首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The initial electron transfer in reaction centers from Rhodobacter sphaeroides R26 was studied by a subpicosecond transient pump-probe technique. The measured kinetics at various wavelengths were analyzed and compared with several mechanisms for electron transfer. An unambiguous determination of the initial electron transfer mechanism in reaction centers cannot be made by studying the anion absorption region (640-690 nm), due to the spectral congestion in this region. However, correlations between the stimulated emission decay of the excited state of the special pair, P*, at 926 nm and bleaching of the bacteriopheophytin Qx absorption at 545 nm suggest that the electron transfer at 283 K is dominated by a two-step sequential mechanism, whereas one-step superexchange and the two-step sequential mechanism have about equal contributions at 22 K.  相似文献   

2.
The primary electron transfer in reaction centers of Rhodobacter sphaeroides is studied by subpicosecond absorption spectroscopy with polarized light in the spectral range of 920-1040 nm. Here the bacteriochlorophyll anion radical has an absorption band while the other pigments of the reaction center have vanishing ground-state absorption. The transient absorption data exhibit a pronounced 0.9-ps kinetic component which shows a strong dichroism. Evaluation of the data yields an angle between the transition moments of the special pair and the species related with the 0.9-ps kinetic component of 26 +/- 8 degrees. This angle compares favorably with the value of 29 degrees expected for the reduced accessory bacteriochlorophyll. Extensive transient absorbance data are fully consistent with a stepwise electron transfer via the accessory bacteriochlorophyll.  相似文献   

3.
High-resolution mapping of cofactor-specific photochemistry in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides was achieved by polarization selective ultrafast spectroscopy in single crystals at cryogenic temperature. By exploiting the fixed orientation of cofactors within crystals, we isolated a single transition within the multicofactor manifold, and elucidated the site-specific photochemical functions of the cofactors associated with the symmetry-related active A and inactive B branches. Transient spectra associated with the initial excited states were found to involve a set of cofactors that differ depending upon whether the monomeric bacteriochlorophylls, BChl(A), BChl(B), or the special pair bacteriochlorophyll dimer, P, was chosen for excitation. Proceeding from these initial excited states, characteristic photochemical functions were resolved. Specifically, our measurements provide direct evidence for an alternative charge separation pathway initiated by excitation of BChl(A) that does not involve P*. Conversely, the initial excited state produced by excitation of BChl(B) was found to decay by energy transfer to P. A clear sequential kinetic resolution of BChl(A) and the A-side bacteriopheophytin, BPh(A), in the electron transfer proceeding from P* was achieved. These experiments demonstrate the opportunity to resolve photochemical function of individual cofactors within the multicofactor RC complexes using single crystal spectroscopy.  相似文献   

4.
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.  相似文献   

5.
The initial electron transfer steps in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides have been investigated by femtosecond time-resolved spectroscopy. The experimental data taken at various wavelengths demonstrate the existence of at least four intermediate states within the first nanosecond. The difference spectra of the intermediates and transient photodichroism data are fully consistent with a sequential four-step model of the primary electron transfer: Light absorption by the special pair P leads to the state P*. From the excited primary donor P*, the electron is transferred within 3.5 +/- 0.4 ps to the accessory bacteriochlorophyll B. State P+B- decays with a time constant of 0.9 +/- 0.3 ps passing the electron to the bacteriopheophytin H. Finally, the electron is transferred from H- to the quinone QA within 220 +/- 40 ps.  相似文献   

6.
Reaction centers from the photosynthetic bacterium Rhodopseudomonas viridis have been excited within the near-infrared absorption bands of the dimeric primary donor (P), of the “accessory” bacteriochlorophylls (B), and of the bacteriopheophytins (H) by using laser pulses of 150-fsec duration. The transfer of excitation energy between H, B, and P occurs in slightly less than 100 fsec and leads to the ultrafast formation of an excited state of P. This state is characterized by a broad absorption spectrum and exhibits stimulated emission. It decays in 2.8 ± 0.2 psec with the simultaneous oxidation of the primary donor and reduction of the bacteriopheophytin acceptor, which have been monitored at 545, 675, 815, 830, and 1310 nm. Although a transient bleaching relaxing in 400 ± 100 fsec is specifically observed upon excitation and observation in the 830-nm absorption band, we have found no indication that an accessory bacteriochlorophyll is involved as a resolvable intermediary acceptor in the primary electron transfer process.  相似文献   

7.
Photosystem II reaction centers have been studied by femtosecond transient absorption spectroscopy. We demonstrate that it is possible to achieve good photoselectivity between the primary electron donor P680 and the majority of the accessory chlorins. Energy transfer can be observed in both directions between P680 and these accessory chlorins depending on which is initially excited. After excitation of either P680 or the other chlorins, the excitation energy is observed to equilibrate between the majority of these pigments at a rate of 100 +/- 50 fs-1. This energy-transfer equilibration takes place before any electron-transfer reactions and must therefore be taken into account in studies of primary electron-transfer reactions in photosystem II. We also show further evidence that the initially excited P680 excited singlet state is delocalized over at least two chlorins and that this delocalization lasts for at least 200 fs.  相似文献   

8.
The peripheral accessory chlorophylls (Chls) of the photosystem II (PSII) reaction center (RC) are coordinated by a pair of symmetry-related histidine residues (D1-H118 and D2-H117). These Chls participate in energy transfer from the proximal antennae complexes (CP43 and CP47) to the RC core chromophores. In addition, one or both of the peripheral Chls are redox-active and participate in a low-quantum-yield electron transfer cycle around PSII. We demonstrate that conservative mutations of the D2-H117 residue result in decreased Chl fluorescence quenching efficiency attributed to reduced accumulation of the peripheral accessory Chl cation, Chl(Z)(+). In contrast, identical symmetry-related mutations at residue D1-H118 had no effect on Chl fluorescence yield or quenching kinetics. Mutagenesis of the D2-H117 residue also altered the line width of the Chl(Z)(+) EPR signal, but the line shape of the D1-H118Q mutant remained unchanged. The D1-H118 and D2-H117 mutations also altered energy transfer properties in PSII RCs. Unlike wild type or the D1-H118Q mutant, D2-H117N RCs exhibited a reduced CD doublet in the red region of Chl absorbance band, indicative of reduced energetic coupling between P680 and the peripheral accessory Chl. In addition, transient absorption measurements of D2-H117N RCs, excited on the blue side of the Chl absorbance band, exhibited a ( approximately 400 fs) pheophytin Q(X) band bleach lifetime component not seen in wild-type or D1-H118Q RCs. The origin of this component may be related to delayed fast-energy equilibration of the excited state between the core pigments of this mutant.  相似文献   

9.
The nature of the initially excited state of the primary electron donor or special pair has been investigated by Stark effect spectroscopy for reaction centers from the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides at 77 K. The data provide values for the magnitude of the difference in permanent dipole moment between the ground and excited state, [unk]Δμ[unk], and the angle [unk] between Δμ and the transition dipole moment for the electronic transition. [unk]Δμ[unk] and [unk] for the lowest-energy singlet electronic transition associated with the special pair primary electron donor were found to be very similar for the two species. [unk]Δμ[unk] for this transition is substantially larger than for the Qy transitions of the monomeric pigments in the reaction center or for pure monomeric bacteriochlorophylls, for which Stark data are also reported. We conclude that the excited state of the special pair has substantial charge-transfer character, and we suggest that charge separation in bacterial photosynthesis is initiated immediately upon photoexcitation of the special pair. Data for Rhodobacter sphaeroides between 340 and 1340 nm are presented and discussed in the context of the detection of charge-transfer states by Stark effect spectroscopy.  相似文献   

10.
Photoinhibition of photosynthesis was studied in isolated photosystem II membranes by using chlorophyll fluorescence and electron paramagnetic resonance (EPR) spectroscopy combined with protein analysis. Under anaerobic conditions four sequentially intermediate steps in the photoinhibitory process were identified and characterized. These intermediates show high dark chlorophyll fluorescence (Foi) with typical decay kinetics (fast, semistable, stable, and nondecaying). The fast-decaying state has no bound QB but possesses a single reduced QA species with a 30-s decay half-time in the dark (QB, second quinone acceptor; QA, first quinone acceptor). In the semistable state, Q-A is stabilized for 2-3 min, most likely by protonation, and gives rise to the Q-A Fe2+ EPR signal in the dark. In the stable state, QA has become double reduced and is stabilized for 0.5-2 hr by protonation and a protein conformational change. The final, nondecaying state is likely to represent centers where QA H2 has left its binding site. The first three photoinhibitory states are reversible in the dark through reestablishment of QA to QB electron transfer. Significantly, illumination at 4 K of anaerobically photoinhibited centers trapped in all but the fast state gives rise to a spinpolarized triplet EPR signal from chlorophyll P680 (primary electron donor). When oxygen is introduced during anaerobic illumination, the light-inducible chlorophyll triplet is lost concomitant with induction of D1 protein degradation. The results are integrated into a model for the photoinhibitory process involving initial loss of bound QB followed by stable reduction and subsequent loss of QA facilitating chlorophyll P680 triplet formation. This in turn mediates light-induced formation of highly reactive and damaging singlet oxygen.  相似文献   

11.
Rapid-flow resonance Raman vibrational spectra of bacterial photosynthetic reaction centers from the R-26 mutant of Rhodobacter sphaeroides have been obtained by using excitation wavelengths (810-910 nm) resonant with the lowest energy, photochemically active electronic absorption. The technique of shifted excitation Raman difference spectroscopy is used to identify genuine Raman scattering bands in the presence of a large fluorescence background. The comparison of spectra obtained from untreated reaction centers and from reaction centers treated with the oxidant K3Fe(CN)6 demonstrates that resonance enhancement is obtained from the special pair. Relatively strong Raman scattering is observed for special pair vibrations with frequencies of 36, 94, 127, 202, 730, and 898 cm-1; other modes are observed at 71, 337, and 685 cm-1. Qualitative Raman excitation profiles are reported for some of the strong modes, and resonance enhancement is observed to occur throughout the near-IR absorption band of the special pair. These Raman data determine which vibrations are coupled to the optical absorption in the special pair and, thus, probe the nuclear motion that occurs after electronic excitation. Implications for the interpretation of previous hole-burning experiments and for the excited-state dynamics and photochemistry of reaction centers are discussed.  相似文献   

12.
Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin-chlorophyll-a-protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600-1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency.  相似文献   

13.
A pathway of electron transfer is described that operates in the wild-type reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides. The pathway does not involve the excited state of the special pair dimer of bacteriochlorophylls (P*), but instead is driven by the excited state of the monomeric bacteriochlorophyll (BA*) present in the active branch of pigments along which electron transfer occurs. Pump-probe experiments were performed at 77 K on membrane-bound RCs by using different excitation wavelengths, to investigate the formation of the charge separated state P+HA-. In experiments in which P or BA was selectively excited at 880 nm or 796 nm, respectively, the formation of P+HA- was associated with similar time constants of 1.5 ps and 1. 7 ps. However, the spectral changes associated with the two time constants are very different. Global analysis of the transient spectra shows that a mixture of P+BA- and P* is formed in parallel from BA* on a subpicosecond time scale. In contrast, excitation of the inactive branch monomeric bacteriochlorophyll (BB) and the high exciton component of P (P+) resulted in electron transfer only after relaxation to P*. The multiple pathways for primary electron transfer in the bacterial RC are discussed with regard to the mechanism of charge separation in the RC of photosystem II from higher plants.  相似文献   

14.
We report light-induced electron paramagnetic resonance triplet spectra from samples of chloroplasts or digitonin photosystem I particles that depend upon the dark redox state of the bound acceptors of photosystem I. If the reaction centers are prepared in the redox state P-700 A X- FdB-FdA-, then upon illumination at 11K we observe a polarized chlorophyll triplet species which we interpret as arising from radical pair recombination between P-700+ and A-. This chlorophyll triplet is apparently the analog of the PR state of photosynthetic bacteria [Parson, W.W. & Cogdell, R.J. (1975) Biochim. Biophys. Acta 416, 105-149]. If the reaction centers are prepared in the dark redox state P-700 A X FdB-FdA-, then upon illumination at 11K we observe a different triplet species of uncertain origin, possibly pheophytin or carotenoid. This species is closely associated with the photosystem I reaction center and it traps excitation when P-700 is oxidized.  相似文献   

15.
The mechanism and kinetics of electron transfer in isolated D1/D2-cyt(b559) photosystem (PS) II reaction centers (RCs) and in intact PSII cores have been studied by femtosecond transient absorption and kinetic compartment modeling. For intact PSII, a component of approximately 1.5 ps reflects the dominant energy-trapping kinetics from the antenna by the RC. A 5.5-ps component reflects the apparent lifetime of primary charge separation, which is faster by a factor of 8-12 than assumed so far. The 35-ps component represents the apparent lifetime of formation of a secondary radical pair, and the approximately 200-ps component represents the electron transfer to the Q(A) acceptor. In isolated RCs, the apparent lifetimes of primary and secondary charge separation are approximately 3 and 11 ps, respectively. It is shown (i) that pheophytin is reduced in the first step, and (ii) that the rate constants of electron transfer in the RC are identical for PSII cores and for isolated RCs. We interpret the first electron transfer step as electron donation from the primary electron donor Chl(acc D1). Thus, this mechanism, suggested earlier for isolated RCs at cryogenic temperatures, is also operative in intact PSII cores and in isolated RCs at ambient temperature. The effective rate constant of primary electron transfer from the equilibrated RC* excited state is 170-180 ns(-1), and the rate constant of secondary electron transfer is 120-130 ns(-1).  相似文献   

16.
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield . A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.  相似文献   

17.
The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed (approximately 63% on the L half of the special pair and approximately 37% on the M half) on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms (approximately 23% in Rps. viridis and approximately 13% in Rb. sphaeroides).  相似文献   

18.
The lifetime of the molecular triplet state formed by recombination of the radical ion pair in quinonedepleted bacterial photosynthetic reaction centers is found to depend on applied magnetic field strength. It is suggested that this magnetic field effect results from thermally activated repopulation of the same radical ion pair that generates the triplet. Consistent with this hypothesis, the magnetic field effect on the triplet lifetime disappears at low temperature where the triplet state decays exclusively by ordinary intersystem crossing. This activated pathway for the decay of the triplet state can explain the strong temperature dependence of the triplet decay rate. A detailed theoretical treatment of the problem within a set of physically reasonable assumptions relates the observed temperature dependence of the triplet decay rate to the energy gap between the radical ion pair intermediate and the triplet state. This energy gap is estimated to be about 950 cm-1 (0.12 eV). Combined with an estimate of the energy of the donor excited state, we obtain an energy gap between the excited singlet state of the donor and the radical ion pair of 2,250 cm-1 (0.28 eV).  相似文献   

19.
The photooxidation of chlorophyll b by 1,4-benzoquinone and 2,6-dimethyl-1,4-benzoquinone was investigated by the technique of chemically-induced dynamic nuclear polarization. Polarization of the proton magnetic resonance lines of the quinone was detected. A mechanism for the photooxidation was postulated that invokes the reaction of the quinone with the excited singlet state of the chlorophyll to form a radical pair. This mechanism, together with a theoretical model and parameters taken from the literature, yields a theoretical proton magnetic resonance spectrum for the polarized quinone that agrees well with that observed experimentally.  相似文献   

20.
The composition of photosystem II (PSII) in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017 was investigated to enhance the general understanding of the energetics of the PSII reaction center. We first purified photochemically active complexes consisting of a 47-kDa Chl protein (CP47), CP43' (PcbC), D1, D2, cytochrome b(559), PsbI, and a small polypeptide. The pigment composition per two pheophytin (Phe) a molecules was 55 +/- 7 Chl d, 3.0 +/- 0.4 Chl a, 17 +/- 3 alpha-carotene, and 1.4 +/- 0.2 plastoquinone-9. The special pair was detected by a reversible absorption change at 713 nm (P713) together with a cation radical band at 842 nm. FTIR difference spectra of the specific bands of a 3-formyl group allowed assignment of the special pair. The combined results indicate that the special pair comprises a Chl d homodimer. The primary electron acceptor was shown by photoaccumulation to be Phe a, and its potential was shifted to a higher value than that in the Chl a/Phe a system. The overall energetics of PSII in the Chl d system are adjusted to changes in the redox potentials, with P713 as the special pair using a lower light energy at 713 nm. Taking into account the reported downward shift in the potential of the special pair of photosystem I (P740) in A. marina, our findings lend support to the idea that changes in photosynthetic pigments combine with a modification of the redox potentials of electron transfer components to give rise to an energetic adjustment of the total reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号