首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female SWR mice were treated with 1,2-dimethylhydrazine (DMH: 6.8 mg/kg i.p. injection) once weekly for up to 10 weeks, a dosing regime that produced tumours principally within the distal colon (Jackson et al., 1999. Carcinogenesis 20, 509-513). O(6)-Methylguanine (O(6)-MeG) levels, measured using a simple [3H]-based O(6)-alkylguanine-DNA alkyltransferase (ATase) inactivation assay, ranged from 0.6 to 16.7 fmol/microg DNA with: (i) highest levels in the distal colon; and (ii) higher levels after 68 mg/kg total DMH than 6.8 mg/kg DMH. Basal ATase activity varied between 0.97 and 1.22 fmol/microg DNA within the colon but was not associated with adduct levels or tumour induction. After 6.8 mg/kg DMH, the half life of O(6)-MeG in colonic tissue was 36-42 h whereas after 68 mg/kg DMH, t1/2 was approximately 25, 57 and 96 h in the proximal, mid and distal colon, respectively. Tumour induction was thus associated with the levels and persistence of O(6)-MeG in the distal colon.  相似文献   

2.
Cellular resistance to chemotherapeutics that alkylate the O-6 position of guanine residues in DNA correlates with their O(6)-alkylguanine-DNA alkyltransferase activity. In normal cells high [O(6)-alkylguanine-DNA alkyltransferase] is beneficial, sparing the host from toxicity, whereas in tumor cells high [O(6)-alkylguanine-DNA alkyltransferase] prevents chemotherapeutic response. Therefore, it is necessary to selectively inactivate O(6)-alkylguanine-DNA alkyltransferase in tumors. The oxygen-deficient compartment unique to solid tumors is conducive to reduction, and could be utilized to provide this selectivity. Therefore, we synthesized 2-nitro-6-benzyloxypurine, an analog of O(6)-benzylguanine in which the essential 2-amino group is replaced by a nitro moiety, and 2-nitro-6-benzyloxypurine is >2000-fold weaker than O(6)-benzylguanine as an O(6)-alkylguanine-DNA alkyltransferase inhibitor. We demonstrate oxygen concentration sensitive net reduction of 2-nitro-6-benzyloxypurine by cytochrome P450 reductase, xanthine oxidase, and EMT6, DU145, and HL-60 cells to yield O(6)-benzylguanine. We show that 2-nitro-6-benzyloxypurine treatment depletes O(6)-alkylguanine-DNA alkyltransferase in intact cells under oxygen-deficient conditions and selectively sensitizes cells to laromustine (an agent that chloroethylates the O-6 position of guanine) under oxygen-deficient but not normoxic conditions. 2-Nitro-6-benzyloxypurine represents a proof of concept lead compound; however, its facile reduction (E(1/2) - 177 mV versus Ag/AgCl) may result in excessive oxidative stress and/or the generation of O(6)-alkylguanine-DNA alkyltransferase inhibitors in normoxic regions in vivo.  相似文献   

3.
Human colon cancer is resistant to a variety of alkylating agents including the nitrosoureas. To specifically evaluate nitrosourea resistance, we studied the role of O6-alkylguanine-DNA alkyltransferase (alkyltransferase) which is known to repair nitrosourea-induced cytotoxic DNA damage. Alkyltransferase activity varied over a similar wide range in 25 colon cancer biopsies and 14 colon cancer cell lines but the activity was not correlated with differentiation status, Dukes' classification or in vitro growth characteristics. 1,3-Bis-(2-chloroethyl)-1-nitrosourea (BCNU) resistance and alkyltransferase activity were highly correlated (R2 = 0.929, P less than 0.001) in 7 different colon cancer cell lines, suggesting that the alkyltransferase is an important component of nitrosourea resistance in colon cancer cells. In the BCNU-resistant, high alkyltransferase VACO 6 cell line, inactivation of the alkyltransferase by O6-methylguanine caused a proportional decrease in the BCNU IC50, consistent with that predicted by the regression line. Enzyme inactivation was also associated with a marked increase in DNA cross-link formation. Because alkyltransferase correlates with BCNU resistance in colon cancer, and resistance can be reversed by inactivating the protein, the alkyltransferase may have an important role in nitrosourea resistance in human colon cancer cells. These data provide the rationale for clinical trials in colon cancer with biochemical modulators of the alkyltransferase to increase the therapeutic response to nitrosoureas.  相似文献   

4.
O6-Benzylguanine (BG) is an inactivator of human O6-alkylguanine-DNA alkyltransferase (AGT) currently undergoing clinical trials to enhance cancer chemotherapy by alkylating agents. Mutant forms of AGT resistant to BG in vitro were expressed in CHO cells to determine if they could impart resistance to killing by the combination of BG and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). All the BG-resistant mutant proteins tested (P140A, P140K, P138M/V139L/P140K, G156A, P140A/G160R, and G160R) showed a reduced rate of reaction with methylated DNA substrates in vitro. However, when expressed in equal amounts in CHO cells, mutants P140A, P140K, P138M/V139L/P140K, and G160R gave levels of protection from the chloroethylating agent BCNU equivalent to that of wild-type AGT. This indicates that a 10-fold reduction in rate constant did not prevent their ability to repair chloroethylated DNA in the cell. AGT activity was readily lost when CHO cells expressing wild-type AGT were exposed to BG or its 8-oxo metabolite (O6-benzyl-8-oxoguanine), but cells expressing mutants P140A or G160R required 30-fold higher concentrations and cells expressing mutants P140K or P138M/V139L/P140K were totally resistant. When cells were treated with 80 microM BCNU plus BG or 8-oxo-BG, those expressing wild-type AGT were killed when inhibitor concentrations of up to 500 microM were used, whereas cells expressing P140K or P138M/V139L/P140K showed no effect, and cells expressing P140A or G160R showed an intermediate resistance. These results suggest that: (i) appearance of BG-resistant mutant AGTs may be a problem during therapy, and (ii) the P140K mutant AGT is an excellent candidate for gene therapy approaches where expression of a BG-resistant AGT in hematopoietic cells is used to reduce toxicity.  相似文献   

5.
《Biochemical pharmacology》1997,53(10):1559-1564
Studies were carried out on the inactivation of pure human O6-alkylguanine-DNA alkyltransferase by 9-substituted O6-benzylguanine derivatives in the presence and absence of DNA. The addition of DNA increased the rate of inactivation of the alkyltransferase by O6-benzylguanine and its 9-methyl derivative but had little effect on the rate of inactivation by the 9-cyanomethyl derivative. In contrast, when O6-benzylguanine derivatives with larger 9-substituents such as ribose, 2′-deoxyribose, dihydrotestosterone, or 2-hydroxy-3-(isopropoxy)propyl were used, the addition of DNA was strongly inhibitory to the inactivation. In the case of O6-benzylguanine, O6-benzylguanosine, and O6-benzyl-2′-deoxyguanosine, these results were confirmed by directly measuring the rate of formation by the alkyltransferase of guanine, guanosine, or 2′-deoxyguanosine, respectively. The data indicated that the presence of DNA activated the alkyltransferase, rendering it more reactive with O6-benzylguanine or O6-benzyl-9-methylguanine, but that DNA interferes with the binding of inhibitors with larger 9-substituents, presumably by competing for the same binding site. Since these inactivators readily inactivate alkyltransferase in cells, the amount of cellular alkyltransferase bound to DNA must be small or readily exchangeable with the free form.  相似文献   

6.
2-amino-O4-benzylpteridine (1), 2-amino-O4-benzyl-6,7-dimethylpteridine (2), 2-amino-O4-benzyl-6-hydroxymethylpteridine (4), 2-amino-O4-benzylpteridine-6-carboxylic acid (5), 2-amino-O4-benzyl-6-formylpteridine (6), and O4-benzylfolic acid (7) are shown to be as potent or more potent inactivators of the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (alkyltransferase) in vitro than O6-benzylguanine, the prototype alkyltransferase inactivator currently in clinical trials. Additionally, the negatively charged (at physiological pH) inactivators 2-amino-O4-benzylpteridine-6-carboxylic acid (5) and O4-benzylfolate (7) are far more water soluble than O6-benzylguanine. The activity of O4-benzylfolic acid (7) is particularly noteworthy because it is roughly 30 times more active than O6-benzylguanine against the wild-type alkyltransferase and is even capable of inactivating the P140K mutant alkyltransferase that is resistant to inactivation by O6-benzylguanine. All the pteridine derivatives except 2-amino-O4-benzylpteridine-6-carboxylic acid are effective in enhancing cell killing by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). However, the effectiveness of O4-benzylfolate as an adjuvant for cell killing by BCNU appears to be a function of a cell's alpha-folate receptor expression. Thus, O4-benzylfolate is least effective as an adjuvant in A549 cells (which express little if any receptor), is moderately effective in HT29 cells (which express low levels of the receptor), but is very effective in KB cells (which are known to express high levels of the alpha-folate receptor). Therefore, O4-benzylfolic acid shows promise as an agent for possible tumor-selective alkyltransferase inactivation, which suggests it may prove to be superior to O6-benzylguanine as a chemotherapy adjuvant.  相似文献   

7.
O6-Alkylguanine-DNA alkyltransferase (alkyltransferase) provides an important source of resistance to some cancer chemotherapeutic alkylating agents. Folate ester derivatives of O6-benzyl-2'-deoxyguanosine and of O6-[4-(hydroxymethyl)benzyl]guanine were synthesized and tested for their ability to inactivate human alkyltransferase. Inactivation of alkyltransferase by the gamma-folate ester of O6-[4-(hydroxymethyl)benzyl]guanine was similar to that of the parent base. The gamma-folate esters of O6-benzyl-2'-deoxyguanosine were more potent alkyltransferase inactivators than the parent nucleoside. The 3'-ester was considerably more potent than the 5'-ester and was more than an order of magnitude more active than O6-benzylguanine, which is currently in clinical trials to enhance therapy with alkylating agents. They were also able to sensitize human tumor cells to killing by 1,3-bis(2-chloroethyl)-1-nitrosourea, with O6-benzyl-3'-O-(gamma-folyl)-2'-deoxyguanosine being most active. These compounds provide a new class of highly water-soluble alkyltransferase inactivators and form the basis to construct more tumor-specific and potent compounds targeting this DNA repair protein.  相似文献   

8.
A series of O6- and S6-substituted purine derivatives were tested for their ability to deplete the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cell-free extracts from HT29 colon tumor cells and intact HT29 cells. The order of potency was O6-(p-Y-benzyl)-guanine (Y = H, F, Cl, and CH3) > O6-benzyl-2'-deoxyguanosine > O6-(p-Y-benzyl)guanosine (Y = H, Cl, and CH3) > or = a series of 9-substituted O6-benzylguanine derivatives > or = O6-allylguanine > O6-benzylhypoxanthine > O6-methylguanine. A series of 7-substituted O6-benzylguanine derivatives, 2-amino-6-(p-Y-benzylthio)purine (Y = H, CH3), 2-amino-6-[(p-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and 7-benzylguanine were inactive. It is concluded that for efficient AGT depletion, an allyl or benzyl group attached through exocyclic oxygen at position 6 of a 2-aminopurine derivative is required. Activity is preserved with a variety of substituent groups attached to position 9 while substitution at position 7 leads to a complete loss of activity.  相似文献   

9.
Curcumin, a diferuloylmethane, has been shown to exhibit anti-inflammatory and anti-proliferative activities. Whereas curcumin has both a Michael acceptor and a Michael donor units, its analogues dibenzoylmethane (DBM, a component of licorice) and dibenzoylpropane (DBP) have a Michael donor but not a Michael acceptor unit, and the analogue dibenzylideneacetone (DBA) has a Michael acceptor unit. In the current report, we investigated the potency of DBM, DBP, and DBA in relation to curcumin for their ability to suppress TNF-induced NF-κB activation, NF-κB-regulated gene products, and cell proliferation. We found that all four agents were active in suppressing NF-κB activation; curcumin was most active and DBM was least active. When examined for its ability to inhibit the direct DNA binding activity of p65, a subunit of NF-κB, only DBP inhibited the binding. For inhibition of TNF-induced IKK activation, DBA was most active. For suppression of TNF-induced expression of NF-κB-regulated gene products such as COX-2 (inflammation marker), cyclin D1 (proliferation marker), and VEGF (angiogenesis marker), DBA and curcumin were more active than DBM. Similarly for suppression of proliferation of leukemia (KBM-5), T cell leukemia (Jurkat), prostate (DU145), and breast (MDA-MB-231) cancer cells, curcumin and DBA were most active and DBP was least active. Overall, our results indicate that although curcumin and its analogues exhibit activities to suppress inflammatory pathways and cellular proliferation, a lack of Michael acceptor units in DBM and DBP can reduce their activities.  相似文献   

10.
O6-methylguanine DNA methyltransferase/O6-alkylguanine DNA alkyltransferase (MGMT/AGT) removes alkyl adducts from the O6-position of guanine in DNA. Expression of MGMT in human cancers has been associated with resistance to therapies using alkylating agents. MGMT promoter methylation regulates its expression and response to alkylating agents. A combination of O6-benzylguanine-based inhibitors of MGMT with alkylating agents improved the efficacy. However, this is associated with enhanced cytotoxicity and the induction of GC to AT transition mutations presumably also in progenitor/stem cells. A few recent studies have described analogs of O6-benzylguanine targeting defined pathways of cancer cells that can be used to improve the selectivity of O6-benzylguanine-based inhibitors for cancer cells. Therefore, MGMT inhibitor targeting represents a reliable strategy for improving cancer therapy with alkylating agents.  相似文献   

11.
The tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are potent carcinogens in animal models and likely human carcinogens. Both NNK and NNN can be activated to a pyridyloxobutylating agent. This alkylating agent contributes to the carcinogenic effects of NNK and NNN via the formation of miscoding DNA adducts. One of these adducts, O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG) has been characterized as a mutagenic adduct which is a substrate for the repair protein O6-alkylguanine-DNA alkyltransferase (AGT). Repair of O6-alkylguanine adducts by AGT protects cells from the mutagenic and carcinogenic effects of alkylating agents and is likely to play a similar role in shielding cells from the adverse effects of pyridyloxobutylating agents. Therefore, we examined the mutagenicity of the model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc), in Salmonella typhimurium YG7108 expressing hAGT. Expression of hAGT protected cells from NNKOAc-induced mutagenicity. Interestingly, hAGT did not shield cells from the toxicity of this agent. To confirm that the repair of O6-pobG was increased in the bacteria expressing hAGT, we measured levels of this adduct in NNKOAc-treated cultures. The levels of O6-pobG were lower in DNA from bacteria expressing hAGT. This work establishes an important role for O6-pobG in mediating the mutagenic, and possibly carcinogenic, effects of pyridyloxobutylating compounds.  相似文献   

12.
应用噻唑蓝 (MTT)法检测 O6-苄基鸟嘌呤(O6- BG)与 1 ,3-二 (2 -氯乙基 ) -亚硝基脲 (BCNU)合用的细胞毒作用及透射电镜检测凋亡细胞的方法研究了 O6- BG对 O6-烷基鸟嘌呤 - DNA烷基转移酶(O6- AGT )阳性的人肝癌细胞 SMMC- 772 1对BCNU细胞毒作用敏感性的影响及其与 BCNU合用治疗移植瘤的协同效果 .结果显示 :1 .5- 6.0 mg· L-1的 O6- BG预先作用 2 h后 ,SMMC- 772 1细胞对 BCNU的敏感性明显增加 ;0 .75- 6.0 mg· L-1的 O6- BG可完全快速地抑制肿瘤细胞的 AGT活性并持续 1 2 h;ip 90 mg· kg-1的 O6- BG预处理 2 h后给予 2 5mg·kg-1的 BCNU治疗 ,可使动物 sc接种的人肝癌移植瘤生长延迟 38.6d,诱导肿瘤细胞凋亡 ,并且可明显抑制肿瘤组织的转移酶活性 .说明 O6- BG与 BCNU合用于 AGT阳性的肿瘤将具有明显的治疗效果  相似文献   

13.
合成一系列O^6-苄基鸟嘌呤(O^6-BG)类似物,并且采用MTT法评价其体外对DNA修复蛋白AGT的抑制作用,探讨其作为潜在的正电子发射断层成像技术(PET)显像剂前体的可能性。以鸟嘌呤作为起始原料分别合成了O^6-BG及其类似物HMBG,MOBG,MOMOBG,BABP和PEG。采用MTT方法,通过测定合成产物增强HeLa细胞对1,3-双(2-氯乙基)亚硝基脲(BCNU)药物敏感性的强弱来评价其对AGT的抑制作用。合成产物对AGT抑制活性强弱排序为HMBG≥O^6-BG≥MOBG≥MOMBG,而BABP和PEG基本未表现出任何的AGT抑制活性。HMBG,MOBG和MOMBG具有良好的体外活性,其正电子核素标记物可能成为有前景的用于肿瘤AGT显像的PET显像剂。  相似文献   

14.
Double-stranded and gapped shuttle vectors were used to study mutagenesis in human cells by O(6)-methyl (m(6)G)-, O(6)-ethyl (e(6)G)-, and O(6)-benzylguanine (b(6)G), and O(4)-methylthymine (m(4)T) when these bases were incorporated site-specifically in the ATG initiation codon of a lacZ' gene. Vectors were transfected into either human kidney cells (293) or colon tumor cells (SO) or into mismatch repair defective human colon tumor cells (H6 and LoVo). Cellular O(6)-alkylguanine-DNA alkyltransferase (alkyltransferase) was optionally inactivated by treating cells with O(6)-benzylguanine prior to transfection. In alkyltransferase competent cells, the mutagenicity of all the modified bases was substantially higher in gapped plasmids than in double-stranded plasmids. Alkyltransferase inactivation increased mutagenesis by the three O(6)-substituted guanines in both double-stranded and gapped plasmids but did not affect m(4)T mutagenesis. In the absence of alkyltransferase, mutagenesis by m(6)G and to a lesser extent e(6)G in double-stranded vectors was higher in the mismatch repair defective H6 and LoVo cells than in SO or 293 cells indicating that e(6)G as well as m(6)G were subject to mismatch repair processing in these cells. The level of mutagenesis by m(4)T and b(6)G was not affected by mismatch repair status. When incorporated in gapped plasmids and in the absence of alkyltransferase, the order of mutagenicity for the modified bases was m(4)T > e(6)G congruent with m(6)G > b(6)G. The O(6)-substituted guanines primarily produced G-->A transitions while m(4)T primarily produced T-->C transitions. However, m(4)T also produced a significant number of T-->A transversion mutations in addition to T-->C transitions in mismatch repair deficient LoVo cells.  相似文献   

15.
DNA repair mechanisms serve as useful targets for modulating the cytotoxic and chemotherapeutic effects of many agents whose mechanism of action involves the induction of DNA damage. For example, the modified base O6-methylguanine can inactivate the repair protein O6-alkylguanine alkyltransferase, thereby sensitizing cells to the cytotoxic effects of clinically useful nitrosoureas such as BCNU. Some of the cytotoxic DNA adducts induced by BCNU are repaired by O6-alkylguanine alkyltransferase; thus, inactivation of the protein by O6-methylguanine converts cells that are relatively resistant to BCNU into sensitive cells. Another cellular enzyme, poly(ADP-ribose) polymerase, responds to DNA strand breaks by cleaving its substrate, NAD+, and using the resultant ADP-ribose moieties to synthesize homopolymers of ADP-ribose. The use of agents such as benzamide derivatives to inhibit enzyme function results in the accumulation of DNA strand breaks and potentiates the tumoricidal effects of some DNA strand-breaking agents such as bleomycin. Poly(ADP-ribose) polymerase can also affect pyridine nucleotide metabolism in a manner that initiates biochemical alterations leading directly to cell death. Thus, the amount of NAD used in the synthesis of poly(ADP-ribose) is dependent on the number of DNA strand breaks present in the cells. DNA damage can sufficiently activate the enzyme to rapidly consume NAD and consequently deplete ATP levels, resulting in the cessation of all energy-dependent functions and cell death. Understanding this biochemical pathway that leads to cell death provides a new basis for modulating chemotherapy. For example, agents such as Tiazofurin and/or 6-aminonicotinamide can each be used to alter pyridine nucleotide metabolism, lower NAD pools and potentiate the cytotoxic effects of other chemotherapeutic agents whose primary target is the induction of DNA damage.  相似文献   

16.
Resistance to O(6-)alkylating agents can be overcome by depletion of the DNA repair protein, O(6)-alkylguanine DNA alkyltransferase. Inhibitors of this protein act as pseudosubstrates and, so far, O(6)-benzylguanine and lomeguatrib have been tested in clinical trials. Inherently non-toxic, optimum doses for protein depletion have been established for both agents. Myelosuppression of alkylating agents is significantly enhanced when used in combination with these agents, necessitating significant reductions in standard doses. Consequently, no improvement in efficacy is seen. Strategies to limit myelotoxicity are complex and will be very difficult to apply clinically. O(6)-alkylguanine DNA alkyltransferase inhibition may also potentiate the toxicity of other agents such as cyclophosphamide and irinotecan. Other mechanisms of DNA repair are also important and drugs targeting some of these systems are in early phase clinical trials.  相似文献   

17.
1,2-Dibromoethane (DBE) is an environmental contaminant that is metabolized by glutathione S-transferases to a haloethane-glutathione conjugate. Since haloethane-glutathione conjugates are known to alkylate nuclear DNA and cytoplasmic proteins, these effects were investigated in isolated rat liver mitochondria exposed to DBE by measuring guanine adducts and several aspects of oxidative phosphorylation including respiratory control ratios, respiratory enzyme activity, and ATP levels. Mitochondrial large-amplitude swelling and glutathione status were assessed to evaluate mitochondrial membrane integrity and function. When exposed to DBE, mitochondria became uncoupled rapidly, yet no large-amplitude swelling or extramitochondrial glutathione was observed. Mitochondrial GSH was depleted to 2-53% of controls after a 60-min exposure to micromolar quantities of DBE; however, no extramitochondrial GSH or GSSG was detected. The depletion of mitochondrial glutathione corresponded to an increase of an intramitochondrial GSH-conjugate which, based on HPLC elution profiles and retention times, appeared to be S,S'-(1,2-ethanediyl)bis(glutathione). Activities of the NADH oxidase and succinate oxidase respiratory enzyme systems were inhibited 10-74% at micromolar levels of DBE, with succinate oxidase inactivation occurring at lower doses. ATP concentrations in DBE-exposed mitochondria in the presence of succinate were 5-90% lower than in the controls. The DNA adduct S-[2-(N(7)-guanyl)ethyl]glutathione was detected by HPLC in mtDNA isolated from DBE-exposed mitochondria. The results suggest that respiratory enzyme inhibition, glutathione depletion, decreased ATP levels, and DNA alkylation in DBE-exposed mitochondria occur via the formation of an S-(2-bromoethyl)glutathione conjugate, the precursor of the episulfonium ion alkylating species of DBE.  相似文献   

18.
19.
Site-specific mutagenesis by O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobGua), a product of DNA pyridyloxobutylation by metabolites of the tobacco-specific nitrosamines N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), was studied in Escherichia coli strain DH10B and human kidney cells (293) when the modified base was incorporated in either a double-stranded or a gapped shuttle vector. In the repair-competent E. coli strain, less than 3% of the colonies produced by double-stranded vectors harboring the modified base were mutant whereas 96% were mutant when DH10B cells were transformed with modified gapped vectors. By contrast, transformation of DH10B cells with plasmids derived from O(6)-pobGua-containing double-stranded and gapped vectors previously replicated in 293 cells produced 7 and 16% mutant colonies, respectively. These percentages increased to 42 and 82%, respectively, when the 293 cells were pretreated with O(6)-benzylguanine to inactivate the O(6)-alkylguanine-DNA alkyltransferase protein. These findings confirm that the adduct is readily repaired by the human O(6)-alkylguanine-DNA alkyltransferase in both double-stranded and gapped vectors and suggest that it is also highly mutagenic in both human cells and E. coli. In the E. coli strain, the adduct produced exclusively G --> A transition mutations although in human 293 cells it also produced G --> T transversions and more complex mutations in addition to G --> A transitions. These data suggest that O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine can contribute significantly to the mutagenic risk posed by exposure to both NNN and NNK in tobacco smoke.  相似文献   

20.
2,4-dinitrophenol (DNP) is an uncoupler of oxidative phosphorylation in the mitochondria. Here, we investigated the effect of DNP on the growth of Calu-6 lung cancer cells in view of cell cycle, apoptosis, ROS production and GSH content. DNP dose-dependently decreased cell viability at 72 h (EC50 of about 200 microM) as measured by a MTT assay. The lower doses of DNP induced a G1 arrest of the cell cycle in Calu-6 cells. Analysis of the cell cycle regulatory proteins demonstrated that DNP decreased the steady-state levels of cyclin proteins and cyclin dependent kinase (CDK), but increased the protein levels of cyclin dependent kinase inhibitor (CDKI) p27. DNP also caused a marked increase in apoptosis, as evidenced by DNA fragmentation (sub-G1 DNA content), DAPI staining, the loss of mitochondrial membrane potential (DeltaPsim), externalization of phosphatidylserine (PS). In addition, DNP-treated cells significantly increased the intracellular H2O2 and O2.- levels. All of caspase inhibitors could markedly rescue Calu-6 cells from DNP-induced cell death and only pan-caspase inhibitor, Z-VAD-FMK, could slightly prevent the loss of mitochondrial membrane potential (DeltaPsim). However, none of the caspase inhibitors reduced the increased H2O2 levels, but the increased O2.- levels was slightly attenuated by pan-caspase inhibitor. In addition, the depletion of GSH content in DNP-treated cells was prevented by all of caspase inhibitors. In conclusion, DNP, which induced ROS and reduced GSH content, inhibited the growth of Calu-6 cells via cell cycle arrest at G1 phase and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号