expressed in the spinal cord, cyclo-oxygenase-1 in glial cells of the dorsal and ventral horns and cyclo-oxygenase-2 in motoneurons. After induction of a hindpaw inflammation, several dorsal horn neurons express cyclo-oxygenase-2. Some of them are also positive for neuronal nitric oxide synthase, which is also induced following peripheral inflammation. Intracellularly, cyclo-oxygenase-2 is bound to the membranes of the nucleus and endoplasmic reticulum, whereas neuronal nitric oxide synthase is found in the cytoplasm.  相似文献   

8.
The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly CaV1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of CaV1.3 immunoreactivity (CaV1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the CaV1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also CaV1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. CaV1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the CaV1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem CaV1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal information processing via certain intracellular mechanisms, for instance, PICs.  相似文献   

9.
Nitric oxide synthase immunoreactivity (bNOS-ir) was examined in the sacral spinal cord of the cat, macaque monkey and human using an antibody to the c-terminal region of neuronal NOS. In S2 of all 3 species NOS-ir was identified in both dorsal and ventral horns. In cat, monkey and human, bNOS-r occurred in sensory neurons of superficial laminae and the base of the dorsal horn, in autonomic neurons around the central canal and in the intermediolateral sacral spinal nucleus. In all 3 species, a large proportion of somatic motor nuclei in the ventromedial (VM), ventrolateral (VL) nuclei, and Onuf's nucleus(ON) showed high bNOS-ir, while others exhibited markedly lower immunoreactivity. Validatory experiments showed separate cellular localisation for bNOS, inducible NOS(iNOS), and endothelial NOS(eNOS) with only bNOS being localised to neuronal perikarya. Comparative morphometric analyses of the relative proportions and diameters of motor neurons in the VL, VM and ON exhibiting high and low levels of bNOS-ir revealed statistically significant differences in proportions in individual nuclei, and differences in size were generally not statistically significant. Finally, a comparison between cat sacral and thoracic spinal cord showed bNOS-ir in motor neurons of S2 was subject to less animal and rostrocaudal segment variation than in T10.  相似文献   

10.
Alpha-synuclein has been implicated in neurodegenerative diseases characterized by Lewy bodies. However, we have only scanty information on the immunoreactivity of alpha-synuclein in other inclusion bodies such as the Lewy body-like inclusions and the skein-like inclusions observed in motor neuron disease (MND). In this report, we immunocytochemically investigated inclusion bodies observed in the anterior horn neurons of the spinal cord in 29 patients with sporadic MND. Sixteen age-matched patients without any neurological disease served as controls. In MND patients, we recognized Lewy body-like hyaline inclusions, skein-like inclusions, Bunina bodies, basophilic inclusions, and intracytoplasmic hyaline (colloid) inclusions, but none of them were immunostained for alpha-synuclein. Our findings in this study do not support the hypothesis that MND could be classified as one of the diseases grouped as alpha-synucleinopathies.  相似文献   

11.
Using immunocytochemical techniques (light and electron microscopy), weakly stained metabotropic glutamate receptor (mGluR) 1alpha immunoreactivity was detected in lamina I of the rat spinal cord. Immunoreactivity for mGluR2/3 was almost undetectable in this lamina and outer lamina II. In lamina II, there was mGluR1alpha immunoreactivity. Strongly stained mGluR2/3 was seen in the inner layer of lamina II and the dorsal part of lamina III. In laminae III X, weakly to moderately stained mGluR1alpha immunoreactive product was demonstrated. Similar staining for mGluR2/3 was also seen in lamina III-VI and in lamina X, but mGluR2/3 immunoreactivities were few in lamina VII-IX. With electron microscopy, mGluR1alpha immunoreactivity was seen in neuronal cell body and dendrites in lamina II of the dorsal horn. In the lateral and ventral horns, only dendrites of neurons were mGluR1alpha immunopositive. Some mGluR2/3 immunopositive dendrites were demonstrated in lamina II of the dorsal horn, lateral and ventral horns. In the ventral horn, mGluR2/3 immunopositive axon and axon terminals were demonstrated. Some mGluR2/3 immunopositive astrocytes were also demonstrated in the three areas and their strongly stained processes wrapped around neuronal cell bodies and synapses.  相似文献   

12.
The histochemical localization of dipeptidyl peptidase II (Dpp II; E.C. 3.4.14.2) activity was demonstrated at the light microscope level in the rat spinal cord. Prominent staining was observed in motoneurons of the ventral horn and in medium to large neurons in the deep laminae of the dorsal horn, the intermediate gray, and in lamina X surrounding the spinal canal. Within neurons, Dpp II was localized largely in cell perikarya and large primary dendrites with no staining observed in cell nuclei. Neurons in the superficial dorsal horn lack Dpp II enzyme activity. Nonneuronal elements which also stained prominently were pericytes associated with blood vessels and ependymal cells lining the lumen of the spinal canal. A few oligodendrocytes and astrocytes were also stained, but they represented a minor component of the total amount of Dpp II activity. Following ventral root injury, Dpp-II-containing motoneurons degenerate; some glial cells in the region of degenerating neurons become Dpp II positive. The localized distribution of Dpp II in spinal cord neurons suggests that this proteolytic enzyme may play a role in the metabolism of an unidentified neuropeptide.  相似文献   

13.
The authors developed a polyclonal antibody against a fusion protein containing 598 amino acids from a human choline acetyltransferase (ChAT) cDNA and 12 amino acids derived from an expression vector, and examined immunohistochemical reactivity for ChAT in large motor neurons (30 μn and more in somal minimal diameter) of the lumbar spinal cords of four patients with amyotrophic lateral sclerosis (ALS) and of four control cases. In controls, the number of large neurons included in the tissue with a total thickness of 100 μm ranged from 74 to 105 (average 87). About 60–90% (average 80%) of the neurons were positively stained in their perikarya with an anti-human ChAT antibody. In the cases of ALS, the number of large motor neurons was greatly reduced (25–60, average 38). About 4–13% (average 8%) were positively stained. These results indicate that not only large neurons are reduced in number, but also their positivity for ChAT is decreased in the anterior horn of ALS spinal cord.  相似文献   

14.
大鼠脊髓P物质受体定位分布的免疫细胞化学研究   总被引:1,自引:1,他引:1  
用免疫细胞化学技术对大鼠脊髓和脊神经节内P物质受体的定位分布进行了系统的研究。结果证明,P物质受体阳性胞体和树突主要密集地分布于脊髓全长的Ⅰ层,此外,还发现Ⅱ层的外侧部出现少量阳性胞体和树突,来自Ⅲ层的阳性树突穿过Ⅱ层后进入Ⅰ层;Ⅲ~Ⅳ和Ⅹ层也可见中等密度的阳性胞体和树突;Ⅵ层和Ⅶ层仅见少量阳性胞体和树突,但胸髓中间带外侧核、骶髓副交感运动核、骶髓后连合核内可见大量浓染的阳性胞体和树突;Ⅷ、Ⅸ层、Onuf氏核、外侧颈核和外侧脊索核也有阳性胞体和树突.灰质内的阳性胞体的树突还伸向前索和外侧索,有时可达脊髓的边缘.此外,脊神经节内也可见少量散在且均匀分布的小型阳性胞体.  相似文献   

15.
Interferon-gamma can facilitate the spinal nociceptive flexor reflex and may elicit neuropathic pain-related behavior in rats and mice. Immunoreactivity for the interferon-gamma receptor (IFN-gamma R) occurs in the superficial layers of the dorsal horn and the lateral spinal nucleus in the rat and mouse spinal cord, as well as in subsets of neurons in the dorsal root ganglia. The aim of the present study was to examine the cellular localization and origin of the IFN-gamma R in the spinal cord. As viewed by confocal microscopy, the immunopositivity for the IFN-gamma R was co-localized with that of the presynaptic marker synaptophysin and with neuronal nitric oxide synthase in the lateral spinal nucleus, whereas only a minor overlap with these molecules was observed in laminae I and II of the dorsal horn. There was no co-localization of the IFN-gamma R with markers for astrocytes and microglial cells. Ultrastructurally, the IFN-gamma R was found predominantly in axon terminals in the lateral spinal nucleus, but at postsynaptic sites in dendrites in laminae I and II. The IFN-gamma R expressed in neurons in dorsal root ganglia was transported in axons both centrally and peripherally. Hemisection of the spinal cord caused no reduction in immunolabelling of the IFN-gamma R in the dorsal horn or the lateral spinal nucleus. Since rhizotomy does not affect the immunolabelling in the lateral spinal nucleus, our observation indicates that the presynaptic receptors in this nucleus are derived from intrinsic neurons. The localization of the IFN-gamma R in the spinal cord differed from that of the AMPA glutamate receptor subunits 2 and 3 and the substance P receptor (NK1). Our results, showing localization of IFN-gamma R to pre- and postsynaptic sites in the dorsal horn and lateral spinal nucleus indicate that IFN-gamma can modulate nociception at the spinal cord level.  相似文献   

16.
Voltage-dependent persistent inward currents (PICs) which underlie the plateau potentials are an important intrinsic property of spinal motoneurons. Electrophysiological experiments have indicated that a subtype of the low threshold L-type calcium channel, CaV1.3, mediates this current. In mouse and turtle lumbar spinal cord it has been shown that these channel proteins are mainly found on motoneuron dendrites. In the present study we have used immunohistochemistry to locate these channels in lumbar spinal neurons, especially motoneurons, of the cat. The results indicate that CaV1.3 immunoreactivity was unevenly distributed among the laminae of the spinal grey matter. The small neurons in superficial dorsal horn (laminae I–III) were sparsely and weakly labelled, while large neurons in ventral horn were frequently and densely labelled. Groups of motoneurons in lamina IX that were immunoreactive to choline acetyltransferase also co-expressed CaV1.3. The immmunoreactivity was mainly associated with neuronal somata and proximal dendrites. Double staining with antibodies against CaV1.3 and MAP2 (a dendritic marker) showed that some fine fibres, which may include distal dendrites, were also labelled. These results in the cat spinal cord show some differences from studies in mouse and turtle motoneurons where the immunoreactivity against this channel was mainly localized to the dendrites.  相似文献   

17.
Shan X  Hu JH  Cayabyab FS  Krieger C 《Neuroscience》2005,134(3):833-846
Adducins alpha, beta and gamma are proteins that link spectrin and actin in the regulation of cytoskeletal architecture and are substrates for protein kinase C and other signaling molecules. Previous studies have shown that expressions of phosphorylated adducin (phospho-adducin) and protein kinase C are increased in spinal cord tissue from patients who died with amyotrophic lateral sclerosis, a neurodegenerative disorder of motoneurons and other cells. However, the distribution of phospho-adducin immunoreactivity has not been described in the mammalian spinal cord. We have evaluated the distribution of immunoreactivity to serine/threonine-dependent phospho-adducin at a region corresponding to the myristoylated alanine-rich C kinase substrate-related domain of adducin in spinal cords of mice over-expressing mutant human superoxide dismutase, an animal model of amyotrophic lateral sclerosis, and in control littermates. We find phospho-adducin immunoreactivity in control spinal cord in ependymal cells surrounding the central canal, neurons and astrocytes. Phospho-adducin immunoreactivity is localized to the cell bodies, dendrites and axons of some motoneurons, as well as to astrocytes in the gray and white matter. Spinal cords of mutant human superoxide dismutase mice having motoneuron loss exhibit significantly increased phospho-adducin immunoreactivity in ventral and dorsal horn spinal cord regions, but not in ependyma surrounding the central canal, compared with control animals. Increased phospho-adducin immunoreactivity localizes predominantly to astrocytes and likely increases as a consequence of the astrogliosis that occurs in the mutant human superoxide dismutase mouse with disease progression. These findings demonstrate increased immunoreactivity against phosphorylated adducin at the myristoylated alanine-rich C kinase substrate domain in a murine model of amyotrophic lateral sclerosis. As adducin is a substrate for protein kinase C at the myristoylated alanine-rich C kinase substrate domain, the increased phospho-adducin immunoreactivity is likely a consequence of protein kinase C activation in neurons and astrocytes of the spinal cord and evidence for aberrant phosphorylation events in mutant human superoxide dismutase mice that may affect neuron survival.  相似文献   

18.
nNOS、Pax3和Cx43蛋白在人胚胎早期脊髓中的表达及意义   总被引:5,自引:0,他引:5  
刘学红  张泳  张金萍 《解剖学报》2008,39(4):594-597
目的探讨神经元型一氧化氮合酶(nNOS)、转录调控因子成对盒3(Pax3)和连接蛋白43(Cx43)在人胚胎发育早期脊髓中的分布规律及其表达意义。方法应用免疫组织化学SABC法,检测第5~16周人胚胎脊髓前角中nNOS、Pax3和Cx43蛋白的表达情况。结果在第5~16周,nNOS和Pax3蛋白在人胚胎脊髓前角细胞中由弱阳性逐渐变为阳性表达;在第5~12周,Cx43蛋白在人胚胎脊髓前角细胞中均呈阴性表达;第13~16周,Cx43蛋白在人胚胎脊髓前角细胞中呈阳性表达。结论nNOS、Pax3和Cx43蛋白与人胚胎脊髓的生长发育关系密切。  相似文献   

19.
Age-dependent poliomyelitis (ADPM) or murine amyotrophic lateral sclerosis (ALS) is a murine paralytic disease triggered in immunosuppressed genetically-susceptible mice by infection with the arterivirus lactate dehydrogenase-elevating virus (LDV). This disease provides an animal model for ALS, affecting anterior horn neurons and resulting in neuroparalysis 2-3 weeks after LDV infection. We have tested the hypothesis that spinal cord apoptosis is a feature of the LDV-induced murine ALS, since apoptosis is postulated to be a causal factor in human ALS. Gene microarray analyses of spinal cords from paralyzed animals revealed upregulation of several genes associated with apoptosis. Spinal cord apoptosis was investigated further by TUNEL and activated caspase-3 assays, and was observed to emerge concurrent with paralytic symptoms in both neuronal and non-neuronal cells. Caspase-3-dependent apoptosis was also triggered in cultured macrophages by neurovirulent LDV infection. Thus, virus-induced spinal cord apoptosis is a pre-mortem feature of ADPM, which affects both neuronal and support cells, and may contribute to the pathogenesis of this ALS-like disease.  相似文献   

20.
Glial cell line-derived neurotrophic factor, initially purified from the rat glial cell line B49, has the ability to promote the survival and differentiation of various types of neurons in the central and peripheral nervous systems. In the present study, to evaluate the physiological role of glial cell line-derived neurotrophic factor in the central nervous system, we investigated the cellular and regional distribution of glial cell line-derived neurotrophic factor immunoreactivity in autopsied control human brains and spinal cords using a polyclonal glial cell line-derived neurotrophic factor-specific antibody. On western blot analysis, the antibody reacted with recombinant human glial cell line-derived neurotrophic factor, and recognized a single band at a molecular weight of approximately 34,000 in human brain homogenates. Glial cell line-derived neurotrophic factor immunoreactivity was observed mainly in the neuronal somata, dendrites and axons. In the telencephalon, diencephalon and brainstem, the cell bodies and proximal processes of several neuronal subtypes were immunostained with punctate dots. Furthermore, immunopositive nerve fibers were also observed, and numerous axons were intensely immunolabeled in the internal segment of the globus pallidus and the pars reticulata of the substantia nigra. In the cerebellum, the most conspicuous immunostaining was found in the Purkinje cells, in which the somata and dendrites were strongly immunolabeled. Intense immunoreactivity was also detected in the posterior horn of the spinal cord. In addition to the neuronal elements, immunopositive glial cell bodies and processes were observed in various regions.

Our results suggest that glial cell line-derived neurotrophic factor is widely localized, but can be found selectively in certain neuronal subpopulations of the human central nervous system. Glial cell line-derived neurotrophic factor may regulate the maintenance of neuronal functions under normal circumstances.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号