首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golomb L  Oren M 《Cancer cell》2011,20(3):283-284
p53 activation by ribosomal biogenesis stress is important for tumor suppression. In the August issue of Nature Medicine, Sasaki et?al. identify PICT1 as a regulator of this process. PICT1 sequesters ribosomal protein RPL11 in the nucleolus, attenuating p53 induction. Excessive PICT1 may dampen the p53 response and promote cancer.  相似文献   

2.
Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.  相似文献   

3.
Stability of nucleolar versus non-nucleolar forms of human p14(ARF)   总被引:2,自引:0,他引:2  
Rodway H  Llanos S  Rowe J  Peters G 《Oncogene》2004,23(37):6186-6192
Fusion proteins containing the amino-terminal domain of human p14(ARF) linked to green fluorescent protein are able to bind MDM2 and stabilize p53 without localization in the nucleolus. However, these fusion proteins are inherently unstable, with half-lives considerably shorter than either authentic ARF or chimaeras containing the entire coding domain, both of which are predominantly nucleolar. We present evidence that the unstable fusion proteins are significantly stabilized if redirected to the nucleolus by addition of a basic motif based on the nuclear localization signal of SV40 T-antigen. Moreover, the stability of these proteins can be enhanced by modulating the functions of MDM2 and p53. These data are consistent with a model in which ARF interacts with MDM2 in the nucleoplasm but is consequently subject to proteasomal degradation. Nucleolar localization may serve to store or stabilize ARF.  相似文献   

4.
5.
6.
The human Ink4a/Arf tumor suppressor locus encodes two distinct products: p16(Ink4a) which prevents phosphorylation and inactivation of the retinoblastoma protein and, p14(Arf), a nucleolar protein which activates the function of the tumor suppressor p53 protein in the nucleoplasm in response to oncogenic stimulation through an as yet ill-defined mechanism. Here we show that the level of endogenous p14(Arf) and its balance between the nucleolus and the nucleoplasm in HeLa cells are exquisitely sensitive to changes in cell morphology and to short-lived perturbations in cell cycle and in nucleolar function such as those induced by the cyclin-dependent kinase inhibitor, roscovitine, and the casein kinase II and RNA synthesis inhibitor, DRB. Most remarkably, whereas p14(Arf) predominantly concentrates in the nucleolus of interphase cells and transiently disappears between metaphase and early G1 under normal growth conditions, it massively and reversibly accumulates in the nucleoplasm of postmitotic and S-phase cells upon short-term treatment with roscovitine and, at a lesser extent, DRB. In line with the fact that the nuclear level of p53 reaches a peak between mid-G1 and the G1/S border in p53-expressor cells which lack Arf expression, these results provide a clue that, in p53+/Arf+ cells, Arf proteins might serve both to speed and to amplify p53-mediated responses in conditions and cell cycle periods in which the mechanisms involved in p53 stabilization and activation are not fully operational. They further suggest that human endogenous p14(Arf) might activate p53 pathways in physiologic situations by acting inside the nucleoplasm, especially when normal cell cycle progression and nucleolar function are compromised.  相似文献   

7.
MDM2-ARF complex regulates p53 sumoylation   总被引:2,自引:0,他引:2  
Chen L  Chen J 《Oncogene》2003,22(34):5348-5357
The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Ubiquitination of p53 is regulated by ARF, which binds to MDM2 and inhibits its E3 ligase function. P53 is also subjected to modification by conjugation of SUMO-1. We found that a p53 mutant deficient for MDM2 binding (p53(14Q19S)) is poorly sumoylated in vivo compared to wild-type p53. Overexpression of MDM2 increases the level of p53 sumoylation, which is further stimulated by expression of ARF. Stimulation of p53 sumoylation requires a highly conserved region (102-116) encoded by exon 2 of ARF and correlates with the ability of ARF to target p53 to the nucleolus. An MDM2 deletion mutant (MDM2(Delta222-437)) with activated cryptic nucleolar localization signal also targets p53 to the nucleolus and efficiently promotes p53 sumoylation in the absence of ARF. Direct targeting of p53 to the nucleolus enhances its sumoylation in an MDM2- and ARF-dependent fashion. These results show that p53 sumoylation is regulated by MDM2- and ARF-mediated nucleolar targeting.  相似文献   

8.
Wu CT  Lin TY  Hsu HY  Sheu F  Ho CM  Chen EI 《Carcinogenesis》2011,32(12):1890-1896
Ling Zhi-8 (LZ-8), an immunomodulatory protein, is derived from and has been cloned from the medicinal mushroom Ganoderma lucidum (Reishi or Ling Zhi); this protein exhibits immunomodulating and antitumor properties. We investigated the effects of recombinant LZ-8 protein (rLZ-8) on the proliferation of A549 human lung cancer cells. Here, we showed that rLZ-8 inhibits cell growth and that this is correlated with increased G(1) arrest. The treatment of A549 cells with rLZ-8 activated p53 and p21 expression, and both the G(1) arrest and the antigrowth effect were found to be p53 dependent. It was further demonstrated that rLZ-8 inhibited tumor growth in mice transplanted with Lewis lung carcinoma cells. Interestingly, rLZ-8 treatment was found to lead to nucleolar stress (or ribosomal stress) as evidenced by inhibition of precursor ribosomal RNA synthesis and reduced polysome formation in A549 cells. These changes resulted in an increasing binding of ribosomal protein S7 to MDM2 and a decreased interaction between MDM2 and p53. Taking these results together, we have identified a novel rLZ-8 antitumor function that positively modulates p53 via ribosomal stress and inhibits lung cancer cell growth in vitro and in vivo. Our current results suggest that rLZ-8 may have potential as a therapeutic intervention for the treatment of cancers that contain wild-type p53 and high expression of MDM2.  相似文献   

9.
10.

Background:

The TP53 pathway is frequently inactivated in human cancers. PICT1 (also known as GLTSCR2) is a novel regulator of the MDM2-TP53 pathway via its interaction with the ribosomal protein RPL11 in the nucleolus. However, the clinical significance of PICT1 in gastric cancer remains unknown.

Methods:

To evaluate PICT1 function, we used shRNA to inhibit PICT1 expression in gastric cancer cells that expressed wild-type TP53. PICT1 expression and TP53 mutation status were quantified in 110 cases of primary gastric cancer to explore the impact of PICT1 expression levels on gastric cancer.

Results:

Deficiency of PICT1 significantly impaired cell proliferation and colony formation via TP53-mediated cell cycle arrest. Following induction of PICT1 deficiency, RPL11 translocated out of the nucleolus. Of the 110 gastric cancer samples tested, 70 (63.6%) and 40 (36.4%) tumours expressed wild-type and mutant TP53, respectively. In gastric cancer patients with wild-type TP53 tumours, patients with relatively low PICT1 expression levels had a better prognosis compared with high expression level patients (P=0.046).

Conclusion:

The findings suggest that PICT1 has a crucial role in gastric cancer progression by regulating the MDM2-TP53 pathway through RPL11. Clinically, PICT1 expression is a novel prognostic parameter in gastric cancer patients with wild-type TP53 tumours.  相似文献   

11.
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.  相似文献   

12.
Khan S  Guevara C  Fujii G  Parry D 《Oncogene》2004,23(36):6040-6046
Ionizing radiation leads to rapid stabilization and activation of the p53 tumor suppressor. Previous reports demonstrate that murine p19ARF cooperates with p53 in the cellular response to gamma irradiation. Here, we show that endogenous ARF sequentially interacts with p53 and MDM2 following irradiation of primary human and mouse embryonic fibroblasts. Shortly after irradiation, p14ARF binds p53 independently of MDM2. As nuclear pools of p53 decline, endogenous p14ARF co-immunoprecipitates with MDM2 and is localized within the nucleolus. Interestingly, p14ARF nucleolar localization during this response is abrogated in cells lacking functional p53. Taken together, our data suggest that human and murine ARF contribute to the mammalian DNA damage response.  相似文献   

13.
14.
15.
The p14 alternate reading frame (ARF) tumor suppressor plays a central role in cancer by binding to mdm2 (Hdm2 in humans) and enhancing p53-mediated apoptosis following DNA damage and oncogene activation. It is unclear, however, how ARF initiates its involvement in the p53/mdm2 pathway, as p53 and mdm2 are located in the nucleoplasm, whereas ARF is largely nucleolar in tumor cells. We have used immunofluorescence and coimmunoprecipitation to examine how the subnuclear distribution and protein-protein interactions of ARF change immediately after DNA damage and over the time course of the DNA damage response in human tumor cells. We find that DNA damage disrupts the interaction of ARF with the nucleolar protein B23(nucleophosmin) and promotes a transient p53-independent translocation of ARF to the nucleoplasm, resulting in a masking of the ARF NH2 terminus that correlates with the appearance of ARF-Hdm2 complexes. The translocation also results in an unmasking of the ARF COOH terminus, suggesting that redistribution disrupts a nucleolar interaction of ARF involving this region. By 24 hours after irradiation, DNA repair has ceased and the pretreatment immunofluorescence patterns and complexes of ARF have been restored. Although the redistribution of ARF is independent of p53 and likely to be regulated by interactions other than Hdm2, ARF does not promote UV sensitization unless p53 is expressed. The results implicate the nucleolus and nucleolar interactions of the ARF, including potentially novel interactions involving its COOH terminus as sites for early DNA damage and stress-mediated cellular events.  相似文献   

16.
17.
Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antagonizes MDM2 association with the inhibitory complex, leading to activation of MDM2 E3-ligase activity and targeting of p53. We find that AKT phosphorylation of NPM-Ser48 prevents oligomerization that results in nucleoplasmic localization of ARF, constitutive MDM2 inhibition and stabilization of p53. We also show that ARF promotes p53 mutant stability in tumors and suppresses p73 mediated p21 expression and senescence. We demonstrate that AKT and PI3K inhibitors may be effective in treatment of therapeutically resistant tumors with elevated AKT and carrying gain of function mutations in p53. Our results show that the clinical candidate AKT inhibitor MK-2206 promotes ARF nucleolar localization, reduced p53mut stability and increased sensitivity to ionizing radiation in a xenograft model of pancreatic cancer. Analysis of human tumors indicates that phospho-S48-NPM may be a useful biomarker for monitoring AKT activity and in vivo efficacy of AKT inhibitor treatment. Critically, we propose that combination therapy involving PI3K-AKT inhibitors would benefit from a patient stratification rationale based on ARF and p53mut status.  相似文献   

18.
19.
The p53 tumor suppressor is a nucleocytoplasmic shuttling protein that is found predominantly in the nucleus of cells. In addition to mutation, abnormal p53 cellular localization is one of the mechanisms that inactivate p53 function. To further understand features of p53 that contribute to the regulation of its trafficking within the cell, we analysed the subnuclear localization of wild-type and mutant p53 in human cells that were either permeabilized with detergent or treated with the proteasome inhibitor MG132. We, here, show that either endogenously expressed or exogenously added p53 protein localizes to the nucleolus in detergent-permeabilized cells in a concentration- and ATP hydrolysis-dependent manner. Two discrete regions within the carboxyl terminus of p53 are essential for nucleolar localization in permeabilized cells. Similarly, localization of p53 to the nucleolus after proteasome inhibition in unpermeabilized cells requires sequences within the carboxyl terminus of p53. Interestingly, genotoxic stress markedly decreases the association of p53 with the nucleolus, and phosphorylation of p53 at S392, a site that is modified by such stress, partially impairs its nucleolar localization. The possible significance of these findings is discussed.  相似文献   

20.
RRP12 (ribosomal RNA processing 12 homolog), a nucleolar protein, plays important roles in cell cycle progression and the response to deoxyribonucleic acid (DNA) damage in yeast cells. However, its role has not been investigated in mammalian cells that possess p53, which has close functional association to nucleolus. We explored the role of RRP12 in nucleolar stress condition using an osteosarcoma cell line, U2OS. To induce DNA damage and nucleolar disruption, two cytotoxic drugs, doxorubicin and actinomycin D were used. Cytotoxic stress resulted nucleolar disruption induced cell cycle arrest and apoptosis in U2OS cells. However, RRP12 overexpression promoted resistance to cytotoxic stress. In contrast, RRP12 silencing enhanced susceptibility to cytotoxic stress. During drug treatment, p53 activity and cell death were suppressed by RRP12 overexpression but promoted by RRP12 silencing. This study demonstrated that RRP12 was crucial for cell survival during cytotoxic stress via the repression of p53 stability. Thus, targeting RRP12 may enhance chemotherapeutic effect in cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号