首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The lysosomal storage disorders (LSD) are a group of severe multiple pathology disorders characterized by enzyme deficiencies which cause the lysosomal accumulation of undegraded or partially degraded macromolecules. Enzyme replacement therapy (ERT) has been developed as a therapy for LSD patients. However, immune responses to ERT have been reported in some individuals from LSD animal model and LSD human patient studies. Antibodies can have adverse effects during ERT, which include hypersensitivity/anaphylactic reactions, enzyme inactivation, altered targeting, and increased enzyme turnover. The monitoring of antibody production during replacement therapy is an important consideration for patient management, as high-titer antibodies can affect the safety and efficacy of the therapy.  相似文献   

2.
Lysosomes are membrane‐bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole‐exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease‐causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect.  相似文献   

3.
Dried blood spot (DBS) methods are currently available for identification of a range of lysosomal storage disorders (LSDs). These disorders are generally characterized by a deficiency of activity of a lysosomal enzyme and by a broad spectrum of phenotypes. Diagnosis of LSD patients is often delayed, which is of particular concern as therapeutic outcomes (e.g. enzyme replacement therapy) are generally more favorable in early disease stages. Experts in the field of LSDs diagnostics and screening programs convened and reviewed experiences with the use of DBS methods, and discuss the diagnostic challenges, possible applications and quality programs in this paper. Given the easy sampling and shipping and stability of samples, DBS has evident advantages over other laboratory methods and can be particularly helpful in the early identification of affected LSD patients through neonatal screening, high-risk population screening or family screening.  相似文献   

4.
Assays that measure lysosomal enzyme activity are important tools for the screening and diagnosis of lysosomal storage disorders (LSDs). They are often ordered in combination with urine oligosaccharide and glycosaminoglycan analysis, additional biomarker assays, and/or DNA sequencing when an LSD is suspected. Enzyme testing in whole blood/leukocytes, serum/plasma, cultured fibroblasts, or dried blood spots demonstrating deficient enzyme activity remains a key component of LSD diagnosis and is often prompted by characteristic clinical findings, abnormal newborn screening, abnormal biochemical findings (eg, elevated glycosaminoglycans), or molecular results indicating pathogenic variants or variants of uncertain significance in a gene associated with an LSD. This document, which focuses on clinical enzyme testing for LSDs, provides a resource for laboratories to develop and implement clinical testing, to describe variables that can influence test performance and interpretation of results, and to delineate situations for which follow-up molecular testing is warranted.  相似文献   

5.
Lysosomal storage disorders (LSD) are rare inherited metabolic diseases in which genetic alterations affect lysosomal proteins. Mucopolysaccharidosis type IIIA (MPS-IIIA) is an LSD characterized by reduced activity of sulfamidase (heparan-N-sulfatase, EC3.10.1.1), which degrades the sulfated glycosoaminoglycan heparan sulfate. The central nervous system (CNS) is the main site of pathology in MPS-IIIA, resulting in reduced neurological function and neurocognitive decline. Neuropathological changes include lysosomal vacuolation of heparan sulfate and lipids in neurons, glia, and perivascular cells and the formation of axonal spheroids and ectopic dendrites. At present there is no effective treatment for the CNS effects of LSD as enzyme administered intravenously cannot cross the blood-brain barrier. We have previously established and characterized a mouse model of MPS-IIIA, and in the present study, we injected recombinant human sulfamidase directly into the brain at 6, 12 or 18 weeks of age. Treatment reduced vacuolation and gliosis and delayed the onset of ubiquitin-positive neurodegenerative changes in widespread areas of MPS-IIIA brain, assessed at 24 weeks of age. However, ubiquitin-positive axonal spheroids already detectable by 6 weeks of age were unaffected by treatment at any age, suggesting their irreversibility and thus indicating the importance of early detection of MPS-IIIA and instigation of therapy.  相似文献   

6.
Lysosomal storage diseases (LSD) are a group of more than 40 disorders, many of them with overlapping phenotype, in which clinical diagnosis is often difficult. Definitive diagnosis is based on enzyme assays, a large number of such assays usually being necessary during the investigation of each patient. In addition, there will frequently be a need for tissue culture in order to provide enough material for analysis. Taking into account these difficulties, we designed a flowchart for the detection of LSD that is based on 2 sets of tests requiring only random urine and heparinized blood. Here we describe this routine and report the results of its application to 105 Brazilian patients in whom a LSD was suspected. We think that the application of this rationale represents a saving of work and costs, and should be of special interest to genetic centers in developing countries.  相似文献   

7.
Newborn screening for lysosomal storage disorders   总被引:6,自引:0,他引:6  
Lysosomal storage disorders (LSD) are chronic progressive diseases that have a devastating impact on the patient and family. Most patients are clinically normal at birth but develop symptoms early in childhood. Despite no curative treatment, a number of therapeutic options are available to improve quality of life. To achieve this, there is a pressing need for newborn screening to identify affected individuals early, before the onset of severe irreversible pathology. We have developed a multiplexed immune-quantification assay of 11 different lysosomal proteins for the identification of individuals with an LSD and evaluated this assay in a retrospective study using blood-spots from; newborns subsequently diagnosed with an LSD (n=19, six different LSD), individuals sampled after diagnosis of an LSD (n=92, 11 different LSD), newborn controls (n=433), and adult controls (n=200). All patients with mucopolysaccharidosis type I (MPS I), MPS II, MPS IIIA, MPS VI, metachromatic leukodystrophy, Niemann-Pick disease type A/B, and multiple sulfatase deficiency could be identified by reduced enzyme levels compared to controls. All mucolipidosis type II/III patients were identified by the elevation of several lysosomal enzymes, above the control range. Most Fabry, Pompe, and Gaucher disease patients were identified from either single protein differences or profiles of multiple protein markers. Newborn screening for multiple LSD is achievable using multiplexed immune-quantification of a panel of lysosomal proteins. With further validation, this method could be readily incorporated into existing screening laboratories and will have a substantial impact on patient management and counseling of families.  相似文献   

8.
Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water‐soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene‐specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co‐immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co‐localize with each other in lysosomal as well as extra‐lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
A defect in invariant NKT (iNKT) cell selection was hypothesized in lysosomal storage disorders (LSD). Accumulation of glycosphingolipids (GSL) in LSD could influence lipid loading and/or presentation causing entrapment of endogenous ligand(s) within storage bodies or competition of the selecting ligand(s) by stored lipids for CD1d binding. However, when we analyzed the iNKT cell compartment in newly tested LSD animal models that accumulate GSL, glycoaminoglycans or both, we observed a defective iNKT cell selection only in animals affected by multiple sulfatase deficiency, in which a generalized aberrant T‐cell development, rather than a pure iNKT defect, was present. Mice with single lysosomal enzyme deficiencies had normal iNKT cell development. Thus, GSL/glycoaminoglycans storage and lysosomal engulfment are not sufficient for affecting iNKT cell development. Rather, lipid ligand(s) or storage compounds, which are affected in those LSD lacking mature iNKT cells, might indeed be relevant for iNKT cell selection.  相似文献   

10.
In most lysosomal storage diseases clinical variability is found and affects age-of-onset, severity, and the degree of neurological involvement. Very often the variability is due to the existence of different mutations leading to the same enzyme deficiency. In most of the families with more than one person affected, the clinical picture is very similar. Intrafamilial variation has been reported in the lysosomal storage diseases related or not related to genetic heterogeneity. In families in which different affected persons have the same genotype, as in X-linked disorders, or autosomal recessive diseases in which both parents of the affected sibs are carriers and healthy, the variability must be due to factors not related to the genotype. On the other hand, when different mutations are present in the same family, the variability may be related to the differences in the genotype of the affected persons. Knowledge of the possibility of intrafamilial variability and its genetic basis is essential in clinical and prenatal diagnosis of the lysosomal storage diseases.  相似文献   

11.
A block of autophagy in lysosomal storage disorders   总被引:3,自引:0,他引:3  
Most lysosomal storage disorders (LSDs) are caused by deficiencies of lysosomal hydrolases. While LSDs were among the first inherited diseases for which the underlying biochemical defects were identified, the mechanisms from enzyme deficiency to cell death are poorly understood. Here we show that lysosomal storage impairs autophagic delivery of bulk cytosolic contents to lysosomes. By studying the mouse models of two LSDs associated with severe neurodegeneration, multiple sulfatase deficiency (MSD) and mucopolysaccharidosis type IIIA (MPSIIIA), we observed an accumulation of autophagosomes resulting from defective autophagosome-lysosome fusion. An impairment of the autophagic pathway was demonstrated by the inefficient degradation of exogenous aggregate-prone proteins (i.e. expanded huntingtin and mutated alpha-synuclein) in cells from LSD mice. This impairment resulted in massive accumulation of polyubiquitinated proteins and of dysfunctional mitochondria which are the putative mediators of cell death. These data identify LSDs as 'autophagy disorders' and suggest the presence of common mechanisms in the pathogenesis of these and other neurodegenerative diseases.  相似文献   

12.
Lysosomes are intracellular organelles containing acid hydrolases that degrade biological macromolecules. Lysosomal storage disorders (LSDs) are caused by absent activity of one or more of these enzymes due to mutations of genes encoding lysosomal hydrolases or enzymes that process, target, and transport these enzymes. The specific signs and symptoms of each LSD derive from the type of material accumulated within the lysosome, the site (organ) of accumulation and the response of the body (sometimes in the form of an inflammatory or immune response) to the accumulated material. Interest for inclusion of these disorders in newborn screening programs derives from the availability of effective therapy in the form of enzyme replacement or substrate reduction therapy and bone marrow transplant that may improve long-term outcome especially if started prior to irreversible organ damage. Based on the availability of therapy and suitable screening methods, Gaucher disease, Fabry disease, Pompe disease, mucopolysaccharidosis I and II, Niemann–Pick disease, and Krabbe disease are candidates for newborn screening. Pilot newborn screening projects have been performed for some of these conditions that indicate the feasibility of this approach. This review will provide insight into these screening strategies and discuss their advantages and limitations. © 2011 Wiley-Liss, Inc.  相似文献   

13.
The mucopolysaccharidoses (MPS) are lysosomal storage disorders caused by defects in the enzymes involved in the degradation of glycosaminoglycans. Hurler syndrome (MPS I) and Sanfilippo syndrome (MPS III) are among the more common diseases in the group, each occurring with an incidence of approximately 1 in 100,000. We present a case of siblings, born of a consanguineous union, affected with both MPS I and MPS IIIa. The diagnoses were confirmed with fibroblast enzyme assays and sequence analysis of the genes, which identified homozygous mutations in IDUA and SGSH. We discuss their clinical features and course and examine the psychosocial aspects of their case, specifically, the decision-making process that the medical team and family faced regarding treatment with enzyme replacement therapy.  相似文献   

14.
Intravenous enzyme replacement therapy has been developed as a viable treatment for most of the somatic pathologies associated with the mucopolysaccharide storage disorders. However, approximately two thirds of individuals affected by a mucopolysaccharide storage disorder also display neurological disease, in these instances intravenous enzyme replacement therapy is not viable as the blood-brain barrier severely limits enzyme distribution from the peripheral circulation into the central nervous system. Accordingly, much research is now focussed on developing therapies that specifically address neurological disease, or somatic and neurological disease in combination. Therapies designed to address the underlying cause of central nervous system pathology, that is the lysosomal storage itself, can be broadly divided into two groups, those that continue the rationale of enzyme replacement, and those that address the supply side of the storage equation; that is the production of storage material. Enzyme replacement can be further divided by technology (principally direct enzyme replacement, gene replacement and cell transplantation). Here we review the current state of the art for these strategies and suggest possible future directions for research in this field. In particular, we suggest that any one approach in itself is unlikely to be as efficacious as a carefully considered combination therapy, be it a combination of some sort of enzyme replacement with substrate deprivation, or a combination of two different replacement technologies or strategies.  相似文献   

15.
《Genetics in medicine》2008,10(8):626-632
In 1993, the first effective enzyme replacement therapy for a genetic disease, Ceredase (Genzyme Corporation, Cambridge, MA), was approved for use in patients with Gaucher disease. Over the next 13 years, enzyme replacement therapy became clinically available for the treatment of Fabry disease, mucopolysaccharidosis Type I, mucopolysaccharidosis Type II, mucopolysaccharidosis Type VI, and glycogen storage disease Type II. The development of enzyme replacement therapy to treat lysosomal storage diseases has resulted in an increasing number of genetic patients undergoing weekly or biweekly intravenous enzyme replacement therapy and an expanded role of the genetics team to include comprehensive care involving therapeutic intervention for lysosomal storage diseases. This article describes the development of two outpatient genetics-based infusion centers: the Northshore Genetics Infusion Clinic as part of the Children's Hospital of Wisconsin Lysosomal Diseases Treatment Center in conjunction with the Medical College of Wisconsin and the Emory Lysosomal Storage Disease Center for Genetic Infusions in the Emory University Department of Human Genetics.  相似文献   

16.
Gaucher's disease: a paradigm for interventional genetics   总被引:5,自引:0,他引:5  
Gaucher's disease (GD) is one of the most prevalent lysosomal storage disorders (LSDs) and a rare genetic disease for which specific therapy is now available. GD is an autosomal, recessive, inborn error of glycosphingolipid metabolism, due to a deficiency in the enzyme acid β-glucosidase. Partial deficiency of acid β-glucosidase is associated with parenchymal disease of the liver, spleen, and bone marrow with concomittant anemia and thrombocytopenia in non-neuronopathic, type 1 GD. Severe deficiency of glucocerebrosidase caused by severe mutations is additionally associated with neurological manifestations in the less common type 2 and type 3 GD subtypes. Outside of the Ashkenazi Jewish community, a high molecular diversity is observed. Clarification of genotype/phenotype relationship and the identification of modifier loci that impact on GD phenotypes remains a critical area for research. Enzyme replacement therapy (ERT) is proven to be safe and effective in the treatment of type 1 GD, establishing imiglucerase as the current standard of care. Amelioration of hepatosplenomegaly and of hematological manifestations is usually apparent within 6–12 months, whereas the bone disease responds more slowly. ERT cannot reverse the neurological deficits in type 2 or type 3 GD. Small molecule inhibitors of glucosylceramide synthase are being developed for substrate reduction therapy. Other potential therapeutic options such as chaperon-mediated enzyme enhancement therapy and gene therapy are being explored.  相似文献   

17.
Fabry disease (FD) is an X‐linked lysosomal storage disorder (LSD) caused by the deficiency of the enzyme α‐galactosidase. It exhibits a wide clinical spectrum that may lead to a delayed or even missed diagnosis and the real incidence can be underestimated. We report the cases of two unrelated Italian families in whom FD was incidentally diagnosed in two females. In both families, the risk for other lysosomal disorders was known from other members affected by fucosidosis or mucopolysaccharidosis I Hurler/Scheie. Some subjects were simultaneously heterozygous for Fabry and the other lysosomal deficiency. Our study shows that the risk for more than one LSDs can occur in a family pedigree. The diagnosis of Fabry in female probands represents a diagnostic challenge, as symptoms and signs can be variably present because of the random X‐chromosome inactivation.  相似文献   

18.
Both enzyme replacement and gene therapy of lysosomal storage disorders rely on the receptor-mediated uptake of lysosomal enzymes secreted by cells, and for each lysosomal disorder it is necessary to select the correct cell type for recombinant enzyme production or for targeting gene therapy. For example, for the therapy of Pompe disease, a severe metabolic myopathy and cardiomyopathy caused by deficiency of acid alpha-glucosidase (GAA), skeletal muscle seems an obvious choice as a depot organ for local therapy and for the delivery of the recombinant enzyme into the systemic circulation. Using knockout mice with this disease and transgenes containing cDNA for the human enzyme under muscle or liver specific promoters controlled by tetracycline, we have demonstrated that the liver provided enzyme far more efficiently. The achievement of therapeutic levels with skeletal muscle transduction required the entire muscle mass to produce high levels of enzyme of which little found its way to the plasma, whereas liver, comprising <5% of body weight, secreted 100-fold more enzyme, all of which was in the active 110 kDa precursor form. Furthermore, using tetracycline regulation, we somatically induced human GAA in the knockout mice, and demonstrated that the skeletal and cardiac muscle pathology was completely reversible if the treatment was begun early.  相似文献   

19.
Prenatal diagnosis is available for many lysosomal storage disorders (LSD) using chorionic villus samples or amniocytes. Such diagnoses can be problematical if sample transport and culture are required prior to analysis. The purpose of this study was to identify useful biochemical markers for the diagnosis of lysosomal storage disorders from amniotic fluid. Amniotic fluid samples from control (n=49) and LSD affected (n=36) pregnancies were analysed for the protein markers LAMP-1 and saposin C by ELISA, and for oligosaccharide and lipid metabolite markers by electrospray ionisation-tandem mass spectrometry. Lysosomal storage disorder samples include; aspartylglucosaminuria, galactosialidosis, Gaucher disease, GM1 gangliosidosis, mucopolysaccharidosis types I, II, IIIC, IVA, VI, and VII, mucolipidosis type II, multiple sulfatase deficiency, and sialidosis type II. Each disorder produced a unique signature metabolic profile of protein, oligosaccharide, and glycolipid markers. Some metabolite elevations directly related to the disorder whilst others appeared unrelated to the primary defect. Many lysosomal storage disorders were clearly distinguishable from control populations by the second trimester and in one case in the first trimester. Samples from GM1 gangliosidosis and mucopolysaccharidosis type VII displayed a correlation between gestational age and amount of stored metabolite. These preliminary results provide proof of principal for the use of biomarkers contained in amniotic fluid as clinical tests for some of the more frequent lysosomal storage disorders causal for hydrops fetalis.  相似文献   

20.
Prevention programs for the detection of heterozygotes of relatively prevalent autosomal recessive diseases in various ethnic groups are available in recent years in Israel. Several lysosomal storage disorders (LSD) are included in this program. The goal of the program is the ascertainment of high risk couples before the birth of affected offspring. This is performed by a population screening program that addresses the specific needs and requirements of various population groups in Israel. The programs are supervised and designed by medical/clinical geneticists and are accompanied by genetic counseling prior to and after testing. Three types of population screening programs are in operation. The first type is offered to the general population and is directed to premarital and married couples. High risk families mostly opt for prenatal diagnosis. The second type is performed for diseases with a frequency of about 1:1000. This occurrence is common in Israel only in various Arab communities due to the high rate of consanguinity. The third type is a premarital screening performed by the Orthodox Jewish community and is operated by a nonprofit organization--"Dor Yeshorim". Two heterozygotes for a particular disease are advised not to proceed with the marriage and thus avoid the dilemma of prenatal diagnosis. Founder mutations of the relevant genes for each ethnic group are tested and the testing is tailored for each individual according to his/her ethnic background. Genetic counseling presents family planning options to high risk couples. These programs have resulted in a significant reduction in the birth of affected patients of the tested LSD a well as other recessive diseases in recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号