首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synaptic consolidation is a process thought to consolidate memory in the brain. Although lesion studies have mainly implicated the hippocampus (HPC) in this process, it is unknown which cell type(s) or regions of the HPC might be essential for synaptic consolidation. To selectively and reversibly suppress hippocampal neuronal activity during this process, we developed a new Gi-DREADD (hM4Di) transgenic mouse for in vivo manipulation of neuronal activity in freely moving animals. We found that CA1 pyramidal neurons could be dose-dependently inactivated by clozapine-n-oxide (CNO). Inactivation of hippocampal neurons within 6 h immediately after conditioned fear training successfully impaired the consolidation of contextual memory, without disturbing cued memory. To anatomically define the brain subregion critical for the behavioral effects, hM4Di viral vectors were transduced and selectively expressed in the glutamatergic neurons in either the dorsal or ventral HPC. Significantly, we found that selective inactivation of ventral but not dorsal glutamatergic hippocampal neurons suppressed the synaptic consolidation of contextual memory.  相似文献   

3.
  1. Intracranial administration of leptin reduces both food intake and body weight gain in the mouse. Inhibitors of nitric oxide (NO) synthase produce similar effects.
  2. To investigate the role of the brain L-arginine/NO pathway in mediating this effect of leptin, we have evaluated food intake and body weight gain after daily (5 days) intracerebroventricular (i.c.v.) administration of leptin (0.5–2 μg) alone or in association with L-arginine (10 μg). Moreover, we measured diencephalic nitric oxide synthase (NOS) activity after a single i.c.v. leptin (0.25–2 μg) injection and after consecutive doses of leptin (0.25–2 μg) over 5 days. The time course of the effect of leptin on NOS activity was also evaluated.
  3. I.c.v. injected leptin (1 and 2 μg) significantly and dose-dependently reduced food intake and body weight gain with respect to vehicle (food intake: 5.97±0.16 g 24 h−1 and 4.27±0.18 g 24 h−1, respectively, vs 8.05±0.34 g 24 h−1, P<0.001, n=6 for each group; body weight gain: −10.7±0.46% and −15.2±0.65%, respectively, vs 5.14±0.38%, P<0.001, n=6 for each group). This effect was antagonized by L-arginine (food intake: 7.90±0.37 g 24 h; body weight gain: 5.11±0.31%, n=6). Diencephalic NOS activity was significantly reduced by the highest doses of leptin with respect to vehicle (vehicle: 0.90±0.04 nmol citrulline min−1 g−1 tissue; leptin 1 μg: 0.62±0.03 nmol citrulline min−1 g−1 tissue, P<0.001; leptin 2 μg: 0.44±0.03 nmol citrulline min−1 g−1 tissue, P<0.001, n=6 for each group). Similar results were obtained in animals treated with daily consecutive doses of leptin. The inhibitory effect appeared rapidly (within 30 min) and was long lasting (up to 12 h).
  4. Our results suggest that the brain L-arginine/NO pathway may be involved in the central effect of leptin on feeding behaviour and body weight gain in mice.
  相似文献   

4.
Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine–place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.  相似文献   

5.
Chronic nicotine administration has been shown to significantly improve working memory. Nicotinic involvement in memory function critically involves the ventral hippocampus. Local ventral hippocampal infusions of the nicotinic antagonists mecamylamine, dihydro-β-erythroidine (DHβE) and methyllycaconitine (MLA) significantly impair working memory. The impairment caused by hippocampal infusion of the α4β2 antagonist DHβE is reversed by chronic systemic nicotine. This study determined the interaction of chronic systemic nicotine with acute ventral hippocampal infusions of the α7 antagonist MLA. Adult female Sprague–Dawley rats were trained on an 8-arm radial maze working memory task. Then they underwent ventral hippocampal cannulation and received sc implants of minipumps delivering nicotine (0 or 5 mg/kg/day for 28 days). Acute ventral hippocampal infusions of MLA (0, 4.88, 14.64 and 43.92 μg/side) were given during 3–4 weeks of chronic nicotine. MLA caused a significant dose-related memory impairment. In the rats not receiving nicotine, the 14.64 and 43.92 μg/side MLA doses caused significant memory impairment. Chronic systemic nicotine exposure did not block the MLA-induced memory impairment. Comparing the current results with MLA with previous results with DHβE, equimolar ventral hippocampal DHβE more effectively impaired memory than MLA, but the DHβE-induced impairment was more effectively reversed by chronic systemic nicotine administration.  相似文献   

6.
The adipose-derived hormone leptin signals in the medial nucleus tractus solitarius (mNTS) to suppress food intake, in part, by amplifying within-meal gastrointestinal (GI) satiation signals. Here we show that mNTS leptin receptor (LepRb) signaling also reduces appetitive and motivational aspects of feeding, and that these effects can depend on energy status. Using the lowest dose that significantly suppressed 3-h cumulative food intake, unilateral leptin (0.3 μg) administration to the mNTS (3 h before testing) reduced operant lever pressing for sucrose under increasing work demands (progressive ratio reinforcement schedule) regardless of whether animals were energy deplete (food restricted) or replete (ad libitum fed). However, in a separate test of food-motivated responding in which there was no opportunity to consume food (conditioned place preference (CPP) for an environment previously associated with a palatable food reward), mNTS leptin administration suppressed food-seeking behavior only in chronically food-restricted rats. On the other hand, mNTS LepRb signaling did not reduce CPP expression for morphine reinforcement regardless of energy status, suggesting that mNTS leptin signaling differentially influences motivated responding for food vs opioid reward. Overall results show that mNTS LepRb signaling reduces food intake and appetitive food-motivated responding independent of energy status in situations involving orosensory and postingestive contact with food, whereas food-seeking behavior independent of food consumption is only reduced by mNTS LepRb activation in a state of energy deficit. These findings reveal a novel appetitive role for LepRb signaling in the mNTS, a brain region traditionally linked with processing of meal-related GI satiation signals.  相似文献   

7.
Glutamatergic neurotransmission in the dorsal hippocampus (DH) is necessary for drug context-induced reinstatement of cocaine-seeking behavior in an animal model of drug relapse. Furthermore, in vitro studies suggest that the Src family of tyrosine kinases critically regulates glutamatergic cellular functions within the DH. Thus, Src-family kinases in the DH may similarly control contextual cocaine-seeking behavior. To test this hypothesis, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after AP5 (N-methyl-D-aspartate glutamate (NMDA) receptor (NMDAR) antagonist; 0.25 or 2.5 μg/0.5 μl/hemisphere), PP2 (Src-family kinase inhibitor; 6.25 or 62.5 ng/0.5 μl/hemisphere), Ro25-6981 (NR2B subunit-containing NMDAR antagonist; 0.2 or 2 μg/0.5 μl/hemisphere), or vehicle administration into the DH. Administration of AP5, PP2, or Ro25-6981 into the DH dose-dependently impaired drug context-induced reinstatement of cocaine-seeking behavior relative to vehicle, without altering instrumental behavior in the extinction context or food-reinforced instrumental responding and general motor activity in control experiments. Cocaine-seeking behavior during the first 20 min of the test session in the cocaine-paired context was associated with an increase in NR2B subunit activation, and intra-DH PP2 pretreatment disrupted this relationship. Together, these findings suggest that Src-family kinase activation, NMDAR stimulation, and likely Src-family kinase-mediated NR2B subunit-containing NMDAR activation in the DH are necessary for incentive motivational and/or memory processes that promote contextual cocaine-seeking behavior.  相似文献   

8.
Environmentally induced relapse to cocaine seeking requires the retrieval of context–response–cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 μl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 μg per 0.5 μl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2—as well as PEAQX—attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.  相似文献   

9.
  1. Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist.
  2. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10 mM for 40 min at a flow rate of 2 μl min−1) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, γ-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20 mM), the sodium channel blocker tetrodotoxin (1 μM) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100 μM). The effectiveness of locally (600 μM) or systemically (10 mg kg−1 day−1) applied lamotrigine against the pilocarpine-induced convulsions was evaluated.
  3. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally.
  4. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release.
  相似文献   

10.
Amylin is a peptide co-secreted with insulin that penetrates into the brain, and produces satiation-like effects via actions in the brainstem, hypothalamus, and mesencephalon. Little is known, however, about the effects of amylin in the nucleus accumbens shell (AcbSh), where a circumscribed zone of intense amylin receptor (AMY-R) binding overlaps reported mappings of a ‘hotspot'' for μ-opioid receptor (μ-OR) amplification of food reward. Here, the ability of intra-AcbSh AMY-R signaling to modulate μ-OR-driven feeding was explored. Amylin (1–30 ng) was administered with the μ-OR agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) (0.25 μg), directly into the AcbSh of ad libitum-maintained rats. Amylin dose-dependently reversed DAMGO-induced hyperphagia; 3 ng of amylin reduced DAMGO-mediated feeding by nearly 50%. This dose was, however, completely ineffective at altering DAMGO-induced feeding in the anterior dorsal striatum. Intra-AcbSh amylin alone (3–30 ng) modestly suppressed 10% sucrose intake in ad libitum-maintained rats, and chow in food-deprived rats, but only at the 30-ng dose. This result indicates that reversal of AcbSh DAMGO-induced feeding at a 10-fold lower dose was neither due to malaise nor motoric impairment. Finally, intra-AcbSh infusion of the AMY-R antagonist, AC187 (20 μg), significantly attenuated the ability of prefeeding to suppress DAMGO-induced food intake, with no effects in non-prefed rats. Hence, AMY-R signaling negatively modulates μ-OR-mediated appetitive responses at the level of the AcbSh. The results with AC187 indicate that endogenous AMY-R transmission in the AcbSh curtails opioid function in the postprandial period, suggesting a novel pathway for peripheral-central integration in the control of appetitive motivation and opioid reward.  相似文献   

11.
  1. The selective 5-hydroxytryptamine reuptake inhibitor citalopram (10 and 20 mg kg−1, i.p.) significantly reduced food intake in male rats (CD-COBS) habituated to eat their daily food during a 4-h period.
  2. The 5-HT1A receptor antagonist WAY100635 (0.3 mg kg−1) administered systemically did not modify feeding but significantly potentiated the reduction in food intake caused by 10 mg kg−1 i.p. citalopram. The dose of 5 mg kg−1 i.p. citalopram was not active in animals pretreated with vehicle but significantly reduced feeding in animals pretreated with WAY100635.
  3. WAY100635 (0.1 μg 0.5 μl−1) injected into the dorsal raphe significantly potentiated the hypophagic effect of 10 mg kg−1 citalopram.
  4. WAY100635 (1.0 μg 0.5 μl−1) injected into the median raphe did not modify feeding or the hypophagic effect of 10 mg kg−1 citalopram.
  5. The 5-HT2B/2C receptor antagonist SB206553 (10 mg kg−1, p.o.) slightly reduced feeding by itself but partially antagonized the effect of WAY100635 administered systemically (0.3 mg kg−1, s.c.) or into the dorsal raphe (0.1 μg 0.5 μl−1) in combination with 10 mg kg−1 i.p. citalopram. The hypophagic effect of 10 mg kg−1 i.p. citalopram alone was not significantly modified by SB206553.
  6. Brain concentrations of citalopram and its metabolite desmethylcitalopram in rats pretreated with SB206553, WAY100635 and their combination were comparable to those of vehicle-pretreated rats, 90 min after citalopram injection.
  7. The hypophagic effect of citalopram was potentiated by blocking 5-HT1A receptors. Only the effect of the WAY100635/citalopram combination seemed to be partially mediated by central 5-HT2C receptors.
  相似文献   

12.
  1. The effects of the antidiabetic agent englitazone and the anorectic drug ciclazindol on ATP-sensitive K+ (KATP) channels activated by diazoxide and leptin were examined in the CRI-G1 insulin-secreting cell line using whole cell and single channel recording techniques.
  2. In whole cell current clamp mode, the hyperglycaemic agent diazoxide (200 μM) and the ob gene product leptin (10 nM) hyperpolarised CRI-G1 cells by activation of KATP currents. KATP currents activated by either agent were inhibited by tolbutamide, with an IC50 for leptin-activated currents of 9.0 μM.
  3. Application of englitazone produced a concentration-dependent inhibition of KATP currents activated by diazoxide (200 μM) with an IC50 value of 7.7 μM and a Hill coefficient of 0.87. In inside-out patches englitazone (30 μM) also inhibited KATP channel currents activated by diazoxide by 90.8±4.1%.
  4. In contrast, englitazone (1–30 μM) failed to inhibit KATP channels activated by leptin, although higher concentrations (>30 μM) did inhibit leptin actions. The englitazone concentration inhibition curve in the presence of leptin resulted in an IC50 value and Hill coefficient of 52 μM and 3.2, respectively. Similarly, in inside-out patches englitazone (30 μM) failed to inhibit the activity of KATP channels in the presence of leptin.
  5. Ciclazindol also inhibited KATP currents activated by diazoxide (200 μM) in a concentration-dependent manner, with an IC50 and Hill coefficient of 127 nM and 0.33, respectively. Furthermore, application of ciclazindol (1 μM) to the intracellular surface of inside-out patches inhibited KATP channel currents activated by diazoxide (200 μM) by 86.6±8.1%.
  6. However, ciclazindol was much less effective at inhibiting KATP currents activated by leptin (10 nM). Ciclazindol (0.1–10 μM) had no effect on KATP currents activated by leptin, whereas higher concentrations (>10 μM) did cause inhibition with an IC50 value of 40 μM and an associated Hill coefficient of 2.7. Similarly, ciclazindol (1 μM) had no significant effect on KATP channel activity following leptin addition in excised inside-out patches.
  7. In conclusion, KATP currents activated by diazoxide and leptin show different sensitivity to englitazone and ciclazindol. This may be due to differences in the mechanism of activation of KATP channels by diazoxide and leptin.
  相似文献   

13.
Chronic nicotine administration has been repeatedly shown to facilitate working memory function in rats on the radial-arm maze. The critical neural mechanisms for this effect are still being discovered. The nicotinic nature of the chronic nicotine induced memory improvement is supported by the finding that it is blocked by chronic mecamylamine co-infusion. The hippocampus also appears to be critically important. Hippocampal ibotenic acid lesions block the effect. Within the hippocampus, we have found that the α4β2 nicotinic receptor subtype is involved in memory functioning. Acute ventral hippocampal infusions of the α4β2 nicotinic antagonist dihydro-β-erythroidine (DHβE) significantly decreased working memory performance in the radial-arm maze. The aim of the current study was to determine the importance of α4β2 receptors within the ventral hippocampus for the memory enhancing effects of chronic nicotine treatment. Adult female Sprague–Dawley rats were trained on the 8-arm radial maze and were cannulated bilaterally in the ventral hippocampus. Osmotic minipumps administering chronic nicotine at a rate of 5 mg per kg per day were also implanted in the nicotine treatment rats. Control rats received saline-only minipumps. For a period of 4 weeks after surgery, each rat received bilateral hippocampal infusions of 0, 2, 6 and 18 μg per side of DHβE and tested for memory performance on the radial-arm maze. Radial-arm maze choice accuracy was impaired by acute hippocampal DHβE infusion in a dose-related fashion. This acute hippocampal DHβE-induced choice accuracy impairment was eliminated by chronic systemic nicotine infusion. Chronic nicotine in combination with acute vehicle hippocampal infusion was not seen to alter choice accuracy. Response latency was not found to be altered by acute hippocampal DHβE in the absence of chronic nicotine administration, but it did attenuate the response latency reduction induced by chronic nicotine infusion. Wet dog shakes were not found to be affected by hippocampal DHβE when given without chronic nicotine. Wet dog shakes were significantly increased by chronic nicotine infusion. Intra-hippocampal DHβE significantly potentiated this effect. The results from the current study reinforce the hypothesis that ventral hippocampal α4β2 nicotinic receptors are important for memory function. These receptors may also have a role to play in the development of other aspects of behavior associated with chronic nicotine treatment.  相似文献   

14.
After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.  相似文献   

15.
  1. The effect of i.c.v. administration of different potassium channel openers (minoxidil, pinacidil, cromakalim) and potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone, glibenclamide) on memory processes was evaluated in the mouse passive avoidance test.
  2. The administration of minoxidil (10 μg per mouse i.c.v.), pinacidil (5–25 μg per mouse i.c.v.) and cromakalim (10–25 μg per mouse i.c.v.) immediately after the training session produced an amnesic effect.
  3. Tetraethylammonium (TEA; 1–5 μg per mouse i.c.v.), apamin (10 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.), gliquidone (3 μg per mouse i.c.v.) and glibenclamide (1 μg per mouse i.c.v.), administered 20 min before the training session, prevented the potassium channel opener-induced amnesia.
  4. At the highest effective doses, none of the drugs impaired motor coordination, as revealed by the rota rod test, or modified spontaneous motility and inspection activity, as revealed by the hole board test.
  5. These results suggest that the modulation of potassium channels plays an important role in the regulation of memory processes. On this basis, the potassium channel blockers could be useful in the treatment of cognitive deficits.
  相似文献   

16.
The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate–heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.  相似文献   

17.
  1. Effects of wortmannin, an inhibitor of myosin light chain kinase, on the release of substance P and amino acids, GABA and glutamate, were investigated in the isolated spinal cord preparation of the neonatal rat.
  2. Wortmannin at 0.5–10 μM depressed the release of substance P evoked by high-K+ (90 mM) medium from the spinal cord (IC50=1.1 μM). Wortmannin also depressed the high-K+ (70 mM)-evoked release of substance P from cultured dorsal root ganglion neurons of neonatal rats. In contrast, the high-K+ (90 mM)-evoked release of GABA and glutamate from the spinal cord was not affected by wortmannin (0.1–10 μM).
  3. Upon stimulation of a dorsal root, a monosynaptic reflex and a subsequent slow ventral root depolarization were evoked in the ipsilateral ventral root of the same segment in the isolated spinal cord preparation. The magnitude of the slow ventral root depolarization was depressed gradually to about 70% of the control during the course of 30 min under wortmannin (1 μM). In contrast, the monosynaptic reflex was unaffected by wortmannin.
  4. Immunofluorescent staining revealed that immunoreactivities of substance P and myosin II were colocalized at presynaptic terminals in the dorsal horn of the neonatal rat spinal cord.
  5. The present results suggest that myosin phosphorylation by myosin light chain kinase may play a crucial role in the release of substance P, but not in the release of GABA and glutamate in the neonatal rat spinal cord. This may reflect a difference in the exocytic mechanisms of substance P-containing large dense core vesicles and amino acid-containing small clear vesicles.
  相似文献   

18.
19.
  1. Multiple components of hippocampal glutamate release were examined by study of Ca2+- and K+-evoked hippocampal extracellular glutamate release using an in vivo microdialysis glutamate biosensor in urethane-anaesthetized rats. In addition, the effects of the antiepileptic drugs, carbamazepine (CBZ) and zonisamide (ZNS) perfused through the probe on glutamate release were assessed.
  2. Basal glutamate levels were below detection limits (∼0.1 μM). An increase in extracellular KCl (from 2.7 to 50 and 100 mM) increased extracellular hippocampal glutamate levels to 9.2±1.4 and 20.0±2.6 μM, respectively, calculated from the area under curve (AUC) for 60 min.
  3. This KCl-evoked glutamate release consisted of three components: an initial transient rise, a late gentle rise, and late multiple phasic transient rises.
  4. An increase in or removal of extracellular CaCl2 levels respectively enhanced and reduced the 50 mM KCl-evoked hippocampal glutamate release (AUC for 60 min) from 9.2±1.4 to 12.4±2.1 and 5.8±0.9 μM.
  5. Perfusion with 100 μM CBZ or 1 mM ZNS inhibited both the 50 mM KCl-evoked hippocampal glutamate release (AUC for 60 min) from 9.2±1.4 to 5.5±1.1 and to 5.8±1.3 μM, respectively, as well as the stimulatory effects of Ca2+ on KCl-evoked hippocampal glutamate release.
  6. These results suggest that both CBZ and ZNS may reduce epileptiform events by inhibiting excitatory glutamatergic transmission.
  相似文献   

20.
  1. In the present study the mechanisms were examined by which the neuropeptide galanin modulates the extracellular concentrations of striatal acetylcholine (ACh) in enflurane anaesthetized and in freely moving male rats by use of in vivo microdialysis and high performance liquid chromatography.
  2. The perfusion of galanin through the microdialysis probe (0.3 nmol μl−1, flow rate: 2 μl min−1) caused a statistically significant increase in the basal striatal ACh levels in anaesthetized but a decrease in awake animals. No significant effect was revealed after a low dose (0.1 nmol μl−1, flow rate: 2 μl min−1) of galanin perfusion. Both the stimulating and inhibitory effects of galanin on basal ACh release were reversible.
  3. The muscarinic antagonist scopolamine (0.1 mg kg−1, subcutaneously (s.c.)) caused a significant increase in ACh release in both anaesthetized and awake animals.
  4. The combination of galanin plus scopolamine attenuated the stimulant effect on ACh release caused by scopolamine alone in awake animals.
  5. The putative galanin receptor antagonist M35 at 0.3 nmol μl−1 but not at 0.1 nmol μl−1 caused a significant reduction (20%) in ACh release, supporting the view that M35 at higher concentrations behaves as a partial agonist at the galanin receptor. When M35 (0.1 nmol μl−1) was co-infused with galanin (0.3 nmol μl−1) the galanin-evoked decrease in ACh release was completely blocked.
  6. Taken together, these results indicate that galanin affects basal ACh release via stimulation of galanin receptors within the striatum. The mechanism involved is dependent on the anaesthesia procedure which may act via enhancement of γ-aminobutyric acidA (GABAA) mediated transmission within striatal and/or output neurones. In addition, anaesthesia may also decrease the activity of glutamatergic striatal afferents. The results with M35 indicate that the role of galanin perfused in striatum is permissive in the normal rat. Furthermore, galanin is a potent inhibitory modulator of basal ACh release also in the striatum, as recently was shown in the ventral hippocampus in awake animals.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号