首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The objective of this study was to investigate the effect of modulated current application using iontophoresis- and microneedle-mediated delivery on transdermal permeation of ropinirole hydrochloride. AdminPatch® microneedles and microchannels formed by them were characterized by scanning electron microscopy, dye staining and confocal microscopy. In vitro permeation studies were carried out using Franz diffusion cells, and skin extraction was used to quantify drug in underlying skin. Effect of microneedle pore density and ions in donor formulation was studied. Active enhancement techniques, continuous iontophoresis (74.13?±?2.20?µg/cm2) and microneedles (66.97?±?10.39?µg/cm2), significantly increased the permeation of drug with respect to passive delivery (8.25?±?2.41?µg/cm2). Modulated iontophoresis could control the amount of drug delivered at a given time point with the highest flux being 5.12?±?1.70?µg/cm2/h (5–7?h) and 5.99?±?0.81?µg/cm2/h (20–22?h). Combination of modulated iontophoresis and microneedles (46.50?±?6.46?µg/cm2) showed significantly higher delivery of ropinirole hydrochloride compared to modulated iontophoresis alone (84.91?±?9.21?µg/cm2). Modulated iontophoresis can help in maintaining precise control over ropinirole hydrochloride delivery for dose titration in Parkinson’s disease therapy and deliver therapeutic amounts over a suitable patch area and time.  相似文献   

2.
Abstract

Objective: In this study, attempt has been focused to prepare a nanoemulsion (NE) gel for topical delivery of amphotericin B (AmB) for enhanced as well as sustained skin permeation, in vitro antifungal activity and in vivo toxicity assessment.

Materials and methods: A series of NE were prepared using sefsol-218 oil, Tween 80 and Transcutol-P by slow spontaneous titration method. Carbopol gel (0.5%?w/w) was prepared containing 0.1%?w/w AmB. Furthermore, NE gel (AmB-NE gel) was characterized for size, charge, pH, rheological behavior, drug release profile, skin permeability, hemolytic studies and ex vivo rat skin interaction with rat skin using differential scanning calorimeter. The drug permeability and skin irritation ability were examined with confocal laser scanning microscopy and Draize test, respectively. The in vitro antifungal activity was investigated against three fungal strains using the well agar diffusion method. Histopathological assessment was performed in rats to investigate their toxicological potential.

Results and discussion: The AmB-NE gel (18.09?±?0.6?µg/cm2/h) and NE (15.74?±?0.4?µg/cm2/h) demonstrated the highest skin percutaneous permeation flux rate as compared to drug solution (4.59?±?0.01?µg/cm2/h) suggesting better alternative to painful and nephrotoxic intravenous administration. Hemolytic and histopathological results revealed safe delivery of the drug. Based on combined results, NE and AmB-NE gel could be considered as an efficient, stable and safe carrier for enhanced and sustained topical delivery for AmB in local skin fungal infection.

Conclusion: Topical delivery of AmB is suitable delivery system in NE gel carrier for skin fungal infection.  相似文献   

3.
Context: Ketorolac is one of the most potent nonsteroidal anti-inflammatory drugs and is an attractive alternative to opioids for pain management.

Objective: Development and evaluation of transdermal ketorolac film forming polymeric solution.

Materials and methods: Eudragits® RLPO, RSPO and E100 as well as polyvinyl pyrrolidone K30 dissolved in ethanol were used as film forming solutions. In vitro experiments were conducted to optimize formulation parameters. Different permeation enhancers were monitored for potentiality of enhancing drug permeation across excised pigskin.

Results: The use of 10% oleic acid, Lauroglycol® 90 or Azone® with 5% Eudragit® RSPO, showed the highest enhancement effect on ketorolac skin permeation and showed faster analgesic effect compared to the ketorolac tablet. The formula comprising 5% Eudragit® RSPO and 10% Lauroglycol® 90 showed the greatest pharmacodynamic effect and thus was subjected to pharmacokinetic studies. The pharmacodynamic and pharmacokinetic results didn’t run paralleled to each other, as the ketorolac tablets showed higher plasma concentrations compared to the selected ketorolac transdermal formulation. This might be due to the induction of analgesia by the available ethanol in the transdermal preparation.

Conclusion: Optimized transdermal ketorolac formulation showed marked ability to ensure fast and augmented analgesic effect that is an essential request in pain management.  相似文献   

4.
《Drug delivery》2013,20(6):814-822
Abstract

The objective of the present study was to develop a topical preparation with enhanced skin permeation, high safety and self-preserving ability. Microemulsion (ME) and cationic polymer based micro-emulgel (CPBM) were investigated for the transdermal delivery of diclofenac sodium (DS). Medium-chain triglyceride was selected as the oil phase of ME due to its good solubilization of DS and high safety. Orthogonal test was applied to optimize the formula of ME based on the cumulative skin permeation amount in vitro after preliminary formula test. Chitosan (CS) or polylysine was employed as the cationic polymer in the formula of CPBM. The transdermal delivery of DS was evaluated through in vitro skin permeation test. The results showed that the skin permeation rate of DS from the optimized CPBM (126.17?±?15.82?μg/cm2/h) were 1.86-folds and 5.76-folds higher than that of DS commercial Emulgel and DS control hydrogel, respectively. MEs and the cationic polymer were found to have skin penetration co-enhancing effect when they were combined in the CPBM system. Furthermore, the CPBM showed a good growth inhibition of E. coli and S. aureus. The stability test revealed that the CPBM was stable at room temperature and 4?°C for a period of three months.  相似文献   

5.
《Drug delivery》2013,20(6):424-431
The objective of the present study was to evaluate a novel film forming biomaterial for its potential application in the preparation of unilaminate transdermal adhesive matrix systems. The biomaterial, Damar Batu (DB), was tried alone and in combination with Eudragit RL100 as a matrixing agent in the preparation of transdermal patches. Developed transdermal patches of Diltiazem hydrochloride (DH) were evaluated for thickness uniformity, weight uniformity, folding endurance and drug content. USP dissolution apparatus V was used for in vitro drug release studies. Modified Franz diffusion cell used for permeation study using excised human cadaver skin. Total 6 formulations were developed and on the basis of in vitro drug release and in vitro skin permeation profile F5 composed of DB: Eudragit RL100 (60:40) and carrying 20 %w/w DH was selected as an optimized formulation for in vivo study. The in vivo study results showed that F5 achieved the Cmax of about 269.76?±?1.52?ng/mL in 6?h and sustained the release of the drug till 24?h. The skin irritation study results proved that the novel biomaterial is non-sensitizing and non-irritating. Drug-polymer interaction study carried out to check the compatibility of drug and polymer showed the intactness of the drug in the formulation proving the compatibility of the polymer. It can be proposed from the outcome of the present study that by applying suitable adhesive layer and backing membrane, DB: Eudragit RL100 (60:40) transdermal patches can be of potential therapeutic use.  相似文献   

6.
The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright ‘Franz-type’ diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6?µg/cm2 h and 23.0?µg/cm2 h respectively, compared to the control with a flux of 16.2?µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.  相似文献   

7.
ABSTRACT

Objectives: The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin.

Methods: Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells.

Results: Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10–2 ± 0.7 µg/cm2 h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers.

Conclusion: The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.  相似文献   

8.
Abstract

Context: Proniosomes offer a versatile vesicle drug delivery concept with potential for delivery of drugs via transdermal route.

Objectives: To develop proniosomal gel using cremophor RH 40 as non-ionic surfactant containing the antihypertensive drug lacidipine for transdermal delivery so as to avoid its extensive first pass metabolism and to improve its permeation through the skin.

Materials and methods: Proniosomes containing 1% lacidipine were prepared by the coacervation phase separation method, characterized, and optimized using a 23 full factorial design to define the optimum conditions to produce proniosomes with high entrapment efficiency, minimal vesicle size, and high-percentage release efficiency. The amount of cholesterol (X1), the amount of soya lecithin (X2), and the amount of cremophor RH 40 (X3) were selected as three independent variables.

Results and discussion: The system F4 was found to fulfill the maximum requisite of an optimum system because it had minimum vesicle size, maximum EE, maximum release efficiency, and maximum desirability. The optimized system (F4) was then converted to proniosomal gel using carbopol 940 (1% w/w). In vitro permeation through excised rabbit skin study revealed higher flux (6.48?±?0.45) for lacidipine from the optimized proniosomal gel when compared with the corresponding emulgel (3.04?±?0.13) mg/cm2/h. The optimized formulation was evaluated for its bioavailability compared with commercial product. Statistical analysis revealed significant increase in AUC (0???α) 464.17?±?113.15?ng h/ml compared with 209.02?±?47.35?ng h/ml for commercial tablet. Skin irritancy and histopathological investigation of rat skin revealed its safety.

Conclusions: Cremophor RH 40 proniosomal gel could be considered as very promising nanocarriers for transdermal delivery of lacidipine.  相似文献   

9.
The objective of the current study was to formulate the eprosartan mesylate loaded transfersomes using different proportions of Phospholipon® 90?G and Tween® 80 (95–75:5–25% w/w). The prepared transfersomes were characterized for their vesicles size, shape, polydispersity index, zeta potential, entrapment efficiency, in vitro skin permeation, confocal laser scanning microscopy, and in vivo skin irritation. Results revealed that the formulated transfersomes were negatively charged, spherical unilamellar structure of 71.18–85.66?nm with entrapment efficiency of 83.00–88.19%, and presented transdermal flux of 1.78–5.02?μg/cm2/h across rat skin. Confocal laser scanning microscopy confirmed that the formulated rhodamine 6?G loaded transfersomes could penetrate deeply and uniformly into rat skin. Additionally, in vivo skin irritation studies revealed that the prepared transfersomes were devoid of any skin irritation potential (erythema and edema). Results of this study revealed that the transfersomes prepared with Tween® 80 could be used to enhance the transdermal delivery of eprosartan mesylate. In conclusion, transdermal transfersomes formulation may prove to be an encouraging drug carrier for eprosartan mesylate and other actives, particularly owing to their simple formulation and unsophisticated scale-up methods.  相似文献   

10.
《Drug delivery》2013,20(6):710-722
Abstract

The purpose of this study was to formulate and evaluate novel PEGylated solidified reverse micellar solutions (SRMS)-based solid lipid microparticles (SLMs) for improved delivery of gentamicin. Lipid matrix (SRMS) [consisting of 15% w/w Phospholipon® 90G (P90G) in 35% w/w dika wax (Irvingia gabonensis) was formulated and characterized by differential scanning calorimetry (DSC). SLMs were formulated by melt-emulsification using the SRMS, PEG 4000 and gentamicin (1.0, 2.0, 3.0% w/w), and their physicochemical as well as pharmacokinetic parameters determined. In vitro permeation of gentamicin from the SLMs through artificial membrane (0.22?μm pore size) was carried out using Franz’s cell and phosphate-buffered saline (PBS, pH 7.4) as acceptor medium, while bioevaluation was performed using clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus. Stable and irregularly-shaped gentamicin-loaded SLMs of size range 34.49?±?2.56 to 53.52?±?3.09?µm were obtained. The SLMs showed sustained drug permeation and exhibited time-dependent and capacity-limited bioactivity. Overall, SLMs containing 2% w/w SRMS, 3% w/w gentamicin and PEG 4000 entrapped the highest amount of drug, gave highest IZD against the test organisms and highest permeation flux (5.239?μg/cm2.min) and permeation coefficient (1.781?×?10?6?cm/min) within 420?min, while pure gentamicin gave the least. Preliminary in vivo pharmacokinetic studies also showed an AUC-24 of 1507?µg/h/ml for the optimized formulation, while that of oral drug solution was 678?µg/h/ml. This showed a 2.2-fold increase in the systemic bioavailability of gentamicin from the optimized formulation. PEGylated SRMS-based SLMs prepared with heterolipid from Irvingia gabonensis would likely offer a reliable delivery system for gentamicin.  相似文献   

11.
Purpose: To optimise the Eudragit/Surelease®-coated pH-sensitive pellets for controlled and target drug delivery to the colon tissue and to avoid frequent high dosing and associated side effects which restrict its use in the colorectal-cancer therapy.

Methods: The pellets were prepared using extrusion-spheronisation technique. Box–Behnken and 32 full factorial designs were applied to optimise the process parameters [extruder sieve size, spheroniser-speed, and spheroniser-time] and the coating levels [%w/v of Eudragit S100/Eudragit-L100 and Surelease®], respectively, to achieve the smooth optimised size pellets with sustained drug delivery without prior drug release in upper gastrointestinal tract (GIT).

Results: The design proposed the optimised batch by selecting independent variables at; extruder sieve size (X1?=?1?mm), spheroniser speed (X2?=?900 revolutions per minute, rpm), and spheroniser time (X3?=?15?min) to achieve pellet size of 0.96?mm, aspect ratio of 0.98, and roundness 97.42%. The 16%w/v coating strength of Surelease® and 13%w/v coating strength of Eudragit showed pH-dependent sustained release up to 22.35?h (t99%). The organ distribution study showed the absence of the drug in the upper part of GIT tissue and the presence of high level of capecitabine in the caecum and colon tissue. Thus, the presence of Eudragit coat prevent the release of drug in stomach and the inner Surelease® coat showed sustained drug release in the colon tissue.

Conclusion: The study demonstrates the potential of optimised Eudragit/Surelease®-coated capecitabine-pellets for effective colon-targeted delivery system to avoid frequent high dosing and associated systemic side effects of drug.  相似文献   

12.
Transdermal patches of olanzapine were aimed to be prepared to overcome the side effects by oral application. The strategy was formulation of eudragit-based polymeric films to prepare transdermal patches by using nonionic (span-20), anionic (sodium lauryl sulfate), cationic surfactant (benzalkonium chloride), and vegetable oil (olive oil) as permeation enhancers. The patches were subjected to physicochemical, in vitro release and ex vivo permeation studies. On the basis of in vitro release performance, ERL 100:ERS 100 in the ratio of 3:2 was selected for incorporation of permeation enhancers. The permeation studies showed that formulation containing 10% span 20 (OD3) exhibited greatest cumulative amount of drug permeated (19.02?±?0.21?mg) in 72?h, so OD3 was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic, and skin irritation potential. In vivo studies of optimized olanzapine patch in rabbit model revealed prolongation of action with Frel 116.09% during 72-h study period. Neuroleptic efficacy of transdermal patch was comparable to oral formulation during rotarod and grip test in Wistar albino rats with no skin irritation. Thus, developed formulation of olanzapine is expected to improve the patient compliance, form better dosage regimen, and provide maintenance therapy to psychotic patients.  相似文献   

13.
The aim of the present study was to investigate the potential of true nanoemulsions for transdermal delivery of indomethacin. Thermodynamically stable true nanoemulsions were characterized for morphology using transmission electron microscopy (TEM), droplet size, rheological characteristics, and refractive index. The rheological behavior for all true nanoemulsions was found to be Newtonian as viscosity was unchanged by increasing the rate of shear. The ex vivo skin permeation studies were performed using Franz diffusion cell with rat skin as permeation membrane. The ex vivo skin permeation profile of optimized formulation was compared with marketed Indobene gel and nanoemulsion gel. Significant increase in permeability parameters was observed in nanoemulsion formulations (P?<?0.05). The steady-state flux (Jss) and permeability coefficient (Kp) for optimized nanoemulsion formulation were found to be 73.96?±?2.89?μg/cm2/h and 1.479?×?10?2?±?0.289?×?10??2?cm/h, respectively, which were significant compared with Indobene gel and nanoemulsion gel (P?<?0.05). Enhancement ratio (Er) was found to be 7.88 in optimized formulation F6 compared with other formulations. These results suggested that nanoemulsions can be used as potential vehicles for improved transdermal delivery of indomethacin.  相似文献   

14.
Context: As a glucocorticoid drug, dexamethasone has good therapeutic effects for ulcerative colitis. pH-sensitive hydrogels could make conventional changes of volume in response with different pH values. Meanwhile, they could load drugs depending on its internal three-dimensional network structure.

Objective: Appropriate methods were used to improve the drug-loading capacity of hydrogel and exploring the colon-targeting character of dexamethasone hydrogel.

Materials and methods: Different solvents (ethanol and 1,2-propanediol) were employed to dissolve dexamethasone as well as hydrogel monomer materials (poly(ethylene glycol) methyl ether (MPEG)–poly(lactide acid)–acryloyl chloride macromonomer, itaconic acid (IA) and MPEG–methacrylate), then mixing them together to prepare hydrogel through the heat-initiated free radical polymerization method. Differential scanning calorimetry and X-ray diffraction methods were used to verify whether dexamethasone was loaded into hydrogels. In vitro drug release behavior and in vivo pharmacokinetic study were also investigated in detail.

Results: Dexamethasone was successfully loaded into hydrogel, and its loading capacity was improved (5?mg/g). Both the in vitro release study and the in vivo pharmacokinetic study showed the good colon-targeting character of the pH-sensitive P(LE–IA–MEG) hydrogel (Tmax?=?1.0?h, Cmax?=?2.16?µg/ml of dexamethasone; Tmax?=?3.9?h, Cmax?=?0.43?µg/ml of dexamethasone hydrogel).

Discussion: Dexamethasone could be targeted to the colon site by P(LE–IA–MEG) hydrogel, thereby improving its therapeutic effect and reduce its side effects.

Conclusion: P(LE–IA–MEG) hydrogel might have great potential application in colon-targeted drug delivery systems.  相似文献   

15.
Abstract

The purpose of the current investigation was to evaluate the skin delivery potential of the different nano-carrier gels including liposomal gel, ethosomal gel and microemulsion gel bearing testosterone propionate (TP) as a testosterone deficient therapy. The prepared nano-particles were characterized for their shape, particle size distribution and zeta potential. In vitro skin permeation and in vivo transdermal delivery of nano-carrier gels were studied with the Franz diffusion cells and confocal laser scanning microscopy (CLSM). The results showed that all of nano-particles were almost spherical with low polydispersity and nano-metric size range from 40 to 200?nm. TP ethosomal gel also provided an enhanced transdermal flux of 7.64?±?1.4?μg/cm2/h and a decreased lag time of 0.69?h across rat skin as compared with the other two formulations. The skin penetration efficiency of TP nano-carrier gels also revealed that TP ethosomal gel would enhanced penetration of rhodamine red (RR)-loaded formulation to the deeper layers of the skin (268?µm) than the liposomal gel (192?µm) and microemulsion gel (228?µm). This study demonstrated TP ethosomal gel is a promising nano-carrier for delivering TP through the skin.  相似文献   

16.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

17.
《Drug delivery》2013,20(6):795-802
Abstract

5-fluorouracil (5-Fu) is an antineoplastic drug, topically used for the treatment of actinic keratosis and nonmelanoma skin cancer. It shows poor percutaneous permeation through the conventionally applicable creams and thus inefficient for the treatment of deep-seated skin cancer. In the present article, transfersomal gel containing 5-Fu was investigated for the treatment of skin cancer. Different formulation of tranfersomes was prepared using Tween-80 and Span-80 as edge activators. The vesicles were characterized for particle size, shape, entrapment efficiency, deformability and in vitro skin permeation. Optimized formulation was incorporated into 1% carbopol 940 gel and evaluated for efficacy in the treatment of skin cancer. 5-Fu-loaded transfersomes (TT-2) has the size of 266.9?±?2.04?nm with 69.2?±?0.98% entrapment efficiency and highest deformability index of 27.8?±?1.08. Formulation TT-2 showed maximum skin deposition (81.3%) and comparable transdermal flux of 21.46?µg/cm2?h. The TT-2-loaded gel showed better skin penetration and skin deposition of the drug than the marketed formulation. Composition of the transfersomal gel has been proved nonirritant to the skin. We concluded that the developed 5-Fu-loaded transfersomal gel improves the skin absorption of 5-Fu and provide a better treatment for skin cancer.  相似文献   

18.
The aim of this study was to enhance the release properties of diltiazem hydrochloride (diltiazem HCl) by using microparticle system. For this reason, microparticle drug delivery systems based on chitosan and Eudragit®RSPM were developed. The microparticles were prepared by using double-emulsion solvent extraction method and the mean sizes of microparticles were less than 120?µm. The in vitro drug release from microparticles was studied in simulated gastric (pH 1.2) and intestinal media (pH 7.4) than the results were evaluated by kinetically. In vitro diltiazem HCl release from microparticles showed good zero order kinetic. For the microparticles with chitosan, the release of diltiazem HCl at pH 1.2 could be effectively sustained, while the release of diltiazem HCl increased at pH 7.4 when compared to Eudragit®RSPM microparticles. The highest release percent obtained was 1:1 ratio of drug: polymer at pH 1.2 and 7.4. All results clearly suggest that the release properties of diltiazem HCl were improved by using microparticle systems especially which contain chitosan.  相似文献   

19.
Objective: To formulate and evaluate solid-reversed-micellar-solution (SRMS)-based solid lipid microparticles (SLMs) for intramuscular administration of gentamicin.

Methods: SRMS formulated with Phospholipon® 90G and Softisan® 154 were used to prepare gentamicin-loaded SLMs. Characterizations based on size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release of gentamicin from the SLMs was performed in phosphate buffer while in vivo release studies were conducted in rats.

Results: Maximum EE% of 90.0, 91.6 and 83.0% were obtained for SLMs formed with SRMS 1:1, 1:2 and 2:1, respectively. Stable, spherical and smooth SLMs of size range 9.80?±?1.46?µm to 33.30?±?6.42?µm were produced. The release of gentamicin in phosphate buffer varied widely with the lipid contents. Moreover, significant (p?<?0.05) amount of gentamicin was released in vivo from the SLMs.

Conclusion: SRMS-based SLMs would likely offer a reliable means of delivering gentamicin intramuscularly.  相似文献   

20.
This study aims at developing an optimised nanostructured lipid carrier (NLC) of lycopene for efficient absorption following oral administration. The optimised formulation showed an average particle size of 121.9?±?3.66?nm, polydispersity index (PDI) 0.370?±?0.97 and zeta potential ?29.0?±?0.83?mV. Encapsulation Efficiency (% EE) and drug loading (% DL) was found to be 84.50%?±?4.38 and 9.54%?±?2.65, respectively. In vitro release studies demonstrated the burst release within 4–9?h followed by sustained release over 48?h. The IC50 value of lycopene extract and optimised NLC for ABTS+? were found to be 172.37?μg Trolox equivalent and 184.17?μg Trolox equivalent whereas, for DPPH?, 117.76?μg Trolox equivalent and 143.08?μg Trolox equivalent respectively. Ex vivo studies and MTT assay revealed that the NLC had better permeation and cause sufficiently more cytotoxicity as compared to drug extract due to higher bioavailability and greater penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号