首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amygdaloid neurons of origin and the trajectory of amygdaloid fibers to the medial preoptic area of the adult male Syrian hamster were identified by using horseradish peroxidase (HRP) histochemistry. After iontophoresis of HRP into the medial preoptic area, retrogradely labeled amygdaloid neurons were located in the dorsal and caudal parts of the medial amygdaloid nucleus and throughout the amygdalohippocampal area. No amygdaloid neurons were labeled after HRP applications confined to the most rostral portion of the medial preoptic area (anterior to the body of the anterior commissure). Following more caudal medial preoptic area injections (body of the anterior commissure to the suprachiasmatic nucleus) the distribution of retrogradely labeled cells in the medial amygdaloid nucleus and the amygdalohippocampal area revealed no topographic organization of the amygdalopreoptic connections. When amygdaloid neurons were labeled, the amygdalohippocampal area contained two to five times as many HRP-filled cells as the medial amygdaloid nucleus. Retrogradely transported HRP could be followed from the medial preoptic area to the amygdala through fibers in the dorsomedial quadrant of the stria terminalis. In addition, electrolytic lesions of the stria terminalis prior to iontophoresis of HRP into the medial preoptic area prevented retrograde transport to neurons in both the dorsocaudal medial amygdaloid nucleus and the amygdalohippocampal area. These results confirm earlier observations describing the location of autoradiographically labeled efferents from the medial amygdaloid nucleus to the medial preoptic area and provide new information about the restricted region within the medial amygdaloid nucleus from which these projections arise. They also suggest that, unlike the projections from the medial amygdaloid nucleus to the bed nucleus of the stria terminalis, the efferents to the medial preoptic area travel entirely in the stria terminalis.  相似文献   

2.
The first set of the present experiments was designed to investigate the postnatal development of corticotropin releasing factor-like immunoreactivity (CRFI) in the rat cerebral cortex by means of cobalt-enhanced immunohistochemistry. Results showed the occurrence of CRFI fibres before cells in the developing rat cerebral cortex with and without colchicine treatment, suggesting that some CRFI cells in subcortical regions may project to the cerebral cortex. In the second set of experiments, ipsilateral double-labelled cells which contained both retrogradely transported horseradish peroxidase (HRP) and CRFI were observed in the zona incerta, subincertal nucleus, lateral hypothalamic area, perifornical hypothalamic area, and in the dorsal hypothalamic area after unilateral HRP injections into the cerebral cortex. These findings indicate the existence of corticopetal CRFI-containing projections arising from the above areas.  相似文献   

3.
Neurons that accompany the stria terminalis as it loops over the internal capsule have been termed collectively the supracapsular bed nucleus of the stria terminalis (BSTS). They form two cell columns, a lateral column and a considerably smaller medial column. The lateral column merges rostrally with the lateral bed nucleus of the stria terminalis and caudally with the central amygdaloid nucleus (central extended amygdala components). The medial column is continuous with the medial bed nucleus of the stria terminalis and the medial amygdaloid nucleus (medial extended amygdala districts). The connections of the BSTS were investigated in the rat by placing injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) or retrograde tracers in different parts of the extended amygdala or in structures related to the extended amygdala. BSTS inputs and outputs were identified, respectively, by the presence of varicose fibers and retrogradely labeled neurons within the stria terminalis. The results suggest that the medial-to-lateral compartmentalization of BSTS neurons reflects their close alliance with the medial and central divisions of the extended amygdala. The medial BSTS contains primarily elements that correspond to the posterodorsal part of the medial amygdaloid nucleus and the medial column of the posterior division of the medial bed nucleus of the stria terminalis, and the lateral BSTS contains elements that correspond to the medial and lateral parts of the central amygdaloid nucleus and lateral bed nucleus of the stria terminalis. These results add strong support to the concept of the extended amygdala as a ring-like macrostructure around the internal capsule, and they are of theoretical interest for the understanding of the organization of the basal forebrain.  相似文献   

4.
The regional distribution of histidine decarboxylase (HD) activity has been studied in the amygdaloid complex and the bed nucleus of the stria terminalis (BST) of the rat. The central and medial nuclei of the amygdala had 2-fold higher HD activity levels than the remaining nuclei of the complex. HD activity was exceptionally high in the BST, particularly in its ventral part. A lesion of the stria terminalis had no effect on this distribution whereas a combined lesion of the stria terminalis and the so-called ventral pathway induced a decrease of approximately 60% in all the amygdaloid nuclei, but not in the BST. On the other hand, a lesion of the medial forebrain bundle (MFB) induced a similar decrease in both the amygdaloid nuclei and the BST. These results confirm that HD-containing fibres are present in the MFB. On the one hand these project massively to the BST and on the other penetrate in the amygdala ventromedially along the ansa peduncularis and preferentially innervate the more medially located nuclei.  相似文献   

5.
Corticotropin releasing factor (CRF)-containing afferents to the rat lateral septum (LS) have been determined by means of cobalt-enhanced immunohistochemistry, tracing of retrograde transport of horseradish peroxidase (HRP), and by lesioning experiments. When unilateral lesions included the rostral part of the hypothalamus, CRF-like immunoreactive (CRFI) ipsilateral fibers in the LS decreased in number. Lesions in other brain regions did not cause alterations in the septal CRFI fibers. These findings suggest that the septal CRFI fibers originate in the rostral part of the hypothalamus. Furthermore, combined HRP and immunohistochemical staining on the same sections demonstrated double-labeled cells in two discrete areas within the rostral hypothalamus: one was the perifornical hypothalamic area (PeF) at the level of the paraventricular hypothalamic nucleus, and the other was the most caudal part of the anterior hypothalamic nucleus (AHc). These findings show that a large proportion of the CRFI projections to the LS have their origins in the PeF and AHc.  相似文献   

6.
The distribution of dopaminergic fibers in the principal components of the central extended amygdala (central amygdaloid nucleus (Ce), substantia innominata, and bed nucleus of the stria terminals (BNST)), was studied using immunocytochemistry against tyrosine hydroxylase, dopamine β-hydroxylase and dopamine. Dopamine fibers were found most densely distributed in the dorsolateral subdivision of the BNST and the lateral part of the Ce. Smaller numbers of dopaminergic fibers were found in the rest of the central extended amygdala. In contrast, dopamine β-hydroxylase fibers were virtually absent from the dorsolateral bed nucleus of the stria terminalis and lateral part of the central amygdaloid nucleus, but were distributed in a moderate density in the medial part of Ce, dorsal substantia innominata and posterolateral BNST. Our results show that dopamine fibers are most concentrated over those regions of the central extended amygdala with large numbers of GABAergic neurons whose projections remain within the central extended amygdala, while noradrenergic fibers are most heavily concentrated over those regions containing a large proportion of brainstem projection neurons. That dopamine fibers are concentrated over regions with GABAergic medium spiny neurons suggests that those regions might be organized as a striatal parallel.  相似文献   

7.
The efferent connections of the ventromedial nucleus of the hypothalamus (VMH) of the rat have been examined using the autoradiographic method. Following injections of small amounts (0.4-2.0 muCi) of tritium labeled amino acids, fibers from the VMH can be traced forward through the periventricular region, the medial hypothalamus and the medial forebrain bundle to the preoptic and thalamic periventricular nuclei, to the medial and lateral preoptic areas, to the bed nucleus of the stria terminalis and to the ventral part of the lateral septum. Some labeled axons continue through the bed nucleus of the stria terminalis into the stria itself, and hence to the amygdala, where they join other fibers which follow a ventral amygdalopetal route from the lateral hypothalamic area and ventral supraoptic commissure. These fibers terminate in the dorsal part of the medial amygdaloid nucleus and in the capsule of the central nucleus. A lesser number of rostrally directed fibers from the VMH crosses the midline in the ventral supraoptic commissure and contributes a sparse projection to the contralateral amygdala. Descending fibers from the VMH take three routes: (i) through the medial hypothalamus and medial forebrain bundle; (ii) through the periventricular region; and (iii) bilaterally through the ventral supraoptic commissure. These three pathways are interconnected by labeled fibers so that it is not possible to precisely identify their respective terminations. However, the periventricular fibers seem to project primarily to the posterior hypothalamic area and central gray, as far caudally as the anterior pole of the locus coeruleus, while the medial hypothalamic and medial forebrain bundle fibers apparently terminate mainly in the capsule of the mammillary complex, in the supramammillary nucleus and in the ventral tegmental area. The ventral supraoptic commissure fibers leave the hypothalamus closely applied to the medial edges of the two optic tracts. After giving off their contributions to the amygdala, they continue caudally until they cross the dorsal edge of the cerebral peduncle to enter the zona incerta. Some fibers probably terminate here, but others continue caudally to end in the dentral tegmental fields, and particularly in the peripeduncular nucleus. Within the hypothalamus, the VMH appears to project extensively to the surrounding nuclei. However, we have not been able to find evidence for a projection from the VMH to the median eminence. Isotope injections which differentially label the dorsomedial or the ventrolateral parts of the VMH have shown that most of the long connections (to the septum, amygdala, central tegmental fields and locus coeruleus) originate in the ventrolateral VMH, and there is also some evidence for a topographic organization within the projections of this subdivision of the nucleus.  相似文献   

8.
Afferent connections to the medial hypothalamic region in the rat were studied using horseradish peroxidase (HRP). HRP was injected iontophoretically by a parapharyngeal approach. After HRP injections into the ventromedial hypothalamic nucleus, labeled cells were found mainly in the medial and basolateral amygdaloid nuclei, subiculum, peripeduncular nucleus and the parabrachial area. Labeled cells following HRP injections into the dorsomedial hypothalamic nucleus were found mainly in the lateral septal nucleus, nucleus accumbens, bed nucleus of the stria terminalis, pontine central gray and the parabrachial area. HRP-labeled cells following the medial preoptic area injections were found mainly in the infralimbic cortex, lateral and medial septal nuclei, nucleus accumbens, diagonal band, bed nucleus of the stria terminalis, medial amygdaloid nucleus, subiculum, peripedunclar nucleus and the parabrachial area. The intrahypothalamic connections were also discussed.  相似文献   

9.
The projections from the basal telencephalon and hypothalamus to each nucleus of the amygdaloid complex of the rat, and to the central amygdala of the cat, were investigated by the use of retrograde transport of horseradish peroxidase (HRP). The enzyme was injected stereotaxically by microiontophoresis, using three different approaches. The ventral pallidum (Heimer, '78) and ventral part of the globus pallidus were found to project to the lateral and basolateral nuclei of the amygdala. The substantia innominata projects diffusely to the entire amygdaloid complex, except to the lateral nucleus and the caudal part of the medial nucleus. The anterior amygdaloid area shows a similar projection field, the only difference being that this structure does not project to any parts of the medial nucleus. The dorsal subdivision of the nucleus of the lateral olfactory tract sends fibers to the ipsilateral as well as the contralateral basolateral nucleus, and possibly to the ipsilateral basomedial and cortical amygdala. The ventral subdivision of the nucleus of the lateral olfactory tract was massively labeled after an injection in the ipsilateral central nucleus, but this injection affected the commissural component of the stria terminalis. The nucleus of the horizontal limb of the diagonal band of Broca connects with the medial, central, and anterior cortical nuclei, whereas the bed nucleus of stria terminalis and medial preoptic area are related to the medial nucleus predominantly. The lateral preoptic area is only weakly labeled after intra-amygdaloid HRP injections. The hypothalamo-amygdaloid projections terminate preponderantly in the medial part of the amygdaloid complex. Thus, axons from neurons in the area dorsal and medial to the paraventricular nucleus of the hypothalamus distribute to the medial nucleus and intra-amygdaloid part of the bed nucleus of stria terminalis. Most of the amygdalopetal fibers from the ventromedial, ventral premammillary, and arcuate nuclei of the hypothalamus end in the medial nucleus, but some extend into the central nucleus. A few fibers from the ventromedial nucleus of the hypothalamus reach the basolateral nucleus. The lateral hypothalamic area projects heavily to the central nucleus, and more sparsely to the medial and basolateral nuclei. The dorsal hypothalamic area and supramammillary nucleus show restricted projections to the central and basolateral nuclei, respectively. There are only a modest number of crossed hypothalamo-amygdaloid fibers. Most of these originate in the ventromedial nucleus of the hypothalamus and terminate in the contralateral medial nucleus. The projections from the basal telencephalon and hypothalamus to the central nucleus of the amygdala of the cat are similar to the corresponding projections in the rat.  相似文献   

10.
The present study examined the distribution, morphology, and connections of gamma-aminobutyric acid-immunoreactive (GABA-IR) neuros in the three principal components of the central extended amygdala: the central amygdaloid nucleus, the bed nucleus of the stria terminalis (BNST) and the sublenticular substantia innominata. In the central nucleus, large numbers of GABA-IR neurons were identified in the lateral, lateral capsular, and ventral subdivisions, though in the medial subdivision, GABA-IR neurons were only present at very caudal levels. Combined immunocytochemistry-Golgi impregnation revealed that GABA-IR neurons in the lateral central nucleus were medium-sized spiny neurons that were morphologically similar to GABAergic neurons in the striatum. Injections of horseradish peroxidase into the bed nucleus of the stria terminalis labeled a major proportion of the GABA-IR neurons in the central nucleus. In the bed nucleus, the majority of GABA-IR neurons were located in the anterolateral subdivision, ventral part of the posterolateral subdivision and the parastrial subdivision. GABA-IR neurons in the anterolateral bed nucleus were of the typical mediumsized spiny type. Injections of horseradish peroxidase into the central nucleus labeled a few GABA-IR neurons in the posterior part of the anterolateral bed nucleus. GABA-IR neurons were identified in the sublenticular substantia innominata and medial shell of the nucleus accumbens and contributed to the continuum of GABA-IR extending from the central nucleus to the bed nucleus. Injections of horseradish peroxidase (HRP) into the central nucleus, but not the BNST, labeled a few GABA-IR neurons in the substantia innominata. The data point to GABA-IR neurons being a characteristic feature of the central extended amygdala and that GABA-IR neurons participate in the long intrinsic connections linking the major components of this structure. Since lesions of the stria terminalis and basolateral amygdaloid nucleus failed to deplete GABA-IR terminals in the central nucleus, the role of GABA in local and short intrinsic connections in the central extended amygdala is discussed. Further, physiological findings implicating the intrinsic GABAergic system of the central extended amygdala in the tonic inhibition of brainstem efferents are reviewed.  相似文献   

11.
Afferent connections to the lateral hypothalamic region in the rat were studied using horseradish peroxidase (HRP). HRP was injected iontophoretically by a parapharyngeal approach. After HRP injections into the lateral hypothalamic area, labeled cells were found mainly in the medial prefrontal and infralimbic cortices, lateral and dorsal septal nuclei, nucleus accumbens, bed nucleus of the stria terminalis, medial and lateral amygdaloid nuclei, lateral habenular nucleus, peripeduncular nucleus, ventral tegmental area, mesencephalic and pontine central gray, ventral nucleus of the lateral lemniscus, lateral parabrachial area, raphe nuclei and the nucleus locus coeruleus. Labeled cells following HRP injections into the lateral preoptic area were found mainly in the lateral and dorsal septal nuclei, nucleus accumbens, diagonal band, ventral part of the globus pallidus, bed nucleus of the stria terminalis, central amygdaloid nucleus, mesencephalic and pontine central gray, dorsal raphe nucleus, parabrachial area and the nucleus locus coeruleus. The intrahypothalamic connections were also discussed.  相似文献   

12.
Immunocytochemistry at the electronmicroscopic level was used to identify and examine substance P and neurotensin-containing perikarya and dendrites in the central amygdaloid nucleus of the rat. Following unilateral transection of the stria terminalis between the bed nucleus of the stria terminalis and the amygdala, degenerated nerve terminals were present in the ipsilateral central amygdaloid nucleus. These degenerated boutons were associated with both perikarya and dendrites of substance P and neurotensin-positive cells as well as unlabeled neurons.  相似文献   

13.
Chemosensory and hormonal signals, both of which are essential for mating in the male Syrian hamster, are relayed through a distinct forebrain circuit. Immunocytochemistry for tyrosine hydroxylase, a catecholamine biosynthetic enzyme, previously revealed immunoreactive neurons in the anterior and posterior medial amygdaloid nucleus, one of the nuclei within this pathway. In addition, dopamine-immunoreactive neurons were located in the posterior, but not hte anterior, medial amygdala. In the present study, tyrosine hydroxylase-immunostained neurons were also observed in other areas of the chemosensory pathway, including the posteromedial bed nucleus of the stria terminalis and the posterior, lateral part of the medial preoptic area, while dopamine immunostaining was only seen in the posteromedial bed nucleus of the stria terminalis. The colocalization of tyrosine hydroxylase and androgen receptors was examined in these four tyrosine hydroxylase cell groups by a double immunoperoxidase technique. The percentage of tyrosine hydroxylase-immunolabeled neurons that were also androgen receptor-immunoreactive was highest in the posterior medial amygdaloid nucleus (74%) and the bed nucleus of the stria terminalis (79%). Fewer tyrosine hydroxylase-immunostained neurons in the anterior medial amygdala (33%) and the medial preoptic area (4%) contained androgen receptors. Surprisingly, castration resulted in a significant decrease in the number of tyrosine hydroxylase-immunoreactive neurons only in the anterior medial amygdaloid nucleus, and this effect was transient. Six weeks after castratio, the anterior medial amygdala contained 61% fewer tyrosine hydroxylase-immunolabeled neurons, but 12 weeks after gonadectomy, immunostaining returned to intact values. The number of immunostained neurons in testosterone-replaced, castrated hamsters was not significantly different from that of intact or castrated animals at any time. The results of this study indicate that a substantial number of tyrosine hydroxylase-immunostained neurons in the chemosensory pathway are influenced by androgens; the majority of these neurons in the posterior medial amygdala and the posteromedial bed nucleus of the stria terminalis produce androgen receptors, and tyrosine hydroxylase immunoreactivity is altered by castration in the anterior medial amygdala. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Olfactory and vomeronasal projections have been traditionally viewed as terminating in contiguous non-overlapping areas of the basal telencephalon. Original reports, however, described areas such as the anterior medial amygdala where both chemosensory afferents appeared to overlap. We addressed this issue by injecting dextran amines in the main or accessory olfactory bulbs of rats and the results were analyzed with light and electron microscopes. Simultaneous injections of different fluorescent dextran amines in the main and accessory olfactory bulbs were performed and the results were analyzed using confocal microscopy. Similar experiments with dextran amines in the olfactory bulbs plus FluoroGold in the bed nucleus of the stria terminalis indicate that neurons projecting through the stria terminalis could be integrating olfactory and vomeronasal inputs. Retrograde tracing experiments using FluoroGold or dextran amines confirm that areas of the rostral basal telencephalon receive inputs from both the main and accessory olfactory bulbs. While both inputs clearly converge in areas classically considered olfactory-recipient (nucleus of the lateral olfactory tract, anterior cortical amygdaloid nucleus, and cortex-amygdala transition zone) or vomeronasal-recipient (ventral anterior amygdala, bed nucleus of the accessory olfactory tract, and anteroventral medial amygdaloid nucleus), segregation is virtually complete at posterior levels such as the posteromedial and posterolateral cortical amygdalae. This provides evidence that areas so far considered receiving a single chemosensory modality are likely sites for convergent direct olfactory and vomeronasal inputs. Therefore, areas of the basal telencephalon should be reclassified as olfactory, vomeronasal, or mixed chemosensory structures, which could facilitate understanding of olfactory-vomeronasal interactions in functional studies.  相似文献   

15.
A two-color immunoperoxidase procedure was used to determine whether somatostatin (SOM) containing neurons in the amygdala also contain neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), or cholecystokinin (CCK). There was no evidence that SOM-containing neurons in any of the amygdaloid nuclei contain VIP or CCK. In contrast, there was extensive colocalization of SOM and NPY in all of the amygdaloid nuclei with the exception of the intercalated masses and the lateral subdivision of the central nucleus. The greatest number of SOM-NPY double-labeled cells was observed in the medial nucleus, lateral nucleus, and intra-amygdaloid portion of the bed nucleus of the stria terminalis. The morphology of these SOM-NPY neurons was similar in all nuclei. Most exhibited fusiform or avoid cell bodies with one or two sparsely branched dendrites emerging from each pole of the cell. The extensive coexistence of SOM and NPY in non-pyramidal neurons of the basolateral amygdala is similar to that seen in the cerebral cortex and supports the concept that these brain regions share many important characteristics. The extensive colocalization of SOM and NPY in the medial amygdala, in conjuction with the results of previous studies, suggests that some of these cells may project to the bed nucleus of the stria terminalis and hypothalamus.  相似文献   

16.
The cells of origin and terminal fields of the amygdalo-hypothalamic projections in the lizard Podarcis hispanica were determined by using the anterograde and retrograde transport of the tracers, biotinylated dextran amine and horseradish peroxidase. The resulting labeling indicated that there was a small projection to the preoptic hypothalamus, that arose from the vomeronasal amygdaloid nuclei (nucleus sphericus and nucleus of the accessory olfactory tract), and an important projection to the rest of the hypothalamus, that was formed by three components: medial, lateral, and ventral. The medial projection originated mainly in the dorsal amygdaloid division (posterior dorsal ventricular ridge and lateral amygdala) and also in the centromedial amygdaloid division (medial amygdala and bed nucleus of the stria terminalis). It coursed through the stria terminalis and reached mainly the retrochiasmatic area and the ventromedial hypothalamic nucleus. The lateral projection originated in the cortical amygdaloid division (ventral anterior and ventral posterior amygdala). It coursed via the lateral amygdalofugal tract and terminated in the lateral hypothalamic area and the lateral tuberomammillary area. The ventral projection originated in the centromedial amygdaloid division (in the striato-amygdaloid transition area), coursed through the ventral peduncle of the lateral forebrain bundle, and reached the lateral posterior hypothalamic nucleus, continuing caudally to the hindbrain. Such a pattern of the amygdalo-hypothalamic projections has not been described before, and its functional implications in the transfer of multisensory information to the hypothalamus are discussed. The possible homologies with the amygdalo-hypothalamic projections in mammals and other vertebrates are also considered. J. Comp. Neurol. 384:537–555, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The induction of the early gene c-fos was evaluated through Fos immunohistochemistry in areas belonging to the extended amygdala after acute administration of two antidepressants, citalopram and imipramine. Both citalopram and imipramine at the dose of 5 and 20 mg/kg, respectively, induced Fos-like immunoreactivity (FLI) in the central amygdaloid nucleus, lateral division of the bed nucleus of the stria terminalis (BSTL), and interstitial nucleus of the posterior limb of the anterior commissure (IPAC). The shell of the nucleus accumbens, which forms a continuum with the central extended amygdala, showed a decrease of FLI after administration of either citalopram or imipramine. The mechanism of action and the brain areas affected by antidepressants are still a matter of debate. By showing that the central extended amygdala is a common site of action for two different antidepressant types, these results provide new insight into the mechanism of action of antidepressants.  相似文献   

18.
Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.  相似文献   

19.
A series of preliminary experiments demonstrated that injection of 22 mM sodium pentobarbital in the brain of the rat blocked synaptic transmission at the site of injection; the same concentration of pentobarbital did not block fiber conduction. Based on the latter information, 22 mM pentobarbital was applied to different parts of the peripeduncular-hypothalamic pathways responsible for the conduction and generation of potentials evoked in the ventromedial nucleus (VMN) by stimuli applied to the peripeduncular nucleus (PPN), to determine whether participation of the amygdala and bed nucleus of the stria terminalis involves the transynaptic activation of neuron somas at these places or the operation of passing fibers only. We determined that potentials evoked in the VMN by PPN stimulation involves synaptic activity in both the lateral amygdaloid nucleus and the bed nucleus of the stria terminalis. Both structures receive PPN-originated activity independently, and both structures contribute to the generation of PPN-VMN evoked responses, presumably through temporal or spatial summation of inputs in the VMN. We also showed that activity in the lateral amygdaloid nucleus is conducted toward the VMN along fibers in the stria terminalis. We propose that the synaptic interactions thus demonstrated serve as integrating relays for different sensory modalities and hormone actions regulating sexual behavior.  相似文献   

20.
This study investigated the effect of naloxone on amnesia produced by subseizure amygdaloid stimulation. Animals were trained in an inhibitory avoidance task, and given amygdaloid stimulation following training. Immediately after training, prior to stimulation, naloxone was injected either peripherally (i.p.) or into the bed nucleus of the stria terminalis (BNST) where the Met-enkephalin-containing fibers from the amygdala terminate. Amygdaloid stimulation caused retention deficits. The deficits were attenuated by 3.0 mg/kg naloxone given peripherally or by 1.0 microgram or 0.3 microgram naloxone injected bilaterally into the BNST. The attenuative effect was anatomically and receptor specific: 0.3 microgram of naloxone injected into the caudate nucleus was ineffective; the attenuative effect of naloxone was antagonized by simultaneous injection of 1.5 or 4.5 micrograms levorphanol into the BNST. These results suggest that endogenous opioids, possibly the enkephalins of the stria terminalis released into the BNST following amygdaloid stimulation, are at least partially involved in mediating the effect of amygdaloid stimulation on memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号