首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite significant advances in the treatment of Hodgkin’s lymphoma (HL), a significant proportion of patients will not respond or will subsequently relapse. We identified CD25, the IL-2 receptor alpha subunit, as a favorable target for systemic radioimmunotherapy of HL. The scientific basis for the clinical trial was that, although most normal cells with exception of Treg cells do not express CD25, it is expressed by a minority of Reed–Sternberg cells and by most polyclonal T cells rosetting around Reed–Sternberg cells. Forty-six patients with refractory and relapsed HL were evaluated with up to seven i.v. infusions of the radiolabeled anti-CD25 antibody 90Y-daclizumab. 90Y provides strong β emissions that kill tumor cells at a distance by a crossfire effect. In 46 evaluable HL patients treated with 90Y-daclizumab there were 14 complete responses and nine partial responses; 14 patients had stable disease, and nine progressed. Responses were observed both in patients whose Reed–Sternberg cells expressed CD25 and in those whose neoplastic cells were CD25 provided that associated rosetting T cells expressed CD25. As assessed using phosphorylated H2AX (γ-H2AX) as a bioindicator of the effects of radiation exposure, predominantly nonmalignant cells in the tumor microenvironment manifested DNA damage, as reflected by increased expression of γ-H2AX. Toxicities were transient bone-marrow suppression and myelodysplastic syndrome in six patients who had not been evaluated with bone-marrow karyotype analyses before therapy. In conclusion, repeated 90Y-daclizumab infusions directed predominantly toward nonmalignant T cells rosetting around Reed–Sternberg cells provided meaningful therapy for select HL patients.Treatment with combination chemotherapy, radiation, and hematopoietic stem cell transplantation has increased the disease-free survival in Hodgkin’s lymphoma (HL) from less than 5% in 1963 to more than 80% at present (16). Recently the US Food and Drug Administration approved brentuximab vedotin for the treatment of relapsed HL (7). Furthermore the anti-PD1 agent pembrolizumab has shown promising results in classic HL (8). Nevertheless, a significant fraction of patients do not respond to treatment or subsequently relapse. To date more than 30 different mAb preparations directed toward antigens expressed by malignant Reed–Sternberg cells have been studied (6). These include mAbs linked to drugs or toxins targeting CD25 or CD30 expressed on Reed–Sternberg cells (611). Brentuximab vedotin, an anti-CD30 antibody drug conjugate, has induced a significant number of responses in refractory HL (7, 11). Although other antibody immunotoxins have demonstrated some clinical efficacy, they have yielded few complete responses (CRs) (6, 9, 10). An alternative strategy has been to arm mAbs with radionuclides. Radioimmunotherapy using 90Y–anti-ferritin and 131I–anti-CD30 antibodies has resulted in partial (PRs) and CRs in HL (1215). Deficiencies with these approaches reflect the lack of tumor specificity of ferritin-targeted antibodies and the small number of CD30-expressing Reed–Sternberg cells in the tumor.As an alternative, we identified CD25, the IL-2 receptor alpha subunit (IL-2Rα), as a more favorable target for systemic radioimmunotherapy of HL (1622). The scientific rationale is that, with the exception of Treg cells, CD25 is not expressed by normal resting lymphoid cells, but it is expressed on both a minority of Reed–Sternberg cells and, critically, on T cells rosetting around Reed–Sternberg cells in HL (6, 23, 24). 90Y, an energetic β particle emitter with a mean tissue path length of 5 mm and a maximal path length of 11 mm, acts through “crossfire” throughout tumor masses, providing a strategy for killing tumor cells at a distance of several cell diameters, including Reed–Sternberg cells that lack CD25 expression provided that T cells in their vicinity express the target antigen (16, 23, 24). In the current phase II trial we treated 46 patients with recurrent or refractory HL with 90Y-daclizumab every 6–10 wk for up to seven doses, depending on hematological recovery. The activity of 90Y used in the present trial was determined on the basis of three previous phase I/II dose-escalation trials of 90Y–anti-CD25 performed in patients with lymphoproliferative disorders (16).  相似文献   

2.
The long-term maintenance of memory T cells is essential for successful vaccines. Both the quantity and the quality of the memory T-cell population must be maintained. The signals that control the maintenance of memory T cells remain incompletely identified. Here we used two genetic models to show that continuous transforming growth factor-β signaling to antigen-specific T cells is required for the differentiation and maintenance of memory CD8+ T cells. In addition, both infection-induced and microbiota-induced inflammation impact the phenotypic and functional identity of memory CD8+ T cells.Infectious diseases pose a significant public health burden, accounting for nearly one-fifth of annual deaths worldwide. Vaccines remain the most effective way to prevent infectious diseases. Functionally sustained memory T cells are the ideal cell population to be generated by T-cell–based vaccines. Considerable efforts have been made to elucidate the mechanisms that mediate the establishment of long-lived immunologic memory (16); however, the signals that control the differentiation and maintenance of memory T cells remain incompletely identified.During the early stages of an immune response, proinflammatory cytokines IL-12 and type I IFN promote the expansion of effector CD8+ T cells by sustaining the expression of the high-affinity IL-2 receptor CD25 (7, 8). In addition to its role in T-cell proliferation, IL-2 also functions as a differentiation factor for effector CD8+ T cells by promoting the differentiation of short-lived effector cells [SLECs; IL-7RαKLRG1+ (killer cell lectin-like receptor subfamily G, member 1)] and inhibiting the differentiation of memory precursor effector cells (MPECs; IL-7Rα+KLRG1) (912). Furthermore, IL-10 and IL-21 signals promote MPEC differentiation through a STAT3-dependent mechanism (13, 14). During the late stages of an immune response, IL-15 and IL-7 are required to maintain the population of memory CD8+ T cells (15, 16); however, after the clearance of an infection, whether memory CD8+ T cells require any additional signals to maintain their phenotypic and functional identity remains unknown.Recent findings have revealed that effector and memory CD8+ T cells display nearly endless diversity based on the expression of surface and intracellular molecules that serve as the markers of antigen-experienced T cells (17). Thus, it is conceivable that memory CD8+ T cells might not be a fixed cell lineage, but instead represent an active differentiation state. Even in the absence of cognate antigens, memory CD8+ T cells may constantly receive diverse environmental signals; however, how memory T cells maintain their relatively stable characters under such circumstances remains unexplored.Here we show that TGF-β signaling to CD8+ T cells controls the differentiation of memory T cells at both early and late stages. By deleting TGF-β receptor in antigen-specific T cells at different time points following an acute infection, we demonstrate that during the effector phase of an immune response, TGF-β restrains the inflammatory signals associated with the infection. At the memory phase, both the TGF-β signal and the basal inflammation induced by microbiota cooperate to shape the memory T-cell population. Taken together, our findings show that continuous TGF-β signaling is required to maintain the identity of memory CD8+ T cells following acute infections.  相似文献   

3.
Dendritic cells (DCs) are considered the most potent antigen-presenting cells (APCs), which directly prime or cross-prime MHC I-restricted cytotoxic T cells (CTLs). However, recent evidence suggests the existence of other, as-yet unidentified APCs also able to prime T cells. To identify those APCs, we used adenoviral (rAd) vectors, which do not infect DCs but selectively accumulate in CD169+ macrophages (MPs). In mice that lack DCs, infection of CD169+ MPs was sufficient to prime CTLs specific for all epitopes tested. In contrast, CTL responses relying exclusively on cross-presenting DCs were biased to selected strong MHC I-binding peptides only. When both DCs and MPs were absent, no CTL responses could be elicited. Therefore, CD169+ MPs can be considered APCs that significantly contribute to CTL responses.Dendritic cells (DCs) are known to have superior T-cell activation ability compared with other cell types and thus are considered the most potent antigen-presenting cells (APCs) (1). Experiments with mice lacking DCs have supported this view in many infection and immunization studies (2, 3). In addition, DCs are specialized to efficiently cross-present exogenous antigen (Ag) via MHC I to CD8+ T cells (4).In contrast, MPs are considered cells of the innate immune system that limit pathogen spread by phagocytosis and degradation. They are positioned at strategically important entry points, such as the subcapsular sinus of lymph nodes and the marginal zone and red pulp areas of the spleen, where they capture and filter pathogens (5). Along with producing type I IFN (6), CD169+ marginal zone metallophilic MPs allow restricted replication of captured virus to increase the local availability of viral Ag (7) for transfer to B cells for humoral responses (8) and to DCs for cross-priming of CD8+ T cells (9). Participation of MPs in T-cell priming is thought to be restricted to Ag acquisition, amplification, and redistribution.Analyzing MP functions in vivo is difficult; genetic models, such as the CD11c-diphteria toxin (DT) receptor (DTR) transgenic mice (2), cannot make the distinction, because both DCs and monocytes/MPs are equally deleted on DT treatment (10, 11). Recent results with mice lacking CD169+ MPs suggest the role of these MPs in cross-priming of CD8+ T cells specific for the cell-associated model Ag ovalbumin (OVA) in lymph nodes (12). These findings are in contrast with another study in which MPs were unable to cross-present soluble OVA protein in mice lacking DCs (11). Although cross-presentation by DCs is now thought to allow priming of cytotoxic T-cell responses to exogenous tumor or viral Ag (4), the importance of cross-presentation in vivo has been a matter of intense debate over the last decade (13). Although this debate remains unresolved, cross-presentation has been considered then and now to be an exception rather than a rule (14, 15).To determine the roles of MPs and DCs, we used a mouse model that specifically lacks DCs but conserves all subpopulations of MPs. We show that the presence of directly infected CD169+ MPs is sufficient to prime CTLs, including those recognizing epitopes not covered by cross-presenting DCs. In contrast, when only DCs cross-prime CTLs without the participation of MPs, the CTL repertoire is incomplete and biased toward the few peptides that interact strongly with MHCI. Our data demonstrate a division of labor between CD169+ MPs and DCs in situations where CD169+ MPs sequester the majority of Ag in the marginal zone. In these situations, bystander DCs have to rely on cross-presentation, which elicits CTLs of limited specificity.  相似文献   

4.
The recall of memory CD8+ cytotoxic T lymphocytes (CTLs), elicited by prior virus infection or vaccination, is critical for immune protection. The extent to which this arises as a consequence of stochastic clonal expansion vs. active selection of particular clones remains unclear. Using a parallel adoptive transfer protocol in combination with single cell analysis to define the complementarity determining region (CDR) 3α and CDR3β regions of individual T-cell receptor (TCR) heterodimers, we characterized the antigen-driven recall of the same memory CTL population in three individual recipients. This high-resolution analysis showed reproducible enrichment (or diminution) of particular TCR clonotypes across all challenged animals. These changes in clonal composition were TCRα− and β chain–dependent and were directly related to the avidity of the TCR for the virus-derived peptide (p) + major histocompatibility complex class I molecule. Despite this shift in clonotype representation indicative of differential selection, there was no evidence of overall repertoire narrowing, suggesting a strategy to optimize CTL responses while safeguarding TCR diversity.Virus-specific CD8+ cytotoxic T lymphocytes (CTLs) are key for effective pathogen clearance. To exert their antiviral effects, naïve CD8+ CTL precursors (CTLps) must first be activated through the specific recognition of virus-derived peptides (p) in the context of major histocompatibility complex class I molecules (MHCI) expressed on the surface of dendritic cells. Ligation of these pMHCI epitopes is mediated via specific T-cell receptor (TCR) αβ heterodimers, leading to the recruitment, proliferation, and activation of antigen-specific CTLs. Subsequent to virus clearance, CTL populations contract to form a stable pool of resting memory cells, typically at around 5–10% of their acute phase numbers (1, 2). On secondary virus encounter, this memory pool of CD8+ T cells is able to expand rapidly, providing potent immune protection (2).An understanding of CD8+ T-cell recruitment/expansion into the recall response has significant implications for effective vaccine strategies. If recruitment and expansion occur stochastically, a memory population in which highly effective clones predominate is desirable. Alternatively, if selection is deterministic, the basic requirement would be the presence of high-quality clones in the memory population for selective expansion by antigen-driven mechanisms. Moreover, different mechanisms of memory recruitment have different long-term implications for the clonal diversity of epitope-specific populations, especially with repeated virus exposure. Repeated selection of particular clones inherent in deterministic clonal selection has the potential consequence of narrowing the CTL repertoire, whereas stochastic recruitment/expansion seems more likely to maintain CTL diversity, shown to be beneficial for virus control (37). Despite the implications, there remains conjecture about how epitope-specific CD8+ T cells are recruited from the memory pool. Studies have indicated a focusing of the recall response relative to the memory pool, arising from only a subpopulation of cells being recruited or expanded (8), whereas others have indicated that primary and secondary responses are either highly similar or randomly different, prompting the conclusion that selection from the memory pool likely occurs as a result of stochastic T-cell selection (913).Using secondary virus challenge of influenza A virus–primed B6 mice as a model of acute localized infection, we investigated the recruitment/expansion of memory CD8+ T-cell clones specific for the immunodominant DbNP366 epitope. We used a parallel adoptive transfer method, in which a population of memory CD8+ T cells from one individual is rechallenged with virus in three independent recipients, to definitively ascertain whether changes in clonal prevalence between memory and recall populations occur in a stochastic or deterministic fashion. Using high-resolution single cell TCRβ or αβ analysis, our data show evidence of active selection for particular clones following secondary infection, without a reduction in overall TCR diversity. Further, the selection for particular T-cell clones appears to be based on the avidity of the TCR–pMHCI interaction. Thus, it seems that the recall response may be optimized without diminishing the breadth of TCR use that may be critical for effective virus control.  相似文献   

5.
In advanced age, decreased CD8+ cytotoxic T-lymphocyte (CTL) responses to novel pathogens and cancer is paralleled by a decline in the number and function of naïve CTL precursors (CTLp). Although the age-related fall in CD8+ T-cell numbers is well established, neither the underlying mechanisms nor the extent of variation for different epitope specificities have been defined. Furthermore, naïve CD8+ T cells expressing high levels of CD44 accumulate with age, but it is unknown whether this accumulation reflects their preferential survival or an age-dependent driver of CD8+ T-cell proliferation. Here, we track the number and phenotype of four influenza A virus (IAV)-specific CTLp populations in naïve C57BL/6 (B6) mice during aging, and compare T-cell receptor (TCR) clonal diversity for the CD44hi and CD44lo subsets of one such population. We show differential onset of decline for several IAV-specific CD8+ T-cell populations with advanced age that parallel age-associated changes in the B6 immunodominance hierarchy, suggestive of distinct impacts of aging on different epitope-specific populations. Despite finding no evidence of clonal expansions in an aged, epitope-specific TCR repertoire, nonrandom alterations in TCR usage were observed, along with elevated CD5 and CD8 coreceptor expression. Collectively, these data demonstrate that naïve CD8+ T cells expressing markers of heightened self-recognition are selectively retained, but not clonally expanded, during aging.Given that CD8+ cytotoxic T-lymphocyte (CTL) immunity is critical for the control of viruses and tumors, specific defects are likely to contribute substantially to overall immune dysfunction. Normal aging is associated with increased health risk, as vaccine efficacy wanes and susceptibility to, and severity of, a variety of infections and malignancies is enhanced (1, 2). Whereas aging compromises a number of arms of the immune system (3), studies in mice and humans have demonstrated deficits that are intrinsic to naïve CTL populations (46). Thus, a complete understanding of both age-related CTL deficiencies and the underlying mechanisms is critical.The magnitude of the response, the diversity of T-cell receptor (TCR)-defined clonal recruitment, and the avidity of TCR binding to cognate peptides in complex with MHC class I glycoproteins (pMHCI) are all key determinants of CTL response efficacy (7). Each of these factors is substantially constrained by their respective characteristics in the naive CTL precursor (CTLp) pool (710). During aging, both the number and TCR diversity of naïve polyclonal and epitope-specific CD8+ T-cell sets decreases (1113). In addition, a large proportion (∼60–80%) of the remaining naïve CD8+ T cells, termed virtual memory (TVM) cells, express high levels of CD44, traditionally regarded as a marker of T-cell activation and suggestive of proliferation (14). It is unclear whether the accumulation of TVM cells with age (15) represents preferential retention, de novo generation, or expansion of the TVM subset. TCR repertoire analyses show emerging TCR bias with age (11, 13, 16), limiting the diversity of the TCR repertoire beyond that defined by reduced CTLp numbers. Although it is clear that TCR biases parallel age-related T-cell loss, the relative impact of selective clonal decay versus clonal expansion remains unresolved, as do the key determinants of naïve CTLp survival.The frequency and TCR usage of naïve and immune CD8+ T cells specific for a range of influenza A virus (IAV) epitopes is well characterized for B6 mice (1720), providing a convenient experimental system for investigating the characteristics and drivers of age-related CD8+ T-cell decline. Primary responses to the DbNP366–374 and DbPA224–233 epitopes (derived from nucleoprotein and acid polymerase proteins, respectively) are immunodominant in young adult mice, whereas those to a polymerase B subunit 1 epitope (KbPB1703–711) and an epitope derived from a shifted reading frame of PB1 (DbPB1-F262–70) are subdominant (21). This numerical immunodominance hierarchy shifts with aging, with a decrease in DbNP366-specific responses alongside an increase in KbPB1703- and DbPB1-F262–specific responses (13, 22). It has been suggested that this reflects the stochastic decay of CTLp (13), but the rate of decline of individual epitope-specific populations has not been directly assessed during aging.Here, we directly track the numbers of immune and naive IAV epitope-specific CD8+ T-cell populations through the course of aging, together with the phenotypic and clonotypic characteristics of a naïve CTLp set. We show that the shift in immunodominance across DbNP366, DbPA224, KbPB1703, and DbPB1-F262 for 12-mo-old versus 3-mo mice can be accounted for by differential onset of decline across naïve CTLp populations. Moreover, phenotypic changes in a naïve CTLp set indicates that age-related clonal persistence is associated with the capacity to recognize self-pMHCI, which may, in turn, alter the capacity of CTLps to responding to novel challenges.  相似文献   

6.
In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis.Pollen tubes deliver paired sperm cells into ovules for double fertilization, and signaling communication between pollen tubes and female reproductive tissues is required to ensure the delivery of sperm cells into the ovules (1). Pollen tube guidance is governed by both female sporophytic and gametophytic tissues (2, 3) and can be separated into two categories: preovular guidance and ovular guidance (1). For preovular guidance, diverse signaling molecules from female sporophytic tissues have been identified, including the transmitting tissue-specific (TTS) glycoprotein in tobacco (4), γ-amino butyric acid (GABA) in Arabidopsis (5), and chemocyanin and the lipid transfer protein SCA in Lilium longiflorum (6, 7). For ovular pollen tube guidance, female gametophytes secrete small peptides as attractants, including LUREs in Torenia fournieri (8) and Arabidopsis (9) and ZmEA1 in maize (10, 11). Synergid cells, central cells, egg cells, and egg apparatus are all involved in pollen tube guidance, probably by secreting different attractants (915). Additionally, nitric oxide (NO) and phytosulfokine peptides have also been implicated in both preovular and ovular pollen tube guidance (1618). Thus, pollen tubes could be guided by diverse attractants in a single plant species.Ca2+ gradients at pollen tube tips are essential for both tip growth and pollen tube guidance (1927). Spatial modification of the Ca2+ gradients leads to the reorientation of pollen tube growth in vitro (28, 29). The Ca2+ gradients were significantly increased in pollen tubes attracted to the micropyles by synergid cells in vivo, compared with those not attracted by ovules (30). Therefore, the Ca2+ gradients in pollen tube tips are essential for pollen tube guidance. The Ca2+ gradients result from external Ca2+ influx, which is mainly mediated by plasma membrane Ca2+ channels in pollen tube tips. Thus, the Ca2+ channels are the key components for regulating the Ca2+ gradients and are consequently essential for pollen tube guidance. Using electrophysiological techniques, inward Ca2+ currents were observed in both pollen grain and pollen tube protoplasts (3136), supporting the presence of plasma membrane Ca2+ channels in pollen tube tips. Recently, a number of candidate Ca2+ channels were identified in pollen tubes, including six cyclic nucleotide-gated channels (CNGCs) and two glutamate receptor-like channels (GLRs) in Arabidopsis (3740). Three of these eight channels, namely CNGC18, GLR1.2, and GLR3.7, were characterized as Ca2+-permeable channels (40, 41) whereas the ion selectivity of the other five CNGCs has not been characterized. We hypothesized that the Ca2+ channel essential for pollen tube guidance could be among these eight channels.In this research, we first characterized the remaining five CNGCs as Ca2+ channels. We further found that CNGC18, out of the eight Ca2+ channels, was the only one essential for pollen tube guidance in Arabidopsis and that its transmembrane domains were indispensable for pollen tube guidance.  相似文献   

7.
8.
The most deadly complication of Plasmodium falciparum infection is cerebral malaria (CM) with a case fatality rate of 15–25% in African children despite effective antimalarial chemotherapy. There are no adjunctive treatments for CM, so there is an urgent need to identify new targets for therapy. Here we show that the glutamine analog 6-diazo-5-oxo-l-norleucine (DON) rescues mice from CM when administered late in the infection a time at which mice already are suffering blood–brain barrier dysfunction, brain swelling, and hemorrhaging accompanied by accumulation of parasite-specific CD8+ effector T cells and infected red blood cells in the brain. Remarkably, within hours of DON treatment mice showed blood–brain barrier integrity, reduced brain swelling, decreased function of activated effector CD8+ T cells in the brain, and levels of brain metabolites that resembled those in uninfected mice. These results suggest DON as a strong candidate for an effective adjunctive therapy for CM in African children.The World Health Organization estimates that there are nearly 200 million clinical cases of Plasmodium falciparum malaria annually (1). For most individuals living in endemic areas, malaria is uncomplicated and resolves with time. However, in about 1% of cases, almost exclusively among young children, malaria becomes severe and life threatening, resulting in 525,000 deaths each year in Africa alone. One of the most deadly complications of P. falciparum infection in humans is cerebral malaria (HCM) characterized by the onset of severe neurological signs such as altered consciousness, seizures, and coma (2). Autopsy and MRI analyses of brains of children with HCM indicate sequestration of infected red blood cells (iRBCs), microhemorrhaging, breakdown of the blood–brain barrier (BBB) (3), and a fatal increase in intracranial pressure resulting from edema (4, 5). At present, despite effective antimalarial drug treatment, mortality for children presenting with HCM remains high, at 15–25%. HCM takes a second toll on African children, leaving survivors at risk for debilitating neurological defects (6). Thus, there is an urgent need for the development of effective adjunctive therapies that can be used in conjunction with antimalarials to treat children with HCM.Experimental cerebral malaria (ECM) in mice is a widely used model of HCM and provides a valuable tool for elucidating the mechanisms involved in CM pathogenesis and identifying cellular and molecular targets for adjunctive therapy (7). In ECM, 6–7 d after infection with Plasmodium berghei ANKA (PbA), mice of susceptible strains, such as C57BL/6, develop ataxia, paralysis, seizures, and coma and ultimately die (8). ECM displays key features of HCM, including BBB breakdown, focal hemorrhaging, and brain swelling (911). ECM’s pathology also requires sequestration of iRBCs in the brain vasculature (12), a hallmark of HCM (3). Histological analysis of the brains of children who died of HCM showed leukocytes, primarily monocytes with phagocytized hemozoin and platelets but also intravasculature leukocytes, including CD8+ T cells, sequestered in the brain vessels (13, 14). In ECM monocytes and both CD4+ and CD8+ T cells have been shown to accumulate in the brain by both flow cytometry and by intravital imaging (15). Current evidence indicates that CD8+ T cells are the major mediators of death in ECM (16) and that antigen-specific CD8+ T cells engage parasite antigens cross-presented on MHC class I molecules on brain endothelium, resulting in endothelial cell dysfunction by a perforin-dependent mechanism (17).A critical role for metabolic reprogramming in regulating immune responses is becoming increasingly appreciated. Upon activation, T cells undergo metabolic reprogramming to meet the increased energetic and biosynthetic demands of growth and effector T-cell functions (1820). Reprogramming involves a shift to aerobic glycolysis and increased glutaminolysis. Activated T cells import large quantities of Gln and increase their expression of glutaminase (2123). Because the pathology leading to death in CM is believed to be in part immune mediated, we hypothesized that blocking T-cell metabolism might effectively mitigate the pathology leading to death in HCM. To this end, in the present study we focus on targeting Gln metabolism for an adjunctive therapy for CM using the Gln analog 6-diazo-5-oxo-l-norleucine (DON). DON broadly inhibits Gln metabolism, in part by blocking Gln transport and inhibiting all three isoforms of glutaminase as well as other Gln-using enzymes such as the amidotransferases and glutamine synthetase (24). Consequently, DON has been shown to be a potent inhibitor of T-cell proliferation (22).Here we show that DON treatment rescues PbA-infected mice from ECM at late stages in the disease, at a time when the animals show clinical signs of neurological damage and physical loss of BBB integrity, brain swelling, and hemorrhaging. The ability of DON to arrest disease is concomitant with a decrease in the effector function of parasite-specific CD8+ T cells in the brains of treated mice. However, the striking ability of DON treatment to arrest pathology and promote survival so late in the disease suggests a fundamental and potentially direct role for Gln metabolism in promoting neuropathology. Overall, these results suggest DON as a candidate for an adjunctive therapy for HCM in African children.  相似文献   

9.
Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.Motor neuron diseases (MNDs), including ALS and spastic paraplegia (SP), are characterized by the progressive, length-dependent degeneration of motor neurons, leading to muscle atrophy, paralysis, and, in some cases, premature death. There are both inherited and sporadic forms of MNDs, which can affect upper motor neurons, lower motor neurons, or both. Although the molecular and cellular causes of most MNDs are unknown, many are associated with defects in axonal transport of cellular components required for neuron function and maintenance (16).A subset of MNDs is associated with impaired mitochondrial respiration and mitochondrial distribution. This observation has led to the hypothesis that neurodegeneration results from defects in mitochondrial motility and distribution, which, in turn, cause subcellular ATP depletion and interfere with mitochondrial calcium ([Ca2+]m) buffering at sites of high synaptic activity (reviewed in ref. 7). It is not known, however, whether mitochondrial motility defects are a primary cause or a secondary consequence of MND progression. In addition, it has been difficult to isolate the primary effect of mitochondrial motility defects in MNDs because most mutations that impair mitochondrial motility in neurons also affect transport of other organelles and vesicles (1, 811).In mammals, the movement of neuronal mitochondria between the cell body and the synapse is controlled by adaptors called trafficking kinesin proteins (Trak1 and Trak2) and molecular motors (kinesin heavy chain and dynein), which transport the organelle in the anterograde or retrograde direction along axonal microtubule tracks (7, 1224). Mitochondrial Rho (Miro) GTPase proteins are critical for transport because they are the only known surface receptors that attach mitochondria to these adaptors and motors (1215, 18, 25, 26). Miro proteins are tail-anchored in the outer mitochondrial membrane with two GTPase domains and two predicted calcium-binding embryonic fibroblast (EF) hand motifs facing the cytoplasm (12, 13, 25, 27, 28). A recent Miro structure revealed two additional EF hands that were not predicted from the primary sequence (29). Studies in cultured cells suggest that Miro proteins also function as calcium sensors (via their EF hands) to regulate kinesin-mediated mitochondrial “stopping” in axons (15, 16, 26). Miro-mediated movement appears to be inhibited when cytoplasmic calcium is elevated in active synapses, effectively recruiting mitochondria to regions where calcium buffering and energy are needed. Despite this progress, the physiological relevance of these findings has not yet been tested in a mammalian animal model. In addition, mammals ubiquitously express two Miro orthologs, Miro1 and Miro2, which are 60% identical (12, 13). However, the individual roles of Miro1 and Miro2 in neuronal development, maintenance, and survival have no been evaluated.We describe two new mouse models that establish the importance of Miro1-mediated mitochondrial motility and distribution in mammalian neuronal function and maintenance. We show that Miro1 is essential for development/maintenance of specific cranial neurons, function of postmitotic motor neurons, and retrograde mitochondrial motility in axons. Loss of Miro1-directed retrograde mitochondrial transport is sufficient to cause MND phenotypes in mice without abrogating mitochondrial respiratory function. Furthermore, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or [Ca2+]m buffering. These findings have an impact on current models for Miro1 function and introduce a specific and rapidly progressing mouse model for MND.  相似文献   

10.
11.
Ca2+ influx triggers the fusion of synaptic vesicles at the presynaptic active zone (AZ). Here we demonstrate a role of Ras-related in brain 3 (Rab3)–interacting molecules 2α and β (RIM2α and RIM2β) in clustering voltage-gated CaV1.3 Ca2+ channels at the AZs of sensory inner hair cells (IHCs). We show that IHCs of hearing mice express mainly RIM2α, but also RIM2β and RIM3γ, which all localize to the AZs, as shown by immunofluorescence microscopy. Immunohistochemistry, patch-clamp, fluctuation analysis, and confocal Ca2+ imaging demonstrate that AZs of RIM2α-deficient IHCs cluster fewer synaptic CaV1.3 Ca2+ channels, resulting in reduced synaptic Ca2+ influx. Using superresolution microscopy, we found that Ca2+ channels remained clustered in stripes underneath anchored ribbons. Electron tomography of high-pressure frozen synapses revealed a reduced fraction of membrane-tethered vesicles, whereas the total number of membrane-proximal vesicles was unaltered. Membrane capacitance measurements revealed a reduction of exocytosis largely in proportion with the Ca2+ current, whereas the apparent Ca2+ dependence of exocytosis was unchanged. Hair cell-specific deletion of all RIM2 isoforms caused a stronger reduction of Ca2+ influx and exocytosis and significantly impaired the encoding of sound onset in the postsynaptic spiral ganglion neurons. Auditory brainstem responses indicated a mild hearing impairment on hair cell-specific deletion of all RIM2 isoforms or global inactivation of RIM2α. We conclude that RIM2α and RIM2β promote a large complement of synaptic Ca2+ channels at IHC AZs and are required for normal hearing.Tens of CaV1.3 Ca2+ channels are thought to cluster within the active zone (AZ) membrane underneath the presynaptic density of inner hair cells (IHCs) (14). They make up the key signaling element, coupling the sound-driven receptor potential to vesicular glutamate release (57). The mechanisms governing the number of Ca2+ channels at the AZ as well as their spatial organization relative to membrane-tethered vesicles are not well understood. Disrupting the presynaptic scaffold protein Bassoon diminishes the numbers of Ca2+ channels and membrane-tethered vesicles at the AZ (2, 8). However, the loss of Bassoon is accompanied by the loss of the entire synaptic ribbon, which makes it challenging to distinguish the direct effects of gene disruption from secondary effects (9).Among the constituents of the cytomatrix of the AZ, RIM1 and RIM2 proteins are prime candidates for the regulation of Ca2+ channel clustering and function (10, 11). The family of RIM proteins has seven identified members (RIM1α, RIM1β, RIM2α, RIM2β, RIM2γ, RIM3γ, and RIM4γ) encoded by four genes (RIM1–RIM4). All isoforms contain a C-terminal C2 domain but differ in the presence of additional domains. RIM1 and RIM2 interact with Ca2+ channels, most other proteins of the cytomatrix of the AZ, and synaptic vesicle proteins. They interact directly with the auxiliary β (CaVβ) subunits (12, 13) and pore-forming CaVα subunits (14, 15). In addition, RIMs are indirectly linked to Ca2+ channels via RIM-binding protein (14, 16, 17). A regulation of biophysical channel properties has been demonstrated in heterologous expression systems for RIM1 (12) and RIM2 (13).A role of RIM1 and RIM2 in clustering Ca2+ channels at the AZ was demonstrated by analysis of RIM1/2-deficient presynaptic terminals of cultured hippocampal neurons (14), auditory neurons in slices (18), and Drosophila neuromuscular junction (19). Because α-RIMs also bind the vesicle-associated protein Ras-related in brain 3 (Rab3) via the N-terminal zinc finger domain (20), they are also good candidates for molecular coupling of Ca2+ channels and vesicles (18, 21, 22). Finally, a role of RIMs in priming of vesicles for fusion is the subject of intense research (18, 2127). RIMs likely contribute to priming via disinhibiting Munc13 (26) and regulating vesicle tethering (27). Here, we studied the expression and function of RIM in IHCs. We combined molecular, morphologic, and physiologic approaches for the analysis of RIM2α knockout mice [RIM2α SKO (28); see Methods] and of hair cell-specific RIM1/2 knockout mice (RIM1/2 cDKO). We demonstrate that RIM2α and RIM2β are present at IHC AZs of hearing mice, positively regulate the number of synaptic CaV1.3 Ca2+ channels, and are required for normal hearing.  相似文献   

12.
Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na+-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na+/leucine transporter LeuT, our results suggest that Na+ binding at the conserved second Na+ binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.Secondary active transporters harness the energy of ion gradients to power the uphill movement of solutes across membranes. Mitchell (1) and others (2, 3) proposed and elaborated “alternating access” mechanisms wherein the transporter transitions between two conformational states that alternately expose the substrate binding site to the two sides of the membrane. The LeuT class of ion-coupled symporters consists of functionally distinct transporters that share a conserved scaffold of two sets of five transmembrane helices related by twofold symmetry around an axis nearly parallel to the membrane (4). Ions and substrates are bound near the middle of the membrane stabilized by electrostatic interactions with unwound regions of transmembrane helix (TM) 1 and often TM6 (4). The recurrence of this fold in transporters that play critical roles in fundamental physiological processes (5, 6) has spurred intense interest in defining the principles of alternating access.Despite rapid progress in structure determination of ion-coupled LeuT-fold transporters (711), extrapolation of these static snapshots to a set of conformational steps underlying alternating access (4, 7, 912) remains incomplete, often hindered by uncertainties in the mechanistic identities of crystal structures. Typically, transporter crystal structures are classified as inward-facing, outward-facing, or occluded on the basis of the accessibility of the substrate binding site (711). In a recent spectroscopic analysis of LeuT, we demonstrated that detergent selection and mutations of conserved residues appeared to stabilize conformations that were not detected in the wild-type (WT) LeuT and concurrently inhibited movement of structural elements involved in ligand-dependent alternating access (13). Therefore, although crystal structures define the structural context and identify plausible pathways of substrate binding and release, development of transport models requires confirming or assigning the mechanistic identity of these structures and framing them into ligand-dependent equilibria (14).Mhp1, an Na+-coupled symporter of benzyl-hydantoin (BH) from Microbacterium liquefaciens, was the first LeuT-fold member to be characterized by crystal structures purported to represent outward-facing, inward-facing, and outward-facing/occluded conformations of an alternating access cycle (8, 15). In these structures, solvent access to ligand-binding sites is defined by the relative orientation between a 4-helix bundle motif and a 4-helix scaffold motif (8). In Mhp1, alternating access between inward- and outward-facing conformations, was predicted from a computational analysis based on the inverted repeat symmetry of the LeuT fold and is referred to as the rocking-bundle model (16). The conservation of the inverted symmetry prompted proposal of the rocking-bundle mechanism as a general model for LeuT-fold transporters (16). Subsequent crystal structures of other LeuT-fold transporters (7, 9, 10) tempered this prediction because the diversity of the structural rearrangements implicit in these structures is seemingly inconsistent with a conserved conformational cycle.Another outstanding question pertains to the ion-coupling mechanism and the driving force of conformational changes. The implied ion-to-substrate stoichiometry varies across LeuT-fold ion-coupled transporters. For instance, LeuT (17) and BetP (18) require two Na+ ions that bind at two distinct sites referred to as Na1 and Na2 whereas Mhp1 (15) and vSGLT (19) appear to possess only the conserved Na2 site. Molecular dynamics (MD) simulations (20, 21) and electron paramagnetic resonance (EPR) analysis (13, 22) of LeuT demonstrated that Na+ binding favors an outward-facing conformation although it is unclear which Na+ site (or both) is responsible for triggering this conformational transition. Similarly, a role for Na+ in conformational switching has been uncovered in putative human LeuT-fold transporters, including hSGLT (23). In Mhp1, the sole Na2 site has been shown to modulate substrate affinity (15); however, its proposed involvement in gating of the intracellular side (12, 21) lacks experimental validation.Here, we used site-directed spin labeling (SDSL) (24) and double electron-electron resonance (DEER) spectroscopy (25) to elucidate the conformational changes underlying alternating access in Mhp1 and define the role of ion and substrate binding in driving transition between conformations. This methodology has been successfully applied to define coupled conformational cycles for a number of transporter classes (13, 2632). We find that patterns of distance distributions between pairs of spin labels monitoring the intra- and extracellular sides of Mhp1 are consistent with isomerization between the crystallographic inward- and outward-facing conformations. A major finding is that this transition is driven by substrate but not Na+ binding. Although the amplitudes of the observed distance changes are in overall agreement with the rocking-bundle model deduced from the crystal structures of Mhp1 (8, 15) and predicted computationally (16), we present evidence that relative movement of bundle and scaffold deviate from strict rigid body. Comparative analysis of LeuT and Mhp1 alternating access reveal how the conserved LeuT fold harnesses the energy of the Na+ gradient through two distinct coupling mechanisms and supports divergent conformational cycles to effect substrate binding and release.  相似文献   

13.
14.
15.
CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R2 ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell–based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell–based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.CD8 T cells provide a powerful mechanism for elimination of intracellular pathogens and tumor cells. Accordingly, a major thrust of current vaccine research focuses on stimulating robust T-cell immunity for defense against infections such as HIV, malaria, tuberculosis, Ebola virus, herpes viruses, and hepatitis C virus (HCV) (18). Inducing effective CD8 T-cell immunity is also an important goal for cancer vaccines (9, 10). However, how antigen load affects the CD8 T-cell response has not been quantified in a detailed manner during a human immune response. In this study we address this question using the human live attenuated yellow fever vaccine (YFV-17D) vaccine.The dynamics of CD8 T-cell responses to intracellular infection have been extensively studied in model systems. Infection typically stimulates a rapid burst of proliferation in antigen-specific CD8 T cells with division occurring as quickly as once in 4–6 h (11). This expansion results in a large population of effector CD8 T cells that aid in clearance of infected cells. Although most (90–95%) of the effector CD8 T cells die, a small fraction differentiate to form long-term memory CD8 T cells (12). Detailed quantitative measurements of the dynamics of virus and the CD8 T-cell response to the YFV-17D vaccine allow us to characterize these basic features of the CD8 T-cell responses in humans. Additionally, tracking the dynamics of both virus and CD8 T cells over time in a large cohort allows us to explore the relationship between amount of antigen and the magnitude of expansion and answer the following questions: Is there a threshold amount of virus required to generate a response? Does the magnitude of the response increase proportionally, or does it saturate with viral load? Although a number of studies have considered the complex relationship between numbers of specific CD8 T cells and virus loads during the chronic phase of HIV and HCV infections (3, 1323), very few studies (2427) have investigated these questions in the context of the generation of immune response following acute infections and vaccination.We addressed these questions by measuring the dynamics of both virus and virus-specific CD8 T cells following immunization with the YFV-17D vaccine. The YFV-17D vaccine comprises a highly efficacious, live attenuated virus that causes an acute infection and stimulates a robust immune response conferring lifelong protection against the yellow fever virus (YFV) (28, 29). Because yellow fever is not endemic to the United States, immunization with YFV-17D induces a primary immune response (30, 31). Previous work with YFV-17D has identified CD8 T cells specific for some of the YFV epitopes and defined the stages of expansion, contraction, and memory maintenance (3238). We now know that YFV stimulates a polyfunctional, broadly targeting, and long-lasting CD8 T-cell response. Of particular note, we have previously demonstrated that the magnitude of the total effector CD8 T-cell response against YFV can be measured using the Ki-67+ Bcl-2lo HLA-DR+ CD38+ phenotype of activated T cells seen early after vaccination (38). In the current study, we followed a large cohort of 80 individuals with intensive sampling at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90 postvaccination to quantify viral load in plasma (39). Additionally, we quantified the magnitude of the YFV-specific effector CD8 T-cell response at days 0, 3, 7, 14, 30, and 90 postvaccination using the Ki-67+Bcl-2lo phenotype. We find that different individuals have different virus loads following infection and generate CD8 T-cell responses of different sizes. This allows us to determine the relationship between virus load and magnitude of the CD8 T-cell response.The majority of vaccines that are currently under development use replication-incompetent or single-cycle vectors such as Modified Vaccinia Ankara, adenovirus, and DNA. Although these approaches are inherently safe, they may express and deliver relatively limited amounts of antigen. Our results emphasize the requirement that T-cell–based vaccines deliver sufficient antigen to elicit a large CD8 T-cell response that may be needed for protection.  相似文献   

16.
Epstein-Barr virus (EBV) infection causes both Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL). The present study reveals that EBV-induced HL and NHL are intriguingly associated with a repopulated immune cell profile in humanized mice. Newborn immunodeficient NSG mice were engrafted with human cord blood CD34+ hematopoietic stem cells (HSCs) for a 8- or 15-wk reconstitution period (denoted 8whN and 15whN, respectively), resulting in human B-cell and T-cell predominance in peripheral blood cells, respectively. Further, novel humanized mice were established via engraftment of hCD34+ HSCs together with nonautologous fetal liver-derived mesenchymal stem cells (MSCs) or MSCs expressing an active notch ligand DLK1, resulting in mice skewed with human B or T cells, respectively. After EBV infection, whereas NHL developed more frequently in B-cell–predominant humanized mice, HL was seen in T-cell–predominant mice (P = 0.0013). Whereas human splenocytes from NHL-bearing mice were positive for EBV-associated NHL markers (hBCL2+, hCD20+, hKi67+, hCD20+/EBNA1+, and EBER+) but negative for HL markers (LMP1, EBNA2, and hCD30), most HL-like tumors were characterized by the presence of malignant Hodgkin’s Reed–Sternberg (HRS)-like cells, lacunar RS (hCD30+, hCD15+, IgJ, EBER+/hCD30+, EBNA1+/hCD30+, LMP+/EBNA2, hCD68+, hBCL2, hCD20-/weak, Phospho STAT6+), and mummified RS cells. This study reveals that immune cell composition plays an important role in the development of EBV-induced B-cell lymphoma.Epstein Barr virus (EBV) infects human B lymphocytes and epithelial cells in >90% of the human population (1, 2). EBV infection is widely associated with the development of diverse human disorders that include Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphomas (NHL), including diffused large B-cell lymphoma (DLBCL), follicular B-cell lymphoma (FBCL), endemic Burkitt’s lymphoma (BL), and hemophagocytic lymphohistiocytosis (HLH) (3).HL is a malignant lymphoid neoplasm most prevalent in adolescents and young adults (46). Hodgkin/Reed–Sternberg (HRS) cells are the sole malignant cells of HL. HRS cells are characterized by CD30+/CD15+/BCL6/CD20+/− markers and appear large and multinucleated owing to multiple nuclear divisions without cytokinesis. Although HRS cells are malignant in the body, surrounding inflammatory cells greatly outnumber them. These reactive nonmalignant inflammatory cells, including lymphocytes, histiocytes, eosinophils, fibroblasts, neutrophils, and plasma cells, compose the vast majority of the tumor mass. The presence of HRS cells in the context of this inflammatory cellular background is a critical hallmark of the HL diagnosis (4). Approximately 50% of HL cases are EBV-associated (EBVaHL) (711). EBV-positive HRS cells express EBV latent membrane protein (LMP) 1 (LMP1), LMP2A, LMP2B, and EBV nuclear antigen (EBNA) 1 (EBNA1), but lack EBNA2 (latency II marker) (12). LMP1 is consistently expressed in all EBV-associated cases of classical HL (13, 14). LMP1 mimics activated CD40 receptors, induces NF-κB, and allows cells to become malignant while escaping apoptosis (15).The etiologic role of EBV in numerous disorders has been studied in humanized mouse models in diverse experimental conditions. Humanized mouse models recapitulate key characteristics of EBV infection-associated disease pathogenesis (1624). Different settings have given rise to quite distinct phenotypes, including B-cell type NHL (DLBCL, FBCL, and unspecified B-cell lymphomas), natural killer/T cell lymphoma (NKTCL), nonmalignant lymphoproliferative disorder (LPD), extremely rare HL, HLH, and arthritis (1624). Despite considerable efforts (1624), EBVaHL has not been properly produced in the humanized mouse setting model, owing to inappropriate animal models and a lack of in-depth analyses. After an initial report of infected humanized mice, HRS-like cells appeared to be extremely rare in the spleens of infected humanized mice; however, the findings were inconclusive (18). Here we report direct evidence of EBVaHL or HL-like neoplasms in multiple humanized mice in which T cells were predominant over B cells. Our study demonstrates that EBV-infected humanized mice display additional EBV-associated pathogenesis, including DLBCL and hemophagocytic lymphohistiocytosis (16, 17).  相似文献   

17.
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.It is increasingly clear that regular physical exercise plays a key role in the general well-being, disease prevention, and longevity of humans. Impaired muscle function manifesting as muscle weakness and premature fatigue development are major health problems associated with the normal aging process as well as with numerous common diseases (1). Physical exercise has a fundamental role in preventing and/or reversing these muscle problems, and training also improves the general health status in numerous diseases (24). On the other side of the spectrum, excessive muscle use can induce prolonged force depressions, which may set the limit on training tolerance and performance of top athletes (5, 6).Recent studies imply a key role of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor 1 (RyR1), in the reduced muscle strength observed in numerous physiological conditions, such as after strenuous endurance training (6), in situations with prolonged stress (7), and in normal aging (8, 9). Defective RyR1 function is also implied in several pathological states, including generalized inflammatory disorders (10), heart failure (11), and inherited conditions such as malignant hyperthermia (12) and Duchenne muscular dystrophy (13). In many of the above conditions, there is a link between the impaired RyR1 function and modifications induced by reactive oxygen/nitrogen species (ROS) (6, 8, 10, 12, 13). Conversely, altered RyR1 function may also be beneficial by increasing the cytosolic free [Ca2+] ([Ca2+]i) at rest, which can stimulate mitochondrial biogenesis and thereby increase fatigue resistance (1416). Intriguingly, effective antioxidant treatment hampers beneficial adaptations triggered by endurance training (1719), and this effect might be due to antioxidants preventing ROS-induced modifications of RyR1 (20).A high-intensity interval training (HIIT) session typically consists of a series of brief bursts of vigorous physical exercise separated by periods of rest or low-intensity exercise. A major asset of HIIT is that beneficial adaptations can be obtained with much shorter exercise duration than with traditional endurance training (2125). HIIT has been shown to effectively stimulate mitochondrial biogenesis in skeletal muscle and increase endurance in untrained and recreationally active healthy subjects (22, 26), whereas positive effects in elite endurance athletes are less clear (21, 27, 28). Moreover, HIIT improves health and physical performance in various pathological conditions, including cardiovascular disease, obesity, and type 2 diabetes (29, 30). Thus, short bouts of vigorous physical exercise trigger intracellular signaling of large enough magnitude and duration to induce extensive beneficial adaptations in skeletal muscle. The initial signaling that triggers these adaptations is not known.In this study, we tested the hypothesis that a single session of HIIT induces ROS-dependent RyR1 modifications. These modifications might cause prolonged force depression due to impaired SR Ca2+ release during contractions. Conversely, they may also initiate beneficial muscular adaptations due to increased SR Ca2+ leak at rest.  相似文献   

18.
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.Two-pore channels (TPCs) are an ancient family of intracellular ion channels and a likely ancestral stepping stone in the evolution of voltage-gated Ca2+ and Na+ channels (1). Architecturally, TPCs resemble a halved voltage-gated Ca2+/Na+ channel with cytosolic NH2 and COOH termini, comprising two repeats of six transmembrane spanning helices with a putative pore-forming domain between the fifth and sixth membrane-spanning regions. Since their discovery in vertebrate systems, many studies have investigated the properties of these channels (27) that may support such a lengthy evolutionary pedigree.In this context, demonstration that (i) the two human TPC isoforms (TPC1 and TPC2) are uniquely distributed within the endolysosomal system (2, 3) and that (ii) TPC channel activity is activated by the Ca2+ mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP) (46) generated considerable excitement that TPCs function as effectors of this mercurial second messenger long known to trigger Ca2+ release from “acidic stores.” The spectrum of physiological activities that have been linked to NAADP signaling over the last 25 years (8, 9) may therefore be realized through regulation of TPC activity. However, recent studies have questioned the idea that TPCs are NAADP targets (10, 11), demonstrating instead that TPCs act as Na+ channels regulated by the endolysosomal phosphoinositide PI(3,5)P2. Such controversy (12, 13) underscores how little we know about TPC regulatory inputs and the dynamic composition of TPC complexes within cells.Here, to generate unbiased insight into the cell biology of the TPC complex, we report a proteomic analysis of human TPCs. The TPC interactome establishes a useful community resource as a “rosetta stone” for interrogating the cell biology of TPCs and their regulation. The dataset reveals a predomination of links between TPCs and effectors controlling membrane organization and trafficking, relevant for disease states involving lysosomal proliferation where TPC functionality may be altered (14).  相似文献   

19.
20.
A successful pregnancy depends on a complex process that establishes fetomaternal tolerance. Seminal plasma is known to induce maternal immune tolerance to paternal alloantigens, but the seminal factors that regulate maternal immunity have yet to be characterized. Here, we show that a soluble form of CD38 (sCD38) released from seminal vesicles to the seminal plasma plays a crucial role in inducing tolerogenic dendritic cells and CD4+ forkhead box P3+ (Foxp3+) regulatory T cells (Tregs), thereby enhancing maternal immune tolerance and protecting the semiallogeneic fetus from resorption. The abortion rate in BALB/c females mated with C57BL/6 Cd38−/− males was high compared with that in females mated with Cd38+/+ males, and this was associated with a reduced proportion of Tregs within the CD4+ T-cell pool. Direct intravaginal injection of sCD38 to CBA/J pregnant mice at preimplantation increased Tregs and pregnancy rates in mice under abortive sonic stress from 48 h after mating until euthanasia. Thus, sCD38 released from seminal vesicles to the seminal plasma acts as an immunoregulatory factor to protect semiallogeneic fetuses from maternal immune responses.Seventy-five percent of pregnancies that are lost represent failure of implantation and are therefore not clinically recognized as pregnancies (1). Recurrent miscarriage (the spontaneous loss of three or more consecutive pregnancies) is a significant health issue for 1–2% of women, with no identifiable biological cause and no effective treatment. During early stages of pregnancy, complex processes help to create a uterine environment that is conducive to a successful pregnancy. These include immunological adaptation to the semiallogeneic fetus. Tolerance to paternal alloantigens is critical for successful reproduction in placental mammals (2, 3). Many studies have proposed that regulatory T cells (Tregs) play an essential role in the development of fetomaternal tolerance in mice and humans (47). Seminal plasma contains potent immunoregulatory molecules that contribute to the induction of tolerogenic DCs (tDCs) and ultimately Treg expansion, which is necessary to establish maternal tolerance against paternal antigens (810). However, the specific molecules in semen that are responsible for expansion of Tregs and establishment of maternal tolerance remain undefined.CD38, a mammalian prototype of ADP ribosyl cyclases (ADPRCs), is a type II transmembrane (TM) glycoprotein expressed in many cell types and seminal fluid (1116). CD38 produces calcium-mobilizing second messengers, cyclic ADP ribose, and nicotinic acid adenine dinucleotide phosphate (11, 12). We previously showed that intact CD38 in prostasomes assists progesterone-induced sperm Ca2+ signaling (13). In addition to its enzymatic role for Ca2+ signaling, CD38 may also have a nonenzymatic role through its interaction with CD31 (17, 18). CD31, a type I TM homophilic or heterophilic receptor, is expressed in endothelial cells and a variety of immune cells (19) and is involved in attenuating the inflammatory response in a variety of inflammatory diseases (2023). For example, recombinant CD38 inhibits LPS-induced inflammatory signals in mouse macrophages and human DCs through an interaction with CD31 (24, 25).In this study, we found that CD38 is truncated and released into the seminal plasma from seminal vesicles (SVs) as a soluble form (sCD38) in humans and mice. This finding prompted us to examine whether CD38 plays a role in maternal immune tolerance during pregnancy. We found that sCD38 present in seminal plasma was crucial for the induction of uterine tDC and Tregs, which are responsible for the development of the fetomaternal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号