首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current investigation aims to evaluate the transdermal potential of novel ethanolic liposomes (ethosomes) bearing Melatonin (MT), an anti-jet lag agent associated with poor skin permeation and long lag time. MT loaded ethosomes were prepared and characterized for vesicular shape and surface morphology, vesicular size, entrapment efficiency, stability, in vitro skin permeation and in vivo skin tolerability. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS) defined ethosomes as spherical, unilamellar structures having low polydispersity (0.032+/-0.011) and nanometric size range (122+/-3.5 nm). % Entrapment efficiency of MT in ethosomal carrier was found to be 70.71+/-1.4. Stability profile of prepared system assessed for 120 days revealed very low aggregation and growth in vesicular size (7.6+/-1.2%). MT loaded ethosomal carriers also provided an enhanced transdermal flux of 59.2+/-1.22 microg/cm2/h and decreased lag time of 0.9 h across human cadaver skin. Fourier Transform-Infrared (FT-IR) data generated to assess the fluidity of skin lipids after application of formulation revealed a greater mobility of skin lipids on application of ethosomes as compared to that of ethanol or plain liposomes. Skin permeation profile of the developed formulation further assessed by confocal laser scanning microscopy (CLSM) revealed an enhanced permeation of Rhodamine Red (RR) loaded formulations to the deeper layers of the skin (240 microm). Further, a better skin tolerability of ethosomal suspension on rabbit skin suggested that ethosomes may offer a suitable approach for transdermal delivery of melatonin.  相似文献   

2.
The present study deals with the development of transferosomal gel containing insulin by reverse phase evaporation method for painless insulin delivery for use in the treatment of insulin dependent diabetes mellitus. The effect of independent process variables like ratio of lipids (soya lecithin:cholesterol), ratio of lipids and surfactants, and ratio of surfactants (Tween 80:sodium deoxycholate) on the in vitro permeation flux (μg/cm2/h) of formulated transferosomal gels containing insulin through porcine ear skin was optimized using 23 factorial design. The optimal permeation flux was achieved as 13.50 ± 0.22 μg/cm2/h with drug entrapment efficiency of 56.55 ± 0.37% and average vesicle diameter range, 625–815 nm. The in vitro insulin permeation through porcine ear skin from these transferosomal gel followed zero-order kinetics (R2 = 0.9232–0.9989) over a period of 24 h with case-II transport mechanism. The in vitro skin permeation of insulin from optimized transferosomal gel by iontophoretic influence (with 0.5 mA/cm2 current supply) also provided further enhancement of permeation flux to 17.60 ± 0.03 μg/cm2/h. The in vivo study of optimized transferosomal gel in alloxan-induced diabetic rat has demonstrated prolonged hypoglycemic effect in diabetic rats over 24 h after transdermal administration.  相似文献   

3.
This work aimed at designing a formulation based on nanostructured lipid carriers (NLC) for transdermal co-administration of olanzapine and simvastatin, using passive and active strategies in a combined in vitro/in vivo development approach. NLC were prepared by two distinct methods, namely solvent emulsification–evaporation (SE/E) and high pressure homogenization (HPH). HPH was selected on the basis of a better performance in terms of drug loading and in vitro permeation rate. Several mathematical models were used to elucidate the release mechanisms from lipid nanoparticles. In vitro release kinetics was shown to be driven by diffusion, but other mechanisms were also present, and supported the feasibility of using NLC for sustained drug delivery. The in vitro skin studies showed that the chemical penetration enhancers, limonene and ethanol, added to the NLC formulations, promoted a synergistic permeation enhancement of both drugs, with olanzapine exhibiting a higher permeation than simvastatin. Transdermal administration to rats resulted in steady-state levels reached at around 10 h and maintained for 48 h, again with olanzapine exhibiting a better permeation rate. The pharmacokinetic parameters indicated that the NLC dispersion displayed a better in vivo performance than the gel, which was consistent with the in vitro results. These differences were, however, negligible in the flux values, supporting the use of gel as a final, more convenient, formulation. The in vivo experiments in rats correlated well with in vitro findings and revealed that the combined use of ethanol and limonene, incorporated in the NLC formulation, provided the main driving force for drug permeation. The Dermaroller® pretreatment did not significantly enhance drug permeation, supporting the use of passive methods as suitable for a transdermal delivery system. Furthermore, this work may provide a promising proof-of-concept for further clinical application in the treatment of schizophrenia and associated disorders, combined with dyslipidemia.  相似文献   

4.
目的:制备多奈哌齐乙醇脂质体,从而进一步有效优化药物的经皮转运。方法:采用注入法制备多奈哌齐乙醇脂质体;通过形态,粒径分布和包封率对乙醇脂质体进行了初步表征,运用Franz 扩散池和共聚焦激光扫描电镜考察了乙醇脂质体的经皮转运情况。结果:多奈哌齐乙醇脂质体(乙醇含量45%)包封率明显高于多奈哌齐脂质体;多奈哌齐乙醇脂质体透皮量分别为脂质体及乙醇溶液的4.32倍和1.89倍。结论:乙醇脂质体可有效携带药物进入皮肤深层。  相似文献   

5.
The study was aimed to evaluate the effectiveness of rosmarinic acid (RA) loaded ethosomes (ETHs) and liposomes (LPs) when subjected to the transdermal application. RA-loaded ETHs and LPs were prepared, optimised, and characterised. The ex vivo permeation studies of formulations using mouse abdominal skin were performed. Antioxidant activities and the inhibitory effects of formulations on collagenase and elastase enzymes were measured. Optimised ethosomal formulation (F3) was showed nanometric size range (138?±?1.11?nm) and greatest entrapment (55?±?1.80%), was selected for further transdermal permeation studies. Skin permeation profile of the nanoformulations analysed by HPLC revealed an enhanced permeation of ETHs. Transdermal flux of ETHs was found to be higher than RA solution and LPs. Enzyme inhibitions of ETHs were the significant difference found between ETHs and LPs (p?<?0.05). ETHs were found to be more effective and successful than LPs. Results suggest that ETHs are more effective than LPs for transdermal delivery of RA.  相似文献   

6.
The aim of this study was to investigate the lipophilic prodrug as a means of promoting acyclovir (ACV) that exhibited biphasic insolubility into the ethosomes for optimum skin delivery. Acyclovir Palmitate (ACV-C16) was synthesized as the lipophilic prodrug of ACV. The ethosomal system and the liposomal system bearing ACV or ACV-C16 were prepared, respectively. The systems were characterized for shape, zeta potential value, particle size, and entrapment efficiency. Franz diffusion cells and confocal laser scanning microscopy were used for the percutaneous absorption studies. The results showed that the entrapment efficiency of ACV-C16 ethosomes (87.75%) were much higher than that of ACV ethosomes (39.13%). The quantity of drug in the skin from ACV-C16 ethosomes at the end of the 24 h transdermal experiment (622.89 μg/cm2) was 5.30 and 3.43 times higher than that from ACV-C16 hydroalcoholic solution and ACV ethosomes, respectively. This study indicated that the binary combination of the lipophilic prodrug ACV-C16 and the ethosomes synergistically enhanced ACV absorption into the skin.  相似文献   

7.
Tizanidine hydrochloride (THCl) is an antispasmodic agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. The aim of this study was to prepare a monolayered buccal patch containing THCl using the emulsification solvent evaporation method. Fourteen formulations were prepared using the polymers Eudragit® RS 100 or Eudragit® RL 100 and chitosan. Polymer solutions in acetone were combined with a THCl aqueous solution (in some cases containing chitosan) by homogenization at 9000 rpm for 2 min in the presence of triethyl citrate as plasticizer and cast in novel Teflon molds. Physicochemical properties such as film thickness, in vitro drug release and in vitro mucoadhesion were evaluated after which permeation across sheep buccal mucosa was examined in terms of flux and lag time. Formulations prepared using a Eudragit® polymer alone exhibited satisfactory physicomechanical properties but lacked a gradual in vitro drug release pattern. Incorporation of chitosan into formulations resulted in the formation of a porous structure which did exhibit gradual release of drug. In conclusion, THCl can be delivered by a buccal patch formulated as a blend of Eudragit® and chitosan, the latter being necessary to achieve gradual drug release.  相似文献   

8.
Ascorbic acid (vitamin C) is an antioxidant that is widely used in cosmetics in skincare products. Due to the excessive low stability of ascorbic acid in cosmetic formulations, the stabilized ascorbic acid derivative, magnesium ascorbyl phosphate (MAP) was formulated as vesicular carriers; ethosomes and niosomes. The aim was to deliver MAP at the intended site of action, the skin, for sufficient time with enhanced permeation to get an effective response. Ethosomes were formulated using a full 32 factorial design to study ethanol and phospholipid concentration effect on ethosomes properties. Niosomes were formulated using 23 factorial designs to study the effect of surfactant type, surfactant concentration and cholesterol concentration on niosomes properties. The prepared formulations were evaluated for their Entrapment efficiency, particle size, polydispersity index, zeta potential and % drug permeated. The optimized ethosomal and niosomal formulations were incorporated into carbopol gel and evaluated for their permeation, skin retention and stability. A comparative split-face clinical study was done between the ethosomal and niosomal formulations for melasma treatment using Antera 3 D® camera. The optimized ethosomal and niosomal gels showed comparable controlled permeation and higher skin retention over their ethosomes and niosomes formulations respectively. Magnesium ascorbyl phosphate ethosomal gel showed clinically and statistically significant melanin level decrease after one month while MAP niosomal gel showed clinically and statistically significant melanin level decrease after six months. A combination of MAP ethosomes and niosomes could be promising skincare formulations for melasma and hyperpigmentation short and long-term treatment.  相似文献   

9.
The use of silicone as a primary polymer in topical semisolid pharmaceutical formulations is infrequent. Recent development of novel silicone materials provides an opportunity to investigate their drug delivery efficiencies. In this study, an anhydrous semisolid formulation was prepared using a novel cross-linked silicone polymer network swollen in isododecane. Similar formulations were prepared using petrolatum, an acrylic, or a cellulose polymer. All formulations contained 5% ibuprofen (IBP). In vitro permeability was evaluated for all formulations and a commercial product using human cadaver epidermis. The silicone formulation delivered IBP more efficiently than all other formulations in terms of flux, cumulative amount, and percent drug release. The silicone formulation showed the maximum flux of 85.9 μg.cm−2.h−1 and a cumulative IBP release of 261.6 μg in 8 h, whereas the benchmark showed 20.1 μg.cm−2.h−1 and 30.9 μg, respectively. An in vivo study conducted on rats showed calculated blood AUCs of 59.2 and 17.6 μg.h/g (p < 0.003) for the silicone formulation and the benchmark, respectively. The IBP in excised rat skin was 264 ± 59 μg/g for the silicone formulation and 102 ± 5 μg/g for the benchmark. The results obtained from the in vitro and in vivo studies demonstrate efficient topical IBP delivery by the silicone formulation.  相似文献   

10.
《Drug delivery》2013,20(1):40-46
Abstract

Context: A transdermal delivery system is warranted for repaglinide (RPG) which possesses half-life of 1?h and oral bioavailability of 56%. Ethosomes are useful tools for transdermal drug delivery.

Objectives: To prepare and evaluate ethosomes as mode for transdermal delivery of RPG.

Material and methods: Ethosomes loaded with RPG were prepared from dipalmitoyl phosphatidylcholine and ethanol by the cold method. They were characterized using Fourier transform infrared spectroscopy and differential scanning calorimetry. They were evaluated for vesicle size, entrapment efficiency and ex-vivo skin permeation. Ethosomal composition was optimized using the 32 factorial design. Gel containing optimzsed ethosomes was studied for antidiabetic activity in rats.

Result: RPG ethosomes possessing the size of 0.171–1.727?µm and entrapment efficiency of 75–92% were obtained. They demonstrated a significantly higher permeation (64–97% of the administered dose) across excised rat skin when compared to free drug and its hydro alcoholic solution. In-vivo, RPG ethosomal system caused sustained antidiabetic effect.

Discussion: The lipid and ethanol concentration affected the physicochemical attributes and performance of ethosomes. The flexible ethosomes permeated the stratum corneum and improvized the availability of RPG for antidiabetic action. They prolonged the antidiabetic effect of RPG over a significantly longer period of time in comparison with the equivalent oral dose.

Conclusion: Ethosomal system can successfully deliver RPG transdermally; sustain its effect and thus reduce its dosing frequency. Ethosomes are useful for enhancing the efficacy of RPG in the treatment of diabetes.  相似文献   

11.
Physiological decrease in testosterone levels in men with age causes various changes with clinical significance. Recent testosterone replacement therapy is based mainly on transdermal nonpatch delivery systems. These products have the drawback of application on extremely large areas to achieve required hormone blood levels. The objective of the present study was to design and test a testosterone nonpatch formulation using ethosomes for enhanced transdermal absorption. The ethosomal formulation was characterized by transmission electron microscopy and dynamic light scattering for structure and size distribution and by ultracentrifugation for entrapment capacity. To evaluate the feasibility of this delivery system to enhance testosterone permeation through the skin, first the systemic absorption in rats was compared with a currently used gel (AndroGel®). Further, theoretical estimation of testosterone blood concentration following ethosomal application in men was made. For this purpose, in vitro permeation experiments through human skin were performed to establish testosterone skin permeation values. In the design of these experiments, testosterone solubility in various solutions was measured and the effect of the receiver medium on the skin barrier function was assessed by confocal laser scanning microscopy. Theoretical estimation shows that testosterone human plasma concentration value in the upper part of the physiological range could be achieved by application of the ethosomal formulation on an area of 40 cm2. This area is about 10 times smaller than required with current nonpatch formulations. Our work shows that the ethosomal formulation could enhance testosterone systemic absorption and also be used for designing new products that could solve the weaknesses of the current testosterone replacement therapies.  相似文献   

12.
The aim of the present study was to investigate transfersomes as a transdermal delivery system for the poorly soluble drug, sertraline, in order to overcome the troubles associated with its oral delivery. Different transfersomal formulations were prepared with non-ionic surfactant (span 80), soya lecithin, and carbopol 940 by the rotary evaporation sonication method. The prepared formulations were characterized for light microscopy, particle size analysis, drug entrapment, turbidity, drug content, rheological studies, in vitro release, ex vivo permeation, and stability studies. The optimized formulation was evaluated for in vivo studies using the modified forced swim model test. FTIR studies showed compatibility of the drug with excipients. The result revealed that sertraline in all of the formulations was successfully entrapped with uniform drug content. Transfersomal gel containing 1.6% of the drug and 20% of span 80 was concluded to be the optimized formulation (EL-SP4), as it showed maximum drug entrapment (90.4±0.15%) and cumulative percent drug release(73.8%). The ex vivo permeation profile of EL-SP4 was compared with the transfersomal suspension, control gel, and drug solution. The transfersomal gel showed a significantly higher (p<0.05) cumulative amount of drug permeation and flux along with lower lag time than the drug solution and drug gel. It also owed to better applicability due to the higher viscosity imparted by the gel rather than the transfersomal suspension, and no skin irritation was observed. The modified forced swim test in mice revealed that the transfersomal gel had better antidepressant activity as compared to the control gel. Thus, the study substantiated that the transfersomal gel can be used as a feasible alternative to the conventional formulations of sertraline with advanced permeation characteristics for transdermal application.  相似文献   

13.
Fentanyl in a rate controlling membrane (RCM) transdermal patch form has been available since the early 1990s for outpatient management of chronic pain. Fatalities associated with misuse or overuse of fentanyl patches have been reported. Concerns have also been raised about the possibility that defects in such patches may result in leaking of the reservoir of the patch onto patients’ skin and consequent overdose. In order to investigate the possibility of fentanyl toxicity arising from leaking of patches, the permeation of fentanyl from the reservoir gel of a commercially available fentanyl transdermal patch was examined in vitro. Finite doses of the formulation were applied to human skin and permeation was monitored, at 32 °C under non-occluded conditions, for 48 h. Similar levels of skin permeation of fentanyl from the 1% gel formulation were obtained for the two skin donor samples tested. After 48 h, the dose of fentanyl that had permeated was 7.4 (±3.6)% and 7.7 (±1.9)% of the respective total amounts applied. At the end of the experiment, most of the drug was found in the residual formulation at the skin surface (i.e. 63–66%). For both the skin samples, a relatively small amount of the fentanyl applied (2–3%) was present in the skin at 48 h after application. The maximum flux from the data generated was between 6 and 24 h over which time frame it was 0.3 μg/cm2/h. Assuming spreading of leaked gel over an area of 100 cm2, this would result in a plasma level of 0.6 ng/mL. The anticipated plasma levels from a 100 μg/h patch are known to be approximately 2.5 ng/ml. Thus, the maximum increase in the plasma levels from a patch which leaks gel is calculated to be, at most, about 25%.  相似文献   

14.
In the present work attempts have been made to prepare the nanostructured lipid carrier (NLC) gel, by using minoxidil, which is preferably used in case of Alopecia, i.e. baldness pattern as a effective drug. The nine different formulations of Minoxidil-NLC (NLC1–NLC9) were prepared using solid and liquid lipids with Cholesterol and Soya lecithin in different concentrations by the melt dispersion ultrasonication method. Properties of NLC1–NLC9 such as the particle size and its distribution, the scanning electron microscopy (SEM), the drug entrapment efficiency (EE), and the drug release behavior were investigated. The nanoparticulate dispersion was suitably gelled and characterized with respect to drug content, pH, spreadability, rheology, and in vitro release. Safety of the NLC-based gel was assessed using primary skin irritation studies. The formulated NLC3 was spherical in shape, with average particle size of 280 nm, zeta potential of ?42.40 mV and entrapment efficiency of 86.09%. Differential Scanning Calorimeter (DSC) measurements revealed that imperfect crystallization occurred in the inner core of the NLC particles. The drug release behavior from the NLC displayed a biphasic drug release pattern with burst release at the initial stage followed by sustained release. These results indicated that the NLC3 is a suitable carrier of minoxidil with improved drug loading capacity and controlled drug release properties. It has been observed that NLC gel produces the gel with good consistency, homogeneity, spreadability and rheological behavior. The developed NLC-based gel showed faster onset and elicited prolonged activity up to 16 h. The present study concluded that the NLC-based gel containing minoxidil dissolved in a mixture of solid lipid and liquid lipid in the nanoparticulate form helped us to attain the objective of faster onset yet prolonged action as evident from in vitro release.  相似文献   

15.
The goal of this study was to investigate the in vitro-in vivo correlation (IVIVC) for fenofibrate immediate release (IR) tablet formulations based on MeltDose®-technique. The in vitro determined drug solubility and permeability data were related to the Cmax values observed from two in vivo human studies. Solubility and permeation studies of fenofibrate were conducted in medium simulating the fasted state conditions in the upper jejunum, containing the surfactant compositions of the six formulations at different concentrations. The behavior of all surfactant compositions was characterized by surface tension, dynamic light scattering, and cryo-TEM. The obtained solubility and permeation data were combined and compared with the Cmax values for the fenofibrate formulations, assuming a 50 mL in vivo dissolution volume. A good IVIVC was observed for five fenofibrate formulations (R2 = 0.94). The in vitro studies revealed that the formulation compositions containing sodium lauryl sulfate (SLS) interfered with the vesicular drug solubilizing system of the biorelevant medium and antagonized its solubilization capacity. The opposing interaction of surfactants with the emulsifying physiological constituents in intestinal juice should be taken into consideration in order to prevent unsatisfactory in vivo performance of orally administered formulations with low soluble active pharmaceutical ingredients.  相似文献   

16.
The objective of work was to formulate, evaluate and compare the transdermal potential of novel vesicular nanocarriers: ethosomes and ultradeformable liposomes, containing clotrimazole (CLT), an anti-fungal bioactive. The ethosomal formulation (ET4) and ultradeformable liposomal (UL) formulation (TT3) showed highest entrapment 68.73 ± 1.4% and 55.51 ± 1.7%, optimal nanometric size range 132 ± 9.5 nm and 121 ± 9.7 nm, and smallest polydispersity index 0.027 ± 0.011 and 0.067 ± 0.009, respectively. The formulation ET4 provided enhanced transdermal flux 56.25 ± 5.49 μg/cm2/h and decreased the lag time of 0.9 h in comparison to TT3 formulation (50.16 ± 3.84 μg/cm2/h; 1.0 h). Skin interaction and FT-IR studies revealed greater penetration enhancing effect of ET4 than TT3 formulation. ET4 formulation also had the highest zone of inhibition (34.6 ± 0.57 mm), in contrast to TT3 formulation (29.6 ± 0.57 mm) and marketed cream formulation (19.0 ± 1.00 mm) against candidal species. Results suggested ethosomes to be the most proficient carrier system for dermal and transdermal delivery of clotrimazole.  相似文献   

17.
Abstract

Cetirizine is indicated for the treatment of allergic conditions such as insect bites and stings, atopic and contact dermatitis, eczema, urticaria. This investigation deals with development of a novel ethosome-based topical formulation of cetirizine dihydrochloride for effective delivery. The optimised formulation consisting of drug, phospholipon 90 G? and ethanol was characterised for drug content, entrapment efficiency, pH, vesicular size, spreadability and rheological behaviour. The ex vivo permeation studies through mice skin showed highest permeation flux (16.300?±?0.300?µg/h/cm2) and skin retention (20.686?±?0.517?µg/cm2) for cetirizine-loaded ethosomal vesicles as compared to conventional formulations. The in vivo pharmacodynamic evaluation of optimised formulation was assessed against oxazolone-induced atopic dermatitis (AD) in mice. The parameters evaluated were reduction in scratching score, erythema score, skin hyperplasia and dermal eosinophil count. Our results suggest that ethosomes are effective carriers for dermal delivery of antihistaminic drug, cetirizine, for the treatment of AD.  相似文献   

18.
The aim of this study was to develop stable parenteral pegylated indinavir submicron lipid emulsions (SLEs) for improving brain specific delivery. The O/W SLEs were prepared by homogenization and ultra sonication process. The sizes of oil globules varied from 241.5 to 296.4 nm and zeta potential from ?26.6 to ?42.4 mV. During in vitro drug release studies the cumulative amount of drug released within 12 h from SLE-5, DSP2-3 and DPP5-3 was 71.8 ± 0.76, 66.09 ± 1.45 and 68.33 ± 1.29, respectively. The total drug content and entrapment efficiencies were determined. The optimized formulations were stable for the effect of centrifugal stress, thermal stress, dilution stress and storage. In vivo pharmacokinetic and tissue distribution studies were performed in Swiss albino mice, the therapeutic availability (TA) of DSP2-3 was 3.59 times and 2.36 times in comparison to drug solution and SLE-5 respectively, where as DPP5-3 showed TA 2.8 and 1.84 times the drug solution and SLE-5, respectively. The brain to serum ratio of indinavir from DSP2-3 and DPP5-3 varied between 0.4 and 0.7 at all time points indicated the preferential accumulation of drug in brain. In conclusion, pegylated SLEs improved brain specific delivery of indinavir and will be useful in treating chronic HIV infection.  相似文献   

19.
To enhance permeation and solubility of an intranasal delivery system of fexofenadine hydrochloride (FXD HCl), a new formulation using poloxamer 407 (P407)/hydroxypropyl-β-cyclodextrin (HP-β-CD)-based thermoreversible gels with chitosan, was developed. Prepared gels were characterized by gelation temperature, viscosity, viscoelasticity, and drug release profile. The in vitro permeation study was performed in primary human nasal epithelial cell monolayers cultured by air–liquid interface method. The addition of chitosan caused the slight elevation of gelation temperature and viscosity-enhancing effect. Viscosity enhancement by the incorporation of chitosan caused the retardation of drug release from P407 gels in in vitro release test. The in vitro permeation profile showed that the increase in chitosan content (0.1% and 0.3%, w/v) significantly enhanced the permeation of FXD HCl. After intranasal administration of P407/HP-β-CD–based thermoreversible gels containing 0.1% and 0.3% of chitosan in rabbits at 0.5 mg/kg dose, plasma concentrations of FXD HCl were significantly higher than those of nasal solutions (p < 0.05). In particular, the bioavailability of the optimized thermoreversible gel containing 0.3% chitosan was about 18-fold higher than that of the solution type. These results suggested the feasibility that thermosensitive gels could be used as an effective dosage form to enhance the nasal absorption of FXD HCl.  相似文献   

20.
The low permeability of the anti-AIDS, tenofovir, limits its antiretroviral clinical potency. The proposed study aimed at assessing the critical biological responses of tenofovir through the development and optimization of its surfactant-based niosomal gels intended for vaginal delivery. Fatty acid chain length of the amphiphile and cholesterol loading were optimized using a 32 full factorial design. Vesicular size, shape and surface charge, drug entrapment efficiency, in vitro release, and skin permeation were used to assess the gels. In addition, their biological performance on L actobacillus crispatus viability and mucoadhesion to porcine vaginal tissue was also assessed. Within the design space, mucoadhesion percentage ranged from 6.2% to 28.6% and increased nonlinearly by decreasing niosomal vesicular size and linearly by increasing surface charge. Moreover, these gels were not cytotoxic to L actobacillus crispatus for 48 h. For maximizing tenofovir entrapment, percutaneous permeation, and mucoadhesion while achieving sustained-release features, an optimum formulation was proposed with the shortest length of fatty chain and 0.48 mM cholesterol content. Overall, applying quality by design paradigm to the development of tenofovir niosomal gels not only offered a promising nanomedicine for the vaginal microbicide delivery but also unveiled the critical formulation interactions influencing its biological performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号