首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research suggests that the Pro12Ala variant in peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) is associated with diabetes- and obesity-related traits, and that its effects may be modified by obesity status. We characterized this variant in a population-based sample of 1,441 middle-aged African-American individuals with respect to diabetes-, obesity-, and other cardiovascular-related traits, both cross-sectionally and prospectively. The overall frequency of Ala12 was 1.9% (95% CI 1.5-2.5%), significantly lower than in Caucasian populations. Consistent with previous findings in Caucasians, African Americans with type 2 diabetes tended to be less likely to have the Pro/Ala genotype than those without (odds ratio [OR] 0.64, 95% CI 0.34-1.20); however, this OR was not statistically significant. Among nonobese individuals, the Pro/Ala genotype was associated with significantly lower ln(insulin) (P = 0.001), lower ln(HOMA-IR) (homeostasis model assessment of insulin resistance) (P = 0.002), higher fasting glucose-to-insulin ratio (P = 0.005), and lower diastolic blood pressure (P = 0.02). Among overweight individuals (BMI 25-29.9 kg/m(2)), the Pro/Ala genotype was associated with greater BMI (P = 0.02), waist-to-hip ratio (P = 0.01), and waist circumference (P = 0.04). Among obese individuals, there was no association between any of the diabetes- or obesity-related traits and the Pro12Ala PPAR-gamma2 variant. We conclude that among nonobese African Americans, the Pro/Ala genotype is associated with markers of greater insulin sensitivity.  相似文献   

2.
The Pro12Ala polymorphism of the gene encoding the peroxisome proliferator-activated receptor (PPAR)-gamma2 has recently been shown to be associated with type 2 diabetes. In the present analysis, we investigated whether PPAR-gamma2 Pro12Ala was associated with microvascular complications of type 2 diabetes, such as albuminuria, end-stage renal failure (ESRF), or retinopathy. A total of 445 patients with type 2 diabetes who were enrolled in the Berlin Diabetes Mellitus Study and in whom we determined albuminuria and the presence of ESRF and retinopathy were genotyped for the PPAR-gamma2 Pro12Ala polymorphism. We also measured potentially important covariables, such as blood pressure, BMI, duration of diabetes, glycosylated hemoglobin, serum creatinine, and serum lipids. Among 445 patients with type 2 diabetes (mean age 59.3 years), the Pro12Ala genotype distribution was in Hardy-Weinberg equilibrium (P = 0.42). The Ala12 allele frequency was 0.14. With adjustment for covariables, the 118 Ala12 allele carriers had significantly lower urinary albumin excretion (UAE) than the 327 noncarriers (17.1 vs. 25.8 mg/d; P = 0.01). The percentage decrease in UAE observed in PPAR-gamma Ala12 allele carriers relative to noncarriers (P = 0.003) rose from 0.2% (P = 0.99) to 54% (P = 0.008) and to 70% (P = 0.01) when the duration of diabetes increased from <10 years to 10-19 years and to >or=20 years, respectively. Similarly, the odds ratios of having albuminuria decreased from 1.22 (P = 0.54) to 0.61 (P = 0.23) and to 0.11 (P = 0.007), respectively. Among patients with type 2 diabetes, PPAR-gamma2 Ala12 allele carriers had significantly lower UAE and tended to develop overt proteinuria less frequently. These observations suggest a protective effect of the Ala12 allele in relation to diabetic nephropathy.  相似文献   

3.
Type 2 diabetes is known to be associated with a small body size at birth. Body size at birth is an indicator of the intrauterine environment. There is also a well-established association between the peroxisome proliferator-activated receptor (PPAR)-gamma2 gene and type 2 diabetes. We therefore assessed whether the effects of the Pro12Ala polymorphism of the PPAR-gamma2 gene on insulin sensitivity and insulin concentrations in adult life are modified by size at birth. We found that the effects of the Pro12Pro and Pro12Ala polymorphisms of the PPAR-gamma2 gene in elderly people depended on their body size at birth. The well-known association between small body size at birth and insulin resistance was seen only in individuals with the high-risk Pro12Pro allele. In those who had low birth weight, the Pro12Pro polymorphism of the PPAR-gamma2 gene was associated with increased insulin resistance (P < 0.002) and elevated insulin concentrations (P < 0.003). These interactions between the effects of the Pro12Ala polymorphisms of the PPAR-gamma2 gene on adult traits and the effects of birth weight link two previously unknown associations together within the context of type 2 diabetes. We suggest that these findings reflect gene-environment interaction.  相似文献   

4.
Peroxisome proliferator-activated receptor (PPAR)-gamma is a major regulator of adipogenesis and insulin sensitivity. The PPAR-gamma gene generates two isoforms through alternative splicing, PPAR-gamma1 and -gamma2, the latter having an additional stretch of 28 amino acids at its NH2-terminus in the ligand-independent activation domain. This extension renders PPAR-gamma2 more sensitive to insulin action. Since there is a Pro12Ala substitution in this domain, we tested whether it is related to type 2 diabetes or insulin resistance. Therefore, 131 type 2 diabetic patients and 312 normoglycemic control subjects were screened for the presence of the mutation and for major clinical and metabolic features. The frequency of the mutation did not differ significantly between diabetic patients and control subjects. BMI, insulin, and other metabolic and anthropometric variables were also not associated with the mutation. Although the study was carried out on a sufficiently large sample, the conclusions do not support a major role for the Pro12Ala substitution of the PPAR-gamma gene in the etiology of type 2 diabetes.  相似文献   

5.
The allele frequencies for a Pro12-->Ala substitution in peroxisome proliferator-activated receptor-gamma differ among ethnic groups, and its relationship with diabetes and associated diseases is controversial. The prevalence of this polymorphism and its effects on clinical characteristics have now been evaluated with a large number of Japanese individuals with type 2 diabetes (n = 2,201) and normal control subjects (n = 1,212) recruited by 10 institutions located in seven different cities in Japan. The allele frequency for the Ala12 variant was significantly lower in the type 2 diabetic group than in the control group (2.39 vs. 4.13%, P = 0.000054). However, compared with subjects without the Ala12 variant, the diabetic subjects with this variant exhibited a significantly higher serum concentration of total cholesterol (P = 0.001), manifested a reduced capacity for insulin secretion as evaluated by homeostasis model assessment (P = 0.007), and tended to possess a higher level of HbA1c. These data suggest that the Ala12 variant is associated with a reduced risk for the development of diabetes in the general population, but that it may be also a risk factor for insulin deficiency and disease severity in individuals with type 2 diabetes.  相似文献   

6.
The association of the Pro12Ala polymorphism of the PPAR-gamma2 gene with the incidence of type 2 diabetes was investigated in 522 subjects with impaired glucose tolerance (IGT) participating in the Finnish Diabetes Prevention Study. Subjects were randomized to either an intensive diet and exercise group or a control group. By 3 years of intervention, the odds ratio of the development of type 2 diabetes for subjects with the Ala12 allele was 2.11-fold compared with that for subjects with the Pro12Pro genotype (95% CI 1.20-3.72). The risk for type 2 diabetes increased also in subjects who gained weight or belonged to the control group. In the intervention group, subjects with the Ala12Ala genotype lost more weight during the follow-up than subjects with other genotypes (Pro12Pro vs. Ala12Ala P = 0.043), and none of subjects with the Ala12Ala genotype developed type 2 diabetes in this group. In conclusion, the Ala12 allele may predispose to the development of type 2 diabetes in obese subjects with IGT. However, beneficial changes in diet, increases in physical activity, and weight loss may reverse, to some extent, the diabetogenic impact of the Ala12 allele, possibly due to an improved insulin sensitivity.  相似文献   

7.
Caramori ML  Canani LH  Costa LA  Gross JL 《Diabetes》2003,52(12):3010-3013
The peroxisome proliferator-activated receptor gamma2 (PPARgamma2) Pro12Ala polymorphism has been associated with a decreased risk of type 2 diabetes and a lower albumin excretion rate (AER) in patients with established diabetes. We performed a case-control study aiming to evaluate the association between the Pro12Ala polymorphism and diabetic nephropathy. Genomic DNA was obtained from 104 type 2 diabetic patients (case subjects) with chronic renal insufficiency (78 on dialysis and 26 with proteinuria [AER >or=200 microg/min] and serum creatinine >or=2.0 mg/dl) and 212 normoalbuminuric patients (AER <20 microg/min) with known diabetes duration >or=10 years (control subjects). The genotypic distribution of the PPARgamma2 Pro12Ala polymorphism in these diabetic patients was in Hardy-Weinberg equilibrium, and the Ala allele frequency was 9%. The frequency of Ala carriers (Ala/Ala or Ala/Pro) was 20.3% in control subjects and 10.6% in case subjects (P = 0.031). The odds ratio of having diabetic nephropathy for Ala carriers was 0.465 (95% CI 0.229-0.945; P = 0.034). Carriers of the Ala allele were not different from noncarriers (Pro/Pro) regarding sex (38.9 vs. 44.1% males) or ethnicity (77.4 vs. 71.7% white) distribution, age (61 +/- 10 vs. 61 +/- 10 years), known diabetes duration (17 +/- 7 vs. 16 +/- 7 years), BMI (27 +/- 4 vs. 28 +/- 5 kg/m(2)), fasting plasma glucose (184 +/- 81 vs. 176 +/- 72 mg/dl), HbA(1c) (6.7 +/- 2.3 vs. 6.9 +/- 2.4%; high-performance liquid chromatography reference range: 2.7-4.3%), and systolic (145 +/- 27 vs. 0.144 +/- 24 mmHg) or diastolic (87 +/- 14 vs. 85 +/- 14 mmHg) blood pressure, respectively. In conclusion, the presence of the Ala allele may confer protection from diabetic nephropathy in patients with type 2 diabetes.  相似文献   

8.
This study determined the effects of the peroxisome proliferator-activated receptor (PPAR)-gamma2 Pro12Ala variant on body composition and metabolism and the magnitude of weight regain in 70 postmenopausal women (BMI 25-40 kg/m(2)) who completed 6 months of a hypocaloric diet. At baseline, BMI, percent body fat, intra-abdominal and subcutaneous abdominal fat areas, resting metabolic rate, substrate oxidation, and postprandial glucose and insulin responses were not different between genotypes (Pro/Pro = 56, Pro/Ala and Ala/Ala = 14). The intervention similarly decreased body weight by 8 +/- 1% in women homozygous for the Pro allele and by 7 +/- 1% in women with the Ala allele (P < 0.0001). Fat oxidation did not change in Pro/Pro women but decreased 19 +/- 9% in women with the Ala allele (P < 0.05). Changes in glucose area were not different between groups; however, women with the Ala allele decreased their insulin area more than women homozygous for the Pro allele (P < 0.05). Weight regain during follow-up was greater in women with the Ala allele than women homozygous for the Pro allele (5.4 +/- 0.9 vs. 2.8 +/- 0.4 kg, P < 0.01). PPAR-gamma2 genotype was the best predictor of weight regain (r = 0.50, P < 0.01), followed by the change in fat oxidation (partial r = 0.35, P < 0.05; cumulative r = 0.58). Thus, the Pro12Ala variant of the PPAR-gamma2 gene may influence susceptibility for obesity.  相似文献   

9.
10.
11.
12.
It has been proposed that type 1 and 2 diabetes might share common pathophysiological pathways and, to some extent, genetic background. However, to date there has been no convincing data to establish a molecular genetic link between them. We have genotyped three single nucleotide polymorphisms associated with type 2 diabetes in a large type 1 diabetic family collection of European descent: Gly972Arg in the insulin receptor substrate 1 (IRS1) gene, Glu23Lys in the potassium inwardly-rectifying channel gene (KCNJ11), and Pro12Ala in the peroxisome proliferative-activated receptor gamma2 gene (PPARG2). We were unable to confirm a recently published association of the IRS1 Gly972Arg variant with type 1 diabetes. Moreover, KCNJ11 Glu23Lys showed no association with type 1 diabetes (P > 0.05). However, the PPARG2 Pro12Ala variant showed evidence of association (RR 1.15, 95% CI 1.04-1.28, P = 0.008). Additional studies need to be conducted to confirm this result.  相似文献   

13.
The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism   总被引:16,自引:0,他引:16  
Stumvoll M  Häring H 《Diabetes》2002,51(8):2341-2347
  相似文献   

14.
The peroxisome proliferator-activated receptor (PPAR)-gamma2 gene polymorphism Pro12Ala has been associated with increased insulin sensitivity in some but not all studies. Little is known about its effect on the tracking of insulin resistance status over time. These aspects were examined in a community-based sample of 686 white young adults, aged 20-38 years, and 426 white children, aged 4-17 years, and a subsample of a cohort (n = 362) who participated both as children and adults, with an average follow-up period of 13.4 years. Insulin resistance was measured by the homeostasis model assessment of insulin resistance (HOMA-IR) using fasting insulin and glucose. The frequency of the variant Ala12 allele was 0.104 in whites vs. 0.017 in blacks. After adjusting for sex, age, and BMI, adult subjects with the genotype Pro/Pro, Pro/Ala, and Ala/Ala, respectively, showed significant decreasing trends in fasting insulin (11.7, 10.3, and 8.8 micro U/ml; P = 0.002) and HOMA-IR (2.4, 2.1, and 1.7; P = 0.006). Similar but nonsignificant trends were noted in childhood. A significant genotype-BMI interaction effect on insulin (P = 0.020), glucose (P = 0.007), and HOMA-IR (P = 0.001) was found in adulthood, with carriers versus noncarriers showing attenuated association with BMI. The genotype-BMI interaction effect on these variables tended to be similar in childhood. With respect to tracking over time, of individuals in the top age- and sex-specific quartile of HOMA-IR in childhood, 48.7% (38/78) of noncarriers vs. 16.7% (2/12) of the carriers (P = 0.035) remained in the same quartile in adulthood. A similar trend was observed for insulin (2/13 vs. 35/77, P = 0.037). In conclusion, the Pro12Ala polymorphism of the PPAR-gamma2 gene beneficially influences insulin resistance and its tracking from childhood to adulthood. Further, the Ala12 allele attenuates the adverse association between adiposity and insulin resistance measures.  相似文献   

15.
Evidence for gene-nutrient interaction at the PPARgamma locus   总被引:15,自引:0,他引:15  
The importance of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) in regulating insulin resistance and blood pressure has been demonstrated in families with loss of function mutations. Gain of function mutations has been associated with severe obesity. However, previous population studies of the common variant Pro12Ala have produced conflicting results. As it is likely that the natural ligands for this receptor may include fatty acids, we hypothesized that the effect of this common variant may be altered by the character of the diet, particularly the ratio of dietary polyunsaturated fat to saturated fat (P:S ratio). We studied 592 nondiabetic participants in an ongoing population-based cohort study who were genotyped for the Pro12Ala polymorphism in the PPAR gamma2 isoform. As the Ala homozygotes were uncommon (2.0%), all analyses were conducted comparing Pro homozygotes (79.1%) to Ala allele carriers. There was no difference in fasting insulin concentration or BMI between Ala allele carriers and Pro homozygotes. The fasting insulin concentration was negatively associated with the P:S ratio (P = 0.0119) after adjustment for age and sex, and a strong interaction was evident between the P:S ratio and the Pro12Ala polymorphism for both BMI (P = 0.0038) and fasting insulin (P = 0.0097). The data suggest that when the dietary P:S ratio is low, the BMI in Ala carriers is greater than that in Pro homozygotes, but when the dietary ratio is high, the opposite is seen. This gene-nutrient interaction emphasizes the difficulty of examining the effect of common polymorphisms in the absence of data on nongenetic exposures, and may explain the heterogeneity of findings in previous studies.  相似文献   

16.
The aim of this study was to examine the impact of parental type 2 diabetes on the autonomic nervous system and to determine whether autonomic neuropathy is present and associated with changes in 24-h ambulatory blood pressure (AMBP) and urinary albumin excretion rate (UAER) in nondiabetic subjects with parental type 2 diabetes. We examined 223 nondiabetic offspring of type 2 diabetic subjects and a control group of 258 offspring of nondiabetic subjects. The autonomic nervous system was assessed by three cardiovascular reflex tests, 24-h AMBP was measured with an oscillometric recorder (90207; Spacelabs, Redmond, WA), and UAER was determined through three overnight urine samples. The subjects with parental type 2 diabetes had significantly lower heart rate variation in all three bedside tests (P < 0.01) than subjects without parental diabetes. The prevalence of autonomic neuropathy in the nondiabetic offspring with parental type 2 diabetes (6.7%) was significantly (P < 0.01) higher compared with the control group (1.6%). Autonomic neuropathy was associated with a higher fasting insulin level (P < 0.05), higher UAER (P < 0.001), higher 24-h mean AMBP (P < 0.01), and reduced diurnal blood pressure variation (P < 0.001) after adjustment for age, sex, and BMI. In conclusion, parental type 2 diabetes was found to be associated with alterations in the autonomic nervous system in nondiabetic subjects. The presence of autonomic neuropathy in subjects with parental type 2 diabetes was associated with higher UAER, fasting insulin level, and 24-h AMBP and a reduced diurnal blood pressure variation. This study indicates that parental type 2 diabetes has an impact on the cardiac autonomic function in nondiabetic subjects.  相似文献   

17.
Endothelium-dependent vasodilation is impaired in clinical states of insulin resistance such as obesity and type 2 diabetes. Individuals who have hyperinsulinemic insulin resistance have relatively elevated circulating levels of endothelin (ET)-1, suggesting that ET-1 may be important in the endothelial dysfunction and alterations of vascular tone in these conditions. In 8 lean subjects, 12 nondiabetic obese subjects, and 8 subjects with type 2 diabetes, we measured basal and methacholine-stimulated rates of leg blood flow (LBF) and total serum nitrates (NOx) before and after the intrafemoral arterial administration of BQ123, a specific blocker of ET(A) receptors. BQ123 produced significant vasodilation in the obese and type 2 diabetic subjects (leg vascular resistance = mean arterial pressure/LBF fell by 34 and 36%; P < 0.005) but not in the lean subjects (13%; P = NS, P = 0.018 comparing all groups). ET(A) blockade did not change basal NOx flux (NOx*LBF). This suggests increased basal ET-1 constrictor tone among obese and type 2 diabetic subjects. BQ123 corrected the baseline defect in endothelium-dependent vasodilation seen in obese and type 2 diabetic subjects, suggesting an important contribution of ET-1 to endothelial dysfunction in these subjects. In contrast to basal conditions, stimulated NOx flux was augmented by BQ123 in obese and type 2 diabetic subjects but not in L subjects (P = 0.04), suggesting a combined effect of ET(A) blockade to reduce constrictor tone and augment dilator tone. Endothelin seems to contribute to endothelial dysfunction and the regulation of vascular tone in human obesity and type 2 diabetes.  相似文献   

18.
19.
Peroxisome proliferator-activated receptor (PPAR)-gamma is one of the key actors of adipocyte differentiation. This study demonstrates 1) that PPAR-gamma mRNA expression is not altered in subcutaneous adipose tissue (n = 44) or in skeletal muscle (n = 19) of subjects spanning a wide range of BMIs (20-53 kg/m2) and 2) that insulin acutely increases PPAR-gamma mRNA expression in human adipocytes both in vivo and in vitro. The effect of insulin was investigated in abdominal subcutaneous biopsies obtained before and at the end of a 3-h euglycemic-hyperinsulinemic clamp. Insulin significantly increased PPAR-gamma mRNA levels in lean subjects (88 +/- 17%, n = 6), in type 2 diabetic patients (100 +/- 19%, n = 6), and in nondiabetic obese patients (91 +/- 20%, n = 6). Both PPAR-gamma1 and PPAR-gamma2 mRNA variants were increased (P < 0.05) after insulin infusion. In isolated human adipocytes, insulin induced the two PPAR-gamma mRNAs in a dose-dependent manner, with half-maximal stimulation at a concentration of approximately 1-5 nmol/l. However, PPAR-gamma2 mRNA was rapidly (2 h) and transiently increased, whereas a slow and more progressive induction of PPAR-gamma1 was observed during the 6 h of incubation. In explants of human adipose tissue, PPAR-gamma protein levels were significantly increased (42 +/- 3%, P < 0.05) after 12 h of incubation with insulin. These data demonstrate that PPAR-gamma belongs to the list of the insulin-regulated genes and that obesity and type 2 diabetes are not associated with alteration in the expression of this nuclear receptor in adipose tissue.  相似文献   

20.
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the pathophysiology of various human diseases such as type 2 diabetes and obesity. IL-6 signals via a heterodimeric receptor complex consisting of a soluble IL-6 alpha-subunit (IL-6 receptor [IL6R]) and a signal transducing subunit (gp130). The IL6R gene maps to an important candidate locus for type 2 diabetes on chromosome 1q21. An Asp358Ala polymorphism of the IL6R has been reported to associate with obesity in Pima Indians. We investigated the Asp358Ala polymorphism in relation to type 2 diabetes, obesity, and other pre-diabetic quantitative traits among Danish whites. By applying a recessive genetic model in a case-control study of 1,349 type 2 diabetic patients and 4,596 glucose-tolerant control subjects, we found a significant difference in genotype distribution (P = 0.008) and in allele frequency (Ala-allele 38.3% [95% CI 36.5-40.1] in diabetic subjects vs. 41.2% [40.2-42.2] in control subjects; P = 0.007). The odds ratio for the Asp/Asp carriers versus Ala/Ala carriers was 1.38 (1.09-1.71). Among 4,251 middle-aged glucose-tolerant subjects, the Asp358Ala polymorphism was not associated with estimates of obesity, post-oral glucose tolerance test serum insulin release, or the homeostasis model assessment of insulin resistance index. In conclusion, the Asp358Ala polymorphism of the IL6R associates with type 2 diabetes in Danish whites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号