首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Neuromodulation》2023,26(2):403-413
ObjectivesDeep brain stimulation (DBS) delivered via multicontact leads implanted in the basal ganglia is an established therapy to treat Parkinson disease (PD). However, the different neural circuits that can be modulated through stimulation on different DBS contacts are poorly understood. Evidence shows that electrically stimulating the subthalamic nucleus (STN) causes a therapeutic effect through antidromic activation of the hyperdirect pathway—a monosynaptic connection from the cortex to the STN. Recent studies suggest that stimulating the substantia nigra pars reticulata (SNr) may improve gait. The advent of directional DBS leads now provides a spatially precise means to probe these neural circuits and better understand how DBS affects distinct neural networks.Materials and MethodsWe measured cortical evoked potentials (EPs) using electroencephalography (EEG) in response to low-frequency DBS using the different directional DBS contacts in eight patients with PD.ResultsA short-latency EP at 3 milliseconds originating from the primary motor cortex appeared largest in amplitude when stimulating DBS contacts closest to the dorsolateral STN (p < 0.001). A long-latency EP at 10 milliseconds originating from the premotor cortex appeared strongest for DBS contacts closest to the SNr (p < 0.0001).ConclusionsOur results show that at the individual patient level, electrical stimulation of different nuclei produces distinct EP signatures. Our approach could be used to identify the functional location of each DBS contact and thus help patient-specific DBS programming.Clinical Trial RegistrationThe ClinicalTrials.gov registration number for the study is NCT04658641.  相似文献   

2.
IntroductionSubthalamic nucleus deep brain stimulation (STN DBS) for Parkinson disease (PD) normalizes neuronal hypersynchrony in the beta frequency range (13–30 Hz). The spatial correspondence of maximal beta power to the site of optimal stimulation along the DBS lead trajectory has been debated.MethodsWe determined the trajectory locations of the active contact, maximal beta power, and the dorsal border of the STN (DB-STN) in DBS patients. Beta power profiles were measured during intraoperative microelectrode recording (MER). Active contact locations were assigned during blinded, postoperative DBS programming. The DB-STN was identified both electrophysiologically during MER and anatomically on MRI. After grouping DBS trajectories into quadrants relative to the anatomic STN midpoint, we examined regional variations in the relative trajectory locations of the three entities.ResultsSTN DBS significantly improved motor performance for all 13 DBS patients, with active contacts at the DB-STN. Along trajectories passing posterior-medial to the STN midpoint, maximal beta power co-localized with active contacts at the DB-STN (difference Δ = 0.4 ± 1.6 mm, p = 0.57). By contrast, in posterior-lateral trajectories, maximal beta arose within the STN, ventral to active contacts (Δ = 1.9 ± 1.3 mm, p = 0.002). For trajectories anterior to the STN midpoint, maximal beta power co-localized with the DB-STN, while active contacts were ventral to peak beta power (p = 0.05).ConclusionOur findings indicate that co-localization of optimal stimulation and beta power varies by anatomical region in STN DBS for Parkinson disease.  相似文献   

3.
Behavioral disturbances have been reported with subthalamic (STN) deep brain stimulation (DBS) treatment in Parkinson's disease (PD). We report correlative functional imaging (fMRI) of mood and motor responses induced by successive right and left DBS. A 36-year-old woman with medically refractory PD and a history of clinically remitted depression underwent uncomplicated implantation of bilateral STN DBS. High-frequency stimulation of the left electrode improved motor symptoms. Unexpectedly, right DBS alone elicited several reproducible episodes of acute depressive dysphoria. Structural and functional magnetic resonance imaging (fMRI) imaging was carried out with sequential individual electrode stimulation. The electrode on the left was within the inferior STN, whereas the right electrode was marginally superior and lateral to the intended STN target within the Fields of Forel/zona incerta. fMRI image analysis (Analysis of Functional NeuroImages, AFNI) contrasting OFF versus ON stimulation identified significant lateralized blood oxygen level-dependent (BOLD) signal changes with DBS (P < 0.001). Left DBS primarily showed changes in motor regions: increases in premotor and motor cortex, ventrolateral thalamus, putamen, and cerebellum as well as decreases in sensorimotor/supplementary motor cortex. Right DBS showed similar but less extensive change in motor regions. More prominent were the unique increases in superior prefrontal cortex, anterior cingulate (Brodmann's area [BA] 24), anterior thalamus, caudate, and brainstem, and marked widespread decreases in medial prefrontal cortex (BA 9/10). The mood disturbance resolved spontaneously in 4 weeks despite identical stimulation parameters. Transient depressive mood induced by subcortical DBS stimulation was correlated with changes in mesolimbic cortical structures. This case provides new evidence supporting cortical segregation of motor and nonmotor cortico-basal ganglionic systems that may converge in close proximity at the level of the STN and the adjacent white matter tracts (Fields of Forel/zona incerta).  相似文献   

4.
《Brain stimulation》2014,7(2):190-193
BackgroundFunctional magnetic resonance imaging (fMRI) of deep brain stimulation (DBS) has potentials to reveal neuroanatomical connectivity of a specific brain region in vivo.ObjectiveThis study aimed to demonstrate frequency and amplitude tunings of the thalamocortical tract using DBS fMRI at the rat ventral posteromedial thalamus.MethodsBlood oxygenation level dependent (BOLD) fMRI data were acquired in a total of twelve rats at a high-field 11.7 T MRI scanner with modulation of nine stimulus frequencies (1–40 Hz) and seven stimulus amplitudes (0.2–3.6 mA).ResultsBOLD response in the barrel cortex peaked at 25 Hz. The response increased with stimulus amplitude and reached a plateau at 1 mA. Cortical spreading depolarization (CSD) was observed occasionally after DBS that carries >10% BOLD waves spanning the entire ipsilateral cortex.ConclusionfMRI is sensitive to the frequency effect of DBS and has potential to investigate the function of a particular neuroanatomical pathway.  相似文献   

5.
《Neuromodulation》2023,26(2):333-339
BackgroundDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS.Materials and Methods7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson’s Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments.ResultsA total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson’s Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs.ConclusionThe implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.  相似文献   

6.
《Brain stimulation》2014,7(5):701-708
BackgroundDeep brain stimulation of the subthalamic nucleus (STN DBS) reduces Parkinson disease (PD) motor symptoms but has unexplained, variable effects on mood.ObjectiveThe study tested the hypothesis that pre-existing mood and/or anxiety disorders or increased symptom severity negatively affects mood response to STN DBS.MethodsThirty-eight PD participants with bilateral STN DBS and on PD medications were interviewed with Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) and completed Beck Depression Inventory (BDI) and Spielberger State Anxiety Inventory (SSAI) self-reports. Subsequently, during OFF and optimal ON (clinical settings) STN DBS conditions and while off PD medications, motor function was assessed with the United Parkinson Disease Rating Scale (UPDRS, part III), and participants rated their mood with Visual Analogue Scales (VAS), and again completed SSAI. VAS mood variables included anxiety, apathy, valence and emotional arousal.ResultsSTN DBS improved UPDRS scores and mood. Unexpectedly, PD participants diagnosed with current anxiety or mood disorders experienced greater STN DBS-induced improvement in mood than those diagnosed with remitted disorders or who were deemed as having never met threshold criteria for diagnosis. BDI and SSAI scores did not modulate mood response to STN DBS, indicating that clinical categorical diagnosis better differentiates mood response to STN DBS than self-rated symptom severity. SCID diagnosis, BDI and SSAI scores did not modulate motor response to STN DBS.ConclusionsPD participants diagnosed with current mood or anxiety disorders are more sensitive to STN DBS-induced effects on mood, possibly indicating altered basal ganglia circuitry in this group.  相似文献   

7.
《Brain stimulation》2020,13(6):1706-1718
BackgroundDeep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson’s disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown.ObjectiveTo use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS.MethodsWe recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson’s disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments.ResultsDBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS.ConclusionsDBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.  相似文献   

8.
IntroductionSubthalamic nucleus deep brain stimulation (STN DBS) improves cardinal motor symptoms of Parkinson's disease (PD) but can worsen verbal fluency (VF). An optimal site of stimulation for overall motor improvement has been previously identified using an atlas-independent, fully individualized, field-modeling approach. This study examines if cardinal motor components (bradykinesia, tremor, and rigidity) share this identified optimal improvement site and if there is co-localization with a site that worsens VF.MethodsAn atlas-independent, field-modeling approach was used to identify sites of maximal STN DBS effect on overall and cardinal motor symptoms and VF in 60 patients. Anatomic coordinates were referenced to the STN midpoint. Symptom severity was assessed with the MDS-UPDRS part III and established VF scales.ResultsSites for improved bradykinesia and rigidity co-localized with each other and the overall part III site (0.09 mm lateral, 0.93 mm posterior, 1.75 mm dorsal). The optimal site for tremor was posterior to this site (0.10 mm lateral, 1.40 mm posterior, 1.93 mm dorsal). Semantic and phonemic VF sites were indistinguishable and co-localized medial to the motor sites (0.32 mm medial, 1.18 mm posterior, 1.74 mm dorsal).ConclusionThis study identifies statistically distinct, maximally effective stimulation sites for tremor improvement, VF worsening, and overall and other cardinal motor improvements in STN DBS. Current electrode sizes and voltage settings stimulate all of these sites simultaneously. However, future targeted lead placement and focused directional stimulation may avoid VF worsening while maintaining motor improvements in STN DBS.  相似文献   

9.
BackgroundSubthalamic nucleus deep brain stimulation (STN DBS) is an established therapy for alleviating motor symptoms in advanced Parkinson's disease (PD) patients; however, a postoperative decline in cognitive and speech function has become problematic although its mechanism remains unclear. The aim of the present study was to elucidate the properties of language and drawing ability and cerebral perfusion in PD patients after bilateral STN DBS surgery.MethodsWestern aphasia battery, including drawing as a subcategory, and perfusion (N-isopropyl-p-[123I] iodoamphetamine) SPECT scan was conducted in 21 consecutive PD patients, before, and three to six months after, bilateral STN DBS surgery while on stimulation. Perfusion images were compared with those of 17 age- and gender-matched healthy volunteers. In the parametric image analysis, the statistical peak threshold was set at P < 0.001 uncorrected with a cluster threshold set at P < 0.05 uncorrected.ResultsAlthough motor symptoms were improved and general cognition was preserved in the patient group, 11 patients (52.4%) showed a decline in the drawing subcategory after surgery, which showed a reduction in Frontal Assessment Battery score in this group of patients. Statistical parametric analysis of the brain perfusion images showed a decrease of cerebral blood flow in the prefrontal and cingulate cortex after surgery. Patients whose drawing ability declined showed decreased perfusion in the middle cingulate cortex comparing before and after surgery.ConclusionPresent results show that some PD patients show a decline in drawing ability after bilateral STN DBS which may attributable by dysfunction in the cingulate network.  相似文献   

10.
《Brain stimulation》2021,14(1):192-201
BackgroundNotwithstanding the large improvement in motor function in Parkinson’s disease (PD) patients treated with deep brain stimulation (DBS), apathy may increase. Postoperative apathy cannot always be related to a dose reduction of dopaminergic medication and stimulation itself may play a role.ObjectiveWe studied whether apathy in DBS-treated PD patients could be a stimulation effect.MethodsIn 26 PD patients we acquired apathy scores before and >6 months after DBS of the subthalamic nucleus (STN). Magnetoencephalography recordings (ON and OFF stimulation) were performed ≥6 months after DBS placement. Change in apathy severity was correlated with (i) improvement in motor function and dose reduction of dopaminergic medication, (ii) stimulation location (merged MRI and CT-scans) and (iii) stimulation-related changes in functional connectivity of brain regions that have an alleged role in apathy.ResultsAverage apathy severity significantly increased after DBS (p < 0.001) and the number of patients considered apathetic increased from two to nine. Change in apathy severity did not correlate with improvement in motor function or dose reduction of dopaminergic medication. For the left hemisphere, increase in apathy was associated with a more dorsolateral stimulation location (p = 0.010). The increase in apathy severity correlated with a decrease in alpha1 functional connectivity of the dorsolateral prefrontal cortex (p = 0.006), but not with changes of the medial orbitofrontal or the anterior cingulate cortex.ConclusionsThe present observations suggest that apathy after STN-DBS is not necessarily related to dose reductions of dopaminergic medication, but may be an effect of the stimulation itself. This highlights the importance of determining optimal DBS settings based on both motor and non-motor symptoms.  相似文献   

11.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) was proposed as an effective way to improve the symptoms of Parkinson’s disease (PD). We studied metabolic modulation in the brain by bilateral STN stimulation using FDG PET. Five PD patients (age 61.6 ± 3.9 years) at advanced stage were scanned under OFF and ON conditions of stimulation. Network analysis was used to evaluate the effect of stimulation on the expression of an abnormal Parkinson’s disease-related spatial covariance pattern (PDRP). In addition, statistical parametric mapping was used to assess the effect of this intervention on regional glucose metabolism. We found that bilateral STN DBS led to a significant reduction (P < 0.02) in the PDRP network activity on an individual subject basis between OFF and ON conditions, parallel to significant improvement (P < 0.002) of clinical symptoms in these patients. The treatment also decreased glucose metabolism in the right lentiform nucleus and cerebellum, and in the bilateral ventral thalamus and precuneus, but increased metabolism in the left midbrain and pons. This was consistent with the notion that clinical benefit in a PD patient was associated with the suppression of hyperactive motor circuitry following STN stimulation. These findings suggest that DBS is more likely to function by regulating the entire neural network rather than merely exciting or inhibiting certain nuclei.  相似文献   

12.
IntroductionVerbal fluency (VF) decline is a well-documented cognitive effect of Deep Brain Stimulation of the subthalamic nucleus (STN-DBS) in patients with Parkinson's disease (PD). This decline may be associated with disruption to left-sided frontostriatal circuitry involving the anteroventral non-motor area of the STN. While recent studies have examined the impact of lead location in relation to functional STN subdivisions on VF outcomes, results have been mixed and methods have been limited by atlas-based location mapping.MethodsParticipants included 59 individuals with PD who underwent bilateral STN-DBS. Each participant's active contact location was determined in an atlas-independent fashion, relative to their individual MR-visualized STN midpoint. Multiple linear regression was used to examine lead location in each direction as a predictor of phonemic and semantic VF decline, controlling for demographic and disease variables.ResultsMore anterior lead locations relative to the STN midpoint in the left hemisphere predicted greater phonemic VF decline (B = −2.34, B SE = 1.08, β = −0.29, sr2 = 0.08). Lead location was not a significant predictor of semantic VF decline.ConclusionUsing an individualized atlas-independent approach, present findings suggest that more anterior stimulation of the left STN may uniquely contribute to post-DBS VF decline. This is consistent with models in which the anterior STN represents a “non-motor” functional subdivision with connections to frontal regions, e.g., the left dorsal prefrontal cortex. Future studies should investigate the effect of DBS lead trajectory on VF outcomes.  相似文献   

13.
《Brain stimulation》2020,13(3):908-915
BackgroundReduced intracortical inhibition is a neurophysiologic finding in focal dystonia that suggests a broader problem of impaired cortical excitability within the brain. A robust understanding of the neurophysiology in dystonia is essential to elucidate the pathophysiology of the disorder and develop new treatments. The cortical silent period (cSP) is a reliable, non-invasive method to measure intracortical inhibition in the primary motor cortex associated with a muscle of interest. In adductor spasmodic dysphonia (AdSD), cSP of the laryngeal motor cortex (LMC) which directly corresponds to the affected musculature, the thyroarytenoid (TA), has not been examined.ObjectiveThis work evaluated the cSP of the LMC and the relationship between cSP and functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) activation in people with AdSD (n = 12) compared to healthy controls (CTL, n = 14).ResultsShortened LMC cSP were observed bilaterally in people with AdSD vs CTL (F(1, 99) = 19.5226, p < 0.0001), with a large effect size (η2 = 0.1834). Between-group fMRI analysis revealed greater activation in bilateral LMC in the AdSD > CTL contrast as compared to CTL > AdSD contrast. Correlation analysis showed that people with AdSD have positive correlation of left LMC BOLD activation and the cSP. Further, the right LMC cSP lacks either positive or negative associations with BOLD activation. CTL individuals displayed both positive and negative correlations between cSP and BOLD activation in the left LMC. In CTL, the LMC cSP and BOLD activation showed exclusively negative correlations in both hemispheres.ConclusionIn AdSD, the cortical activation during phonation may not be efficiently or effectively associated with inhibitory processes, leading to muscular dysfunction. These findings may give insight into the maladaptive cortical control during phonation in people with AdSD.  相似文献   

14.
《Brain stimulation》2022,15(3):683-694
BackgroundDeep brain stimulation (DBS) is an established treatment for certain movement disorders and has additionally shown promise for various psychiatric, cognitive, and seizure disorders. However, the mechanisms through which stimulation exerts therapeutic effects are incompletely understood. A technique that may help to address this knowledge gap is functional magnetic resonance imaging (fMRI). This is a non-invasive imaging tool which permits the observation of DBS effects in vivo.ObjectiveThe objective of this review was to provide a comprehensive overview of studies in which fMRI during active DBS was performed, including studied disorders, stimulated brain regions, experimental designs, and the insights gleaned from stimulation-evoked fMRI responses.MethodsWe conducted a systematic review of published human studies in which fMRI was performed during active stimulation in DBS patients. The search was conducted using PubMED and MEDLINE.ResultsThe rate of fMRI DBS studies is increasing over time, with 37 studies identified overall. The median number of DBS patients per study was 10 (range = 1–67, interquartile range = 11). Studies examined fMRI responses in various disease cohorts, including Parkinson's disease (24 studies), essential tremor (3 studies), epilepsy (3 studies), obsessive-compulsive disorder (2 studies), pain (2 studies), Tourette syndrome (1 study), major depressive disorder, anorexia, and bipolar disorder (1 study), and dementia with Lewy bodies (1 study). The most commonly stimulated brain region was the subthalamic nucleus (24 studies). Studies showed that DBS modulates large-scale brain networks, and that stimulation-evoked fMRI responses are related to the site of stimulation, stimulation parameters, patient characteristics, and therapeutic outcomes. Finally, a number of studies proposed fMRI-based biomarkers for DBS treatment, highlighting ways in which fMRI could be used to confirm circuit engagement and refine DBS therapy.ConclusionA review of the literature reflects an exciting and expanding field, showing that the combination of DBS and fMRI represents a uniquely powerful tool for simultaneously manipulating and observing neural circuitry. Future work should focus on relatively understudied disease cohorts and stimulated regions, while focusing on the prospective validation of putative fMRI-based biomarkers.  相似文献   

15.
《Brain stimulation》2020,13(3):916-927
BackgroundDeep brain stimulation (DBS) is an effective treatment for movement disorders, yet its mechanisms of action remain unclear. One method used to study its circuit-wide neuromodulatory effects is functional magnetic resonance imaging (fMRI) which measures hemodynamics as a proxy of neural activity. To interpret functional imaging data, we must understand the relationship between neural and vascular responses, which has never been studied with the high frequencies used for DBS.ObjectiveTo measure neurovascular coupling in the rat motor cortex during thalamic DBS.MethodSimultaneous intrinsic optical imaging and extracellular electrophysiology was performed in the motor cortex of urethane-anesthetized rats during thalamic DBS at 7 different frequencies. We related Maximum Change in Reflectance (MCR) from the imaging data to Integrated Evoked Potential (IEP) and change in broadband power of multi-unit (MU) activity, computing Spearman’s correlation to determine the strength of these relationships. To determine the source of these effects, we studied the contributions of antidromic versus orthodromic activation in motor cortex perfusion using synaptic blockers.ResultsMCR, IEP and change in MU power increased linearly to 60 Hz and saturated at higher frequencies of stimulation. Blocking orthodromic transmission only reduced the DBS-induced change in optical signal by ∼25%, suggesting that activation of corticofugal fibers have a major contribution in thalamic-induced cortical activation.ConclusionDBS-evoked vascular response is related to both evoked field potentials as well as multi-unit activity.  相似文献   

16.
Objective. Employing [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) to assess the correlation between the effect of deep brain stimulation (DBS) on the subthalamic nucleus (STN) and the regional cerebral metabolic rate of glucose (rCMRGlc) in advanced Parkinson's disease patients (N = 8). Materials and Methods. On the basis of patients’ diary records, we performed FDG‐PET during the off‐period of motor activity with on‐ or off‐stimulation by STN‐DBS on separate days and analyzed the correlation between changes in motor symptoms and alterations in the rCMRGlc. Result. When FDG‐PET was performed, the motor score on the unified Parkinson's disease rating scale (UPDRS) was 64% lower with on‐stimulation than with off‐stimulation (p < 0.001, Wilcoxon single‐rank test). STN‐DBS increased the rCMRGlc in the posterior part of the right middle frontal gyrus, which corresponded to the premotor area, and the right anterior lobe of the cerebellum (p < 0.005, paired t‐test). No region exhibited a decrease in rCMRGlc. Among the items of the UPDRS motor score, the changes in resting tremor and rigidity of the left extremities showed a significant correlation with the changes in rCMRGlc observed in the right premotor area (p < 0.02 and p < 0.05, respectively, Spearman's rank correlation). Conclusions. STN‐DBS either activates the premotor area or normalizes the deactivation of the premotor area. These FDG‐PET findings obtained are consistent with the idea that STN‐DBS modifies the activities of neural circuits involved in motor control.  相似文献   

17.
BackgroundCaregiver burden (CB) in Parkinson's disease (PD) does not improve in the short term after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS), despite motor improvement. This may be due to increased caregiver demands after surgery or the possibility that DBS unresponsive non-motor factors, such as executive dysfunction, contribute to CB.ObjectiveTo evaluate the trajectory of CB in year 2 following bilateral STN DBS surgery for PD, and to test whether post-operative CB changes correlate with changes in executive function in a subgroup with available neuropsychological testing.MethodsThis retrospective analysis included 35 patients with PD whose caregivers completed the Caregiver Burden Inventory (CBI) at baseline and between 9 and 24 months after bilateral STN DBS. 14 of these patients had neuropsychological testing both at baseline and within 6 months of their follow up CBI assessment.ResultsCBI scores showed worsened CB from baseline to follow-up (16.4–21.5, p = 0.006). There was no correlation between change in executive function and change in CBI in the smaller subsample.ConclusionCB worsens in the 2 years after bilateral STN DBS despite improvement in motor symptoms and is not associated with change in executive dysfunction in the setting of advancing PD. These findings have implications on pre-operative counselling for patients and caregivers considering DBS for PD.  相似文献   

18.
《Brain stimulation》2022,15(5):1223-1232
BackgroundDeep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized.ObjectiveThe objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr).MethodsTwo microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode.ResultsInhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003).InterpretationPersistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.  相似文献   

19.
《Clinical neurophysiology》2021,132(6):1321-1329
ObjectiveTwo major advances in clinical deep brain stimulation (DBS) technology have been the introduction of local field potential (LFP) recording capabilities, and the deployment of directional DBS electrodes. However, these two technologies are not operationally integrated within current clinical DBS devices. Therefore, we evaluated the theoretical advantages of using directional DBS electrodes for LFP recordings, with a focus on measuring beta-band activity in the subthalamic nucleus (STN).MethodsWe used a computational model of human STN neural activity to simulate LFP recordings. The model consisted of 235,280 anatomically and electrically detailed STN neurons surrounding the DBS electrode, which was previously optimized to mimic beta-band synchrony in the dorsolateral STN. We then used that model system to compare LFP recordings from cylindrical and directional DBS contacts, and evaluate how the selection of different contacts for bipolar recording affected the LFP measurements.ResultsThe model predicted two advantages of directional DBS electrodes over cylindrical DBS electrodes for STN LFP recording. First, recording from directional contacts could provide additional insight on the location of a synchronous volume of neurons within the STN. Second, directional contacts could detect a smaller volume of synchronous neurons than cylindrical contacts, which our simulations predicted to be a ~0.5 mm minimum radius.ConclusionsSTN LFP recordings from 8-contact directional DBS electrodes (28 possible bipolar pairs) can provide more information than 4-contact cylindrical DBS electrodes (6 possible bipolar pairs), but they also introduce additional complexity in analyzing the signals.SignificanceIntegration of directional electrodes with DBS systems that are capable of LFP recordings could improve localization of targeted volumes of synchronous neurons in PD patients.  相似文献   

20.
Producing accurate movements may rely on the functional independence of sensorimotor circuits within basal ganglia nuclei. In parkinsonism there is abnormal synchrony of electrical activity within these circuits that results in a loss of independence across motor channels. Local field potential (LFP) recordings reflect the summation of local electrical fields and an increase in LFP power reflects increased synchrony in local neuronal networks. We recorded LFPs from the subthalamic nucleus (STN) deep brain stimulation (DBS) lead in the operating room in 22 cases from 16 subjects with Parkinson's disease (PD) who were off medication. There was elevated LFP power at beta frequencies (13-35 Hz) at rest. The LFP spectral profile was consistent across several periods of rest that were separated by movement and/or DBS, and appeared to be a relatively stationary phenomenon. The spectral profile and frequencies of the beta-band peak(s) varied among subjects but were similar between the right and left STNs within certain individuals. These results suggest that the LFP spectrum at rest may characterize a “signature” rhythm for an individual with PD. Beta-band power was attenuated after intra-operative STN DBS (p < 0.05). The attenuation lasted for 10 s after short periods (30 s) and for up to 50 s after longer periods (5 min) of DBS. The finding that longer periods of DBS attenuated beta power for a longer time suggests that there may be long-acting functional changes to networks in the STN in PD after chronic DBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号