首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of the current study was to develop an intranasal (IN) formulation of the acetylcholinesterase inhibitor galantamine, an important therapeutic for treating Alzheimer's disease. To allow for delivering a therapeutically relevant dose, it was necessary to greatly enhance drug solubility. Various approaches were examined to this end, including adding co-solvents, cyclodextrins, and counterion exchange. Of these, the latter, for example, replacement of bromide ion with lactate or gluconate, resulted in a dramatic drug solubility increase, more than 12-fold. NMR confirmed the molecular structure of new drug salt forms. An in vitro epithelial tissue model was used to assess drug permeability and cellular toxicity. In vitro, galantamine lactate formulations performed as well as or better than their hydrobromide (HBr) counterparts with respect to drug permeation across the epithelial membrane with minimal toxicity. In vivo studies in rats compared pharmacokinetic (PK) profiles of different formulations. The in vivo studies confirmed that IN galantamine achieves systemic blood levels comparable to those of conventional oral administration. Both the in vitro and in vivo data support the feasibility of IN administration of this important drug.  相似文献   

2.
Previously, a novel tight junction modulating (TJM) peptide was described affording a transient, reversible lowering of transepithelial electrical resistance (TER) in an in vitro model of nasal epithelial tissue. In the current report, this peptide has been further evaluated for utility as an excipient in transepithelial drug formulations. Chemical stability was optimal at neutral to acidic pH when stored at or below room temperature, conditions relevant to therapeutic formulations. The TJM peptide was tested in the in vitro tissue model for potential to enhance permeation of a low-molecular-weight (LMW) drug, namely the acetylcholinesterase inhibitor galantamine, as well as three peptides, salmon calcitonin, parathyroid hormone 1-34 (PTH(1-34)), and peptide YY 3-36 (PYY(3-36)). In all cases, the TJM peptide afforded a dramatic improvement in drug permeation across epithelial tissue. In addition, a formulation containing PYY(3-36) and TJM peptide was dosed intranasally in rabbits, resulting in a dramatic increase in bioavailability. The TJM peptide was as or more effective in enhancing PYY(3-36) permeation in vivo at a 1000-fold lower molar concentration compared to using LMW enhancers. Based on these in vitro and in vivo data, the novel TJM peptide represents a promising advancement in intranasal formulation development.  相似文献   

3.
4.
The purpose of the current investigation was to optimize an intranasal (IN) galantamine (an acetylcholinesterase inhibitor used for treatment of Alzheimer's disease) formulation using an in vitro tissue model, to correlate those results to in vivo bioavailability, and to compare emetic response to oral dosing. A design-of-experiments (DOE) based formulation screening employing an in vitro tissue model of human nasal epithelium was used to assess drug permeability, tight junction modulation, and cellular toxicity. In vivo studies in rats compared pharmacokinetic (PK) profiles of different formulations dosed intranasally. Finally, studies in ferrets evaluated PK and gastrointestinal (GI) related side effects of oral compared to nasal dosage forms. Galantamine permeation was enhanced without increasing cytotoxicity. Pharmacokinetic testing in rats confirmed the improved drug bioavailability and demonstrated an in vitro-in vivo correlation. Compared to oral dosing, IN galantamine resulted in a dramatically lowered incidence of GI-related side effects, e.g., retching and emesis. These findings illustrate that IN delivery represents an attractive alternative to oral dosing for this important Alzheimer's disease therapeutic. To our knowledge, the data herein represent the first direct confirmation of reducing GI-related side effects for IN galantamine compared to oral dosing.  相似文献   

5.
Considering the importance of drug permeation from formulations, in vitro and ex vivo drug permeation characteristics of three oral mucoadhesive suspensions of Ofloxacin were designed and compared. Three suspensions of Ofloxacin were prepared by taking two grades of Carbopol polymer such as Carbopol 934 (C934) and Carbopol 940 (C940); and Hydroxypropyl methylcellulose. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of the drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp) and flux (J) were calculated. In addition, enhancement ratio (ER) of each formulation was also determined. From our results, it is evident that formulation containing C940 was the best suspension considering Papp and J values of all formulations. Moreover, it was the most beneficial formulation for improving permeation and diffusivity of Ofloxacin even after 16 h. Hence, this suspension was probably the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations through the excised goat intestinal mucus membrane in alkaline pH were higher than those formulations through the goat stomach mucosal membrane in acidic pH. ER values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that in addition to formulation containing C940, other formulations may also show effective controlled release action.  相似文献   

6.
In order to develop transdermal drug delivery system that facilitates the skin permeation of Pioglitazone (PZ) encapsulated in carbopol-based transgel system (proniosomes/niosome). The developed formulations were optimized using quality by design (QbD) approach and particle size, percentage entrapment and transdermal flux were determined. It was found to be more efficient delivery carriers with high encapsulation and enhanced flux value demonstrated that the permeation of PZ through skin was significantly increased with developed formulation. The transdermal enhancement from proniosome was 3.16 times higher than that of PZ from control formulation (ethanol buffer formulation, 3:7), which was further confirmed by confocal laser scanning microscopy. In vivo pharmacokinetic study of carbopol transgel showed a significant increase in bioavailability (2.26 times) compared with tablet formulation. It also showed better antidiabetic activity in comparison to marketed tablet, so our results suggest that carbopol-based transgel are an efficient carrier for delivery of pioglitazone through skin.  相似文献   

7.
The matrix type transdermal drug delivery systems (patches) of Nitrendipine were prepared by film casting technique. The patches were characterized for physical, in vitro release studies and ex-vivo permeation studies (human cadaver skin). On the basis of in vitro drug release and skin permeation performance, formulation B3 was found to be better than the other formulations and it was selected as the optimized formulation. The final optimized formulation (B3) was subjected to skin irritation, pharmacokinetic, pharmacodynamic and stability studies. The maximum percentage drug release in 48 hours was 94.67 ± 3.25 for B3 and 91.43 ± 2.106 for A2 formulation. Again formulation B3 (0.0627 mg/cm2/h) and A2 (0.0566 mg/cm2/h) showed maximum skin flux in the respective series. Patches prepared with Plasdone S-630 were more flexible as compared to PVP K 30 containing patches. Patches prepared with PVP K 30 showed drug release and skin permeation at higher percentage as compared to those containing Plasdone S-630. The interaction studies carried out by comparing the results of ultraviolet, infrared, TLC and DSC analyses for the pure drug, medicated and placebo formulations indicated no chemical interaction between the drug and excipients. The TDDS was found to be free of any skin irritation as suggested by skin irritation score of 1.16 (< 2.00) under Draize score test.  相似文献   

8.
Formulation of Liposome for topical delivery of arbutin   总被引:1,自引:0,他引:1  
The aims of this study were to encapsulate arbutin (AR) in liposome to enhance the skin-whitening activity, and to investigate the effect of liposome formulation on the entrapment efficiency (EE%), skin permeation rate and skin deposition. The liposomes were prepared by a film dispersion method with several different formulations and were separated from the solution by using the gel-filtration method. The physical (size distribution, morphology) and chemical (drug entrapment efficiency, hairless mouse skin permeation and deposition) properties of liposomes were characterized. The entrapment efficiency in all liposome formulations varied between 4.35% and 17.63%, and was dependent on the lipid content. The particle sizes of liposomes were in the range of 179.9-212.8 nm in all liposome formulations. Although the permeation rate of AR in the liposome formulations decreased compared with AR solution, the deposition amount of AR in the epidermis/dermis layers increased in AR liposomal formulation. These results suggest that liposomal formulation could enhance the skin deposition of hydrophilic skin-whitening agents, thereby enhancing their activities.  相似文献   

9.
The purpose of this study was to develop an organotypic cornea equivalent consisting of three different cell types (epithelial, stromal and endothelial cells) and to investigate its usefulness as in vitro model for permeation studies. The different cell types of a porcine cornea were selectively isolated and a multilayer tissue construct was created step-by-step in Transwell cell culture insert. Histology, basement membrane components (laminin, fibronectin) and surfaces of cornea construct were investigated to evaluate the degree of comparability to porcine cornea from slaughtered animals. The cornea construct exhibited similarities to the original cornea. Ocular permeation of befunolol hydrochloride from different formulations across the cornea construct was tested using modified Franz cells and compared with data obtained from excised cornea. The cornea construct showed a similar permeation behavior for befunolol hydrochloride from different formulations compared with excised porcine cornea. However, permeation coefficients K(p) obtained with the construct were about three to fourfold higher for aqueous formulations and same for the w/o-emulsion. The reconstructed cornea could be an alternative to excised animal tissue for drug permeation studies in vitro.  相似文献   

10.
The potential of ethosomes for delivering ketoprofen via skin was evaluated. The ethosomes were prepared, optimized and characterized. Vesicular shape, size and entrapment efficiency were determined by transmission electron microscopy, dynamic light scattering and minicolumn centrifugation technique, respectively. Vesicle sizes varied from 120.3±6.1 to 410.2±21.8 nm depending on the concentrations of soya phosphatidyl choline (SPC) and ethanol. Entrapment efficiency increased with concentrations of SPC and ethanol. The formulations exhibited entrapment efficiencies of 42–78%. In vitro release through cellophane membrane showed sustained release of drug from ethosomal formulations in contrast to hydroalcoholic drug solution (HA), which released most of the drug within 2–3 h. In vitro drug permeation across human skin revealed improved drug permeation and higher transdermal flux with ethosomal formulations compared to hydroethanolic drug solution. Kinetics of in vitro skin permeation showed zero order drug release from formulations. Based on in vitro transdermal flux, the estimated steady state in vivo plasma concentration from ethosomes attained therapeutic drug levels whereas hydroalcoholic drug solution exhibited sub therapeutic drug concentration with a patch size of 50 cm2. Skin permeation of ethosomal formulations assessed by confocal microscopy revealed enhanced permeation of Rhodamine 123 loaded formulation in comparison to the hydroalcoholic solution.  相似文献   

11.
Abstract

Aqueous nanoparticulated eye drop formulations based on γ-cyclodextrin (γCD) complexes were developed and tested in vitro. Three antihypertensive drugs, i.e. enalapril maleate, irbesartan and verapamil HCl, that have been shown to possess IOP-lowering activity were selected for this study. All three drugs displayed Bs-type phase-solubility diagrams in aqueous γCD solutions and had relatively low affinity for γCD. Irbesartan was selected for further formulation development. The drug was relatively stable at pH 4.5 but somewhat less stable at physiologic pH. However, presence of γCD in the aqueous media enhanced the chemical stability of irbesartan. Aqueous γCD-based eye drop formulations containing 1% and 2% (w/v) irbesartan were prepared and the effect of pH on the particles size distribution and drug release investigated. Only ~2% of the drug was in solution in the pH 4.5 formulations but up to 45% in the pH 7 formulations. The pH 7 formulations, where larger fraction of the drug was in solution, displayed somewhat greater drug permeation flux but much lower drug permeation coefficients than the pH 4.5 formulations. Dynamic light scattering studies indicated the faster permeation was due to formation of smaller particles in presence tyloxapol.  相似文献   

12.
The limited permeation of 5-aminolevulinic acid (ALA) through excised human stratum corneum could be improved by using 5-aminolevulinic acid-n-butyl ester (ABE). Furthermore drug permeation could be increased by choice of a permeation enhancing formulation. In this study, permeation of ALA and ABE was investigated from various formulations. In addition, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) experiments were performed in order to reveal an interaction between the tested formulations and stratum corneum lipid structure. Drug incorporation into Dolgit® Mikrogel showed the highest increase in permeability with both ALA and ABE. Especially, ABE together with Dolgit® Mikrogel was the most promising combination. Further permeation studies with poloxamer based ABE formulations, partially enriched with ibuprofen acid and medium chained triglycerides showed that both compounds promote permeation. The permeation coefficients of either drug from Excipial® Creme and Basiscreme DAC were found to be very similar. These results were in accordance with those of DSC and WAXD experiments. Interaction between formulation and stratum corneum lipid structure resulting in an increased drug permeation only occurred after pretreatment with formulations enriched with ibuprofen acid. After pretreatment with Excipial® Creme, Basiscreme DAC or Excipial® Fettcreme stratum corneum structure and subsequently permeability remained unchanged. Nevertheless permeation of ALA from Excipial® Fettcreme is slower than from the tested hydrophilic formulations and therefore believed to be influenced by the affinity of ALA to the vehicle and stratum corneum.  相似文献   

13.
Volume of drug distribution is a primary pharmacokinetic parameter. This study assessed effects of drugs’ plasma protein binding and tissue distribution on volume of drug distribution and identified the most appropriate ways for its calculation. Effects of the distribution factors on the unbound and total drug plasma concentrations and on the corresponding volumes of distribution were studied using pharmacokinetic modeling and simulation approach based on in vitro and in vivo concentration vs. time data of diazepam, a model drug with extensive plasma protein binding and tissue distribution. Pharmacokinetics of diazepam were appropriately described by three-compartment pharmacokinetic model that incorporated the processes of plasma protein binding and tissue permeation. According to this model, displacement of the drug from plasma proteins increases the unbound (but not the total) plasma concentrations and induces faster drug elimination from the body. The distribution pattern of the drug in the body and the time course of unbound (pharmacologically active) drug concentrations correlated with the unbound volumes of distribution, but not with the total volumes of distribution. In conclusion, unbound volumes of distribution appropriately describe the drug distribution pattern and the time course of unbound drug concentrations and are recommended for use as primary pharmacokinetic parameters in pharmaceutical research.  相似文献   

14.
配体偶联脂质体微粒和纳米粒的研究进展   总被引:2,自引:0,他引:2  
张亚红  朱照静 《药学进展》2005,29(11):487-491
分类综述以共价键和非共价键偶联的各种配体-脂质体微粒和纳米粒的研究进展。配体-脂质体微粒和纳米粒是药物靶向转运的有效载体,可识别并特异性地结合于靶细胞,体内外实验表明其偶联方法,如配体的选择及其在微粒上的分布和结合方式等,将直接影响它们的稳定性、靶向性及配体的免疫活性。  相似文献   

15.
Finasteride (FNS) is a “drug of choice” for benign prostate hypertrophy and prostate cancer. The drug has also been reported to be useful orally in the treatment of some difficult-to-treat androgen-dependent skin disorders, such as seborrhea, acne, hirsutism, and androgenetic alopecia. However, the ideal route for its administration (i.e., topical) remains unexplored. This has logically suggested the search for strategic formulation approaches to make the drug effective on topical applications, hitherto unexplored. The present study targets the encasement of drug molecules in the interiors of vesicular compartments (liposomes) made up of hydrogenated phospholipids, as an attempt toward the development of a trans-epidermal therapeutic system of FNS. Multilamellar drug-loaded liposomes were prepared by thin-film hydration with sonication method and optimized with respect to drug payload, entrapment efficiency, and size by formulating different vesicular compositions under different process conditions. The vesicular systems consisting of saturated phospholipid (100 mg), cholesterol (50 mg), and FNS (5 mg) showed highest drug payload (2.9 mg/100 mg of total lipids), and drug entrapment efficiency (88.6%). Mean (± SD) vesicle size of the prepared liposomes was found to be 3.66 ± 1.6 μm. Significantly higher skin permeation of FNS through excised abdominal mice skin of FNS was achieved from the liposomal formulations vis-à-vis corresponding solution and conventional gels. Liposomal FNS formulations also showed more than fivefold higher deposition of drug in skin than the corresponding plain drug solution and conventional gel. Stability studies indicated that the liposomal formulations were quite stable in the refrigerated conditions for 2 months with negligible drug leakage or vesicle size alteration during the storage period. Results of the current studies with FNS-loaded vesicular systems project the high plausibility of a topical liposomal formulation for effective localized delivery of Finasteride.  相似文献   

16.
Finasteride (FNS) is a "drug of choice" for benign prostate hypertrophy and prostate cancer. The drug has also been reported to be useful orally in the treatment of some difficult-to-treat androgen-dependent skin disorders, such as seborrhea, acne, hirsutism, and androgenetic alopecia. However, the ideal route for its administration (i.e., topical) remains unexplored. This has logically suggested the search for strategic formulation approaches to make the drug effective on topical applications, hitherto unexplored. The present study targets the encasement of drug molecules in the interiors of vesicular compartments (liposomes) made up of hydrogenated phospholipids, as an attempt toward the development of a trans-epidermal therapeutic system of FNS. Multilamellar drug-loaded liposomes were prepared by thin-film hydration with sonication method and optimized with respect to drug payload, entrapment efficiency, and size by formulating different vesicular compositions under different process conditions. The vesicular systems consisting of saturated phospholipid (100 mg), cholesterol (50 mg), and FNS (5 mg) showed highest drug payload (2.9 mg/100 mg of total lipids), and drug entrapment efficiency (88.6%). Mean (+/-SD) vesicle size of the prepared liposomes was found to be 3.66+/-1.6 microm. Significantly higher skin permeation of FNS through excised abdominal mice skin of FNS was achieved from the liposomal formulations vis-à-vis corresponding solution and conventional gels. Liposomal FNS formulations also showed more than fivefold higher deposition of drug in skin than the corresponding plain drug solution and conventional gel. Stability studies indicated that the liposomal formulations were quite stable in the refrigerated conditions for 2 months with negligible drug leakage or vesicle size alteration during the storage period. Results of the current studies with FNS-loaded vesicular systems project the high plausibility of a topical liposomal formulation for effective localized delivery of Finasteride.  相似文献   

17.
In this study, we developed oral in situ gelling formulations composed of pluronic (Plu) and polyacrylic acid (PAA) for the delivery of an anticancer drug, epirubicin (Epi). We investigated various Plu/PAA/Epi formulations for their physicochemical properties and in vitro permeation and accumulation, as well as for in vivo pharmacokinetic and antitumor efficacy. A scanning electron microscopic (SEM) image of Plu 14%/PAA 0.75%/Epi hydrogel showed a sponge-like structure. This formulation has suitable gelation time, water content, bioadhesive force, structural stability, and a high permeation percentage of Epi, with sustained drug release characteristics for 96?h. This hydrogel was retained at the end of the ileum near the colon of Sprague-Dawley (SD) rats for at least 12?h. An in vivo pharmacokinetic study using SD rats showed that after oral administration in this formulation, Epi had prolonged half-life, greater area under the curve, and higher relative bioavailability than in an oral Epi solution. In vivo tumor growth inhibition of Epi in this formulation was more pronounced compared with oral Epi and intravenous Epi solutions in CT-26 mouse colon adenocarcinoma bearing Balb/c mice. This study highlights the advantages of using oral in situ temperature- and pH-sensitive hydrogels for future cancer therapy.  相似文献   

18.
The transport of unfractionated (UH) and low molecular weight Heparin (LMWH) in human skin was investigated in vitro using heat separated epidermal membrane and dermis and the effect of liposomal formulations with Phospholipon(R) 80 (PL80) and Sphingomyelin (SM) was assessed. The distribution of Heparin within skin tissue was studied by the tape stripping method. Heparin concentrations were measured with a biological assay. Transepidermal water loss was determined to characterize barrier properties of skin. No consistent permeation of Heparin through epidermal membrane was detected. Penetration into the epidermal membrane was for LMWH significantly greater than for UH. Accumulation of UH was largely restricted to the outermost layers of the stratum corneum while LMWH penetrated into deeper epidermal layers. UH penetration into epidermis was detected for the PL80 liposomal formulation only. The extent of LMWH penetration was independent of the formulation, LMWH, however, showed a trend to accumulate in deeper epidermal layers for the PL80 compared to the aqueous formulation. Thus, molecular weight and liposomal formulations influenced the penetration pattern of Heparin in the epidermis. It can not be concluded whether the concentration of LMWH achieved at the blood capillaries is sufficient to exert a pharmacological effect. UH permeated readily through dermis irrespectively of formulation and its accumulation in the dermis was significantly enhanced and its lag time of permeation increased in the presence of SM liposomes.  相似文献   

19.
The present study was designed to develop a suitable matrix type transdermal drug delivery system (TDDS) of dexamethasone using blends of two different polymeric combinations, povidone (PVP) and ethylcellulose (EC) and Eudragit with PVP. Physical studies including moisture content, moisture uptake, flatness to study the stability of the formulations and in vitro dissolution of the experimental formulations were performed to determine the amount of dexamethasone present in the patches were performed and scanning electron microscopy (SEM) photographs of the prepared TDDS were taken to see the drug distribution pattern. Drug-excipient interaction studies were carried out using Fourier transform infrared (FTIR) spectroscopic technique. In vitro skin permeation study was conducted in a modified Franz's diffusion cell. All the formulations were found to be suitable for formulating in terms of physicochemical characteristics and there was no significant interaction noticed between the drug and polymers used. In vitro dissolution studies showed that the drug distribution in the matrix was homogeneous and the SEM photographs further demonstrated this. The formulations of PVP:EC provided slower and more sustained release of drug than the PVP:Eudragit formulations during skin permeation studies and the formulation PVP:EC (1:5) was found to provide the slowest release of drug. Based on the above observations, it can be reasonably concluded that PVP-EC polymers are better suited than PVP-Eudragit polymers for the development of TDDS of dexamethasone.  相似文献   

20.
The potential gastrointestinal disorders associated with oral administration of rofecoxib can be avoided by delivering the drug to the inflammation site at a sustained, concentrated level over an extended period of time. Hydroxypropylmethylcellulose (HPMC), sodium alginate and Carbopol 940 were used in an attempt to develop topical gel formulations of rofecoxib. The effects of polymer composition on the rate of drug release from the gel formulations were examined through cellulose membrane mounting on a Keshary-Chien diffusion cell. The effects of initial drug concentration and viscosity on the permeation rate of rofecoxib from the gel formulations were evaluated using rat epidermis at 37 +/- 0.5 degrees C. The anti-inflammatory activity of the rofecoxib gel formulation was evaluated using the rat hind paw edema model. The gel formulation consisting of 4% w/w sodium alginate-Carbopol 940 at 3:1 ratio was found to be suitable for topical application based on in vitro evaluation and ex vivo permeation studies. The drug permeation rate increased with an increase of the initial drug concentration in gels up to 25% w/w. An inverse relationship was observed between the in vitro drug release rate/ex vivo permeation rate and viscosity of the gel formulations. The anti-inflammatory activity of 4% w/w sodium alginate-Carbopol 940 gel containing 25% w/w rofecoxib in the rat hind paw edema model reveals that the drug was delivered to the inflammation site at a controlled level over a period of 6 h. These results suggest the feasibility of the topical gel formulation of rofecoxib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号