首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
ObjectiveThe purpose of this study was evaluate, for the first time, the impact of incorporation of nanostructured silver vanadate (β-AgVO3) in antibiofilm and mechanical properties of dental acrylic resins (poly(methyl methacrylate), PMMA).DesignThe β-AgVO3 was synthesized and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and microanalysis (SEM/EDS). Resins specimens were prepared with 0–10% wt.% β-AgVO3 and characterized by SEM, XRD and optical microscopy. The antibiofim activity of the samples against Candida albicans and Streptococcus mutans was investigated by XTT reduction test, colony-forming units (CFUs), and confocal laser scanning microscopy (CLSM). The flexural strength, hardness, and surface roughness of the samples containing β-AgVO3 were compared with the pure PMMA matrix.ResultsThe incorporation of 10% β-AgVO3 significantly reduced the metabolic activity of C. albicans and S. mutans (p < 0.05). There was a reduction in microbial load (CFU/mL) of microorganisms for the different concentrations used (p < 0.05), which was confirmed by confocal microscopy. The addition of β-AgVO3 did not change the mechanical properties of hardness and surface roughness of the resins (p > 0.05). However, flexural strength decreased with the addition of amounts greater than 1% (p < 0.05).Conclusionsβ-AgVO3 additions in dental acrylic resin may have an impact on inhibition of biofilm of main microorganisms associated with dental prostheses. However, the viability of clinical use should be evaluated in function of changed promoted in some mechanical properties.  相似文献   

2.
PurposeCandida-associated denture stomatitis is the most prevalent form of oral candidosis affecting 65% of denture wearers. Failure of therapy and recurrence of infection are not uncommon and the continuous use of antifungal agents may affect the surface properties of the denture material and may contribute to Candida adhesion. This study aimed to investigate surface properties of poly(methyl methacrylate) PMMA denture material before and after exposure to antifungal agents and its relation to in vitro adhesion of Candida albicans.MethodsFour groups of acrylic specimens (20 mm × 20 mm × 2.5 mm) were prepared (25 specimens in each group). Specimens were immersed in nystatin (group 1), fluconazole (group 2), distilled water (group 3) and group 4 was not exposed. Specimens were tested for surface roughness, contact angle, surface hardness and in vitro Candida adherence to PMMA.ResultsThe results showed that nystatin had no statistically significant effect on surface hardness (P > 0.05), but had a statistically significant effect on surface roughness, contact angle, and Candida adhesion to PMMA (P < 0.05). On the other hand, fluconazole had no statistically significant effect on surface hardness or roughness (P > 0.05), but had a statistically significant effect on contact angle, and Candida adhesion to PMMA (P < 0.05). Distilled water had no statistically significant effect on surface hardness, roughness, contact angle, or Candida adhesion to PMMA (P > 0.05).ConclusionsExposure of PMMA to nystatin may induce changes in roughness, wettability while exposure to fluconazole may affect surface free energy and therefore may increase Candida adhesion to it.  相似文献   

3.
PurposeThis study aimed to measure the color change, surface roughness and flexural strength of heat-polymerized acrylic resin after its immersion in denture cleansers, simulating a 180-day use.MethodsThirty disk-shaped (15 mm × 4 mm) and 30 rectangular samples (65 mm × 10 mm × 3.3 mm) were prepared from heat-polymerized acrylic resin and immersed in Corega Tabs, Bony Plus, and distilled water. Color measurements (ΔE) were determined by a portable colorimeter. A surface analyzer was used to measure the roughness before and after immersion (ΔRa). The flexural strength (S) was measured using a 3-point bending test. The ΔE values were submitted to statistical analysis by the Kruskal–Wallis test, followed by Dunn's Multiple Comparisons test. The ΔRa and S values were submitted to statistical analysis by ANOVA, followed by a Student–Newman–Keuls test (α = .05).ResultsThe color changes were significantly higher for the Corega Tabs than for the control group. The mean ΔE values quantified by the National Bureau of Standards (NBS) were classified as Trace (0.0–0.5). The Bony Plus group had significantly higher surface roughness than the other groups. Corega Tabs and Bony Plus groups presented lower flexural strength than the control group.ConclusionsAlthough the color changes after the immersion in denture cleansers were clinically insignificant, the Corega Tabs group showed higher color differences. The Bony Plus group showed significantly increased surface roughness. Both effervescent tablets Corega Tabs and Bony Plus significantly diminished the flexural strength of the acrylic resin.  相似文献   

4.
ObjectivesInformation regarding the effects of orthodontic bracket debonding on zirconia restorations, and the preferred method for residual adhesive removal from the zirconia restoration surface is lacking. Thus, this study aimed to assess the effects of different methods of residual adhesive removal after orthodontic bracket debonding on flexural strength, surface roughness, and phase transformation of high-translucent (HT) zirconia.Materials and methodsThis in vitro study evaluated 72 bar-shaped HT zirconia specimens; 18 specimens were assigned to the control group. Metal brackets were bonded to the remaining specimens by resin cement. After bracket debonding, the residual adhesive on the surface of specimens was removed by three methods (n = 18): a 30-flute tungsten-carbide (TC) bur at low speed, an ultrafine diamond bur at high speed, and Er:YAG laser irradiation. The surface roughness (Ra and Rz) was measured. X-ray diffraction (XRD) analysis was carried out, and the flexural strength was measured as well. Data were statistically analyzed (α = 0.05).ResultsBefore polishing, all methods increased the Ra and Rz values (P < 0.05) except for the diamond bur yielding a Rz value comparable to that of the control group. The Ra values of the test groups were comparable after polishing, and still higher than that of the control group (P < 0.05). The flexural strength of all three test groups was comparable (P > 0.05), and significantly lower than that of the control group (P < 0.001). The monoclinic phase was not observed in any group.ConclusionsOrthodontic bracket debonding adversely affects the surface roughness and flexural strength of zirconia despite polishing.  相似文献   

5.
We have conducted a longitudinal study to quantify biofilms in oral clinical isolates of Candida species (spp.) from adults with local and systemic predisposing factors for candidiasis. A total of 69 yeast isolates from 63 Mexican patients were evaluated. These isolates (39 C. albicans, 15 C. tropicalis, 7 C. glabrata, 4 C. krusei, 1 C. lusitaniae, 1 C. kefyr, 1 C. guilliermondii and 1 C. pulcherrima) were obtained from two clinical sites: 62.3% (n = 43) from the oral mucosa of totally and partially edentulous patients, and 37.7% (n = 26) from the oral mucosa of diabetics. In addition, Candida ATCC strains were used as controls for each experiment. The kinetics of biofilm formation were measured by 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide [XTT] reduction; each isolate was tested at 6, 12 and 24 h. Biofilm formation is dependent on the Candida spp. and its clinical origin. On average, the oral isolates of C. glabrata are strong biofilm producers, whereas C. albicans and C. tropicalis are moderate producers. The most common species in our population was C. albicans. While the kinetics of C. albicans biofilm formation varies between oral isolates, it generally maintains steady growth from 2 to 48 h, when it reaches its maximum growth.  相似文献   

6.
《Dental materials》2014,30(12):e330-e336
ObjectiveTo evaluate the effect of hydrofluoric acid (HFA) etching time and resin cement bond on the flexural strength of IPS e.max® Press glass ceramic.MethodsTwo hundred and ten bars, 25 mm × 3 mm × 2 mm, were made from IPS e.max® Press ingots through lost-wax, hot-pressed ceramic fabrication technology and randomly divided into five groups with forty-two per group after polishing. The ceramic surfaces of different groups were etched by 9.5% hydrofluoric acid gel for 0, 20, 40, 60 and 120 s respectively. Two specimens of each group were selected randomly to examine the surface roughness and 3-dimensional topography with atomic force microscope (AFM), and microstructure was analyzed by the field emission scanning electron microscope (FE-SEM). Then each group were subdivided into two subgroups (n = 20). One subgroup of this material was selected to receive a thin (approximately 0.1 mm) layer of resin luting agent (Variolink N) whereas the other subgroup remained unaltered. Half of subgroup's specimens were thermocycled 10,000 times before a 3-point bending test in order to determine the flexural strength. Interface between resin cement and ceramic was examined with field emission scanning electronic microscope.ResultsRoughness values increased with increasing etching time. The mean flexural strength values of group 0 s, 20 s, 40 s, 60 s and 120 s were 384 ± 33, 347 ± 43, 330 ± 53, 327 ± 67 and 317 ± 41 MPa respectively. Increasing HF etching times reduced the mean flexural strength (p < 0.05). However, the mean flexural strength of each group, except group 0 s, increased significantly to 420 ± 31, 435 ± 50, 400 ± 39 and 412 ± 58 MPa after the application of dual-curing resin cement. In the present investigation, no significant differences after thermocycling on the flexural strengths were evident.SignificanceOvertime HF etching could have a wakening effect on IPS e.max® Press glass ceramic, but resin cement bonding to appropriately etched surface would strengthen the dental ceramic.  相似文献   

7.
《Dental materials》2020,36(1):68-75
ObjectiveTo evaluate the addition of dimethylaminohexadecyl methacrylate (DMAHDM) and chlorhexidine diacetate on cytotoxicity, antimicrobial activity, physical, and mechanical properties of a self-cured resin.Methods132 disk-shaped and 48 rectangular specimens were divided into four experimental groups as described: Control Group (CG – no addition), dCHX (1%), DMAHDM (5%), and DMAHDM + dCHX (5% + 1%). The biofilm viability, flexural strength (FS - ISO 20795-1:2013), surface roughness (SR), and color stability (ΔE) were analyzed after being stored for 4 weeks in distilled water and immersed for 72 h in coffee. Cytotoxicity was measured after 24 h, 3, and 7 days of elution using an MTT test on L929 cells (ISO 10993-5:2009). SR and ΔE were measured by a contact profilometer and a spectrophotometer using the CIELab parameter. Data were submitted to ANOVA and Bonferroni’s/Tukey’s tests (p  0.05).ResultsSignificant antimicrobial activity against Streptococcus mutans and Candida albicans was detected in all groups when compared to the CG (p < 0.05). Only the dCHX group, in 24 h of elution, demonstrated no cytotoxicity effects. There was a statistical difference for FS on the tested groups (p < 0.05). No differences were detected in the initial roughness’ measurements among the groups (p > 0.05). However, after storage and immersion in coffee, the groups containing DMAHDM presented with rougher surfaces and significantly lower color stability compared to the control (p < 0.05).SignificanceThe addition of dCHX and DMAHDM in self-cured resin presented antimicrobial properties; however, cytotoxicity, physical, and mechanical properties were compromised.  相似文献   

8.
《Dental materials》2020,36(8):987-996
ObjectivesThis study aimed to investigate physical properties of a fiber-reinforced CAD/CAM resin disc, which included woven layers of multi-directional glass fibers.MethodsFiber orientations of CAD/CAM specimens (TRINIA, SHOFU) were specified as longitudinal (L), longitudinal-rotated (LR), and anti-longitudinal (AL). A fiber-reinforced composite (everX posterior, GC (E)) and a conventional composite (Beauti core flow paste, SHOFU (B)) were also tested.A three-point bending test and a tensile test with notchless prism-shaped specimens were conducted using a universal testing machine (AUTOGRAPH AG-IS, Shimadzu). A water absorption test was also carried out after the specimens were stored in water for 24 h or 1 week. Flexural strength and fracture toughness were obtained by conducting a three-point bending test.ResultsTRINIA L and LR groups showed significantly high flexural strength (254.2 ± 22.3 and 248.8 ± 16.7 MPa, respectively). Those were approximately 2.5 times higher than those in AL, E, and B groups (96.8–98.0 MPa) (p < 0.05, ANOVA and Tukey HSD test). No significant difference was shown in flexural modulus among the experimental groups. The fracture toughness in L group (9.1 ± 0.4 MPa/m1/2) was found to be significantly higher than those in other groups (1.9–3.0 MPa/m1/2; p < 0.05). TRINIA group demonstrated significantly lower water absorption (4.7 ± 1.9 μg/mm3) than did E (16.1 ± 3.1 μg/mm3) and B (17.3 ± 3.7 μg/mm3) groups (p < 0.05).SignificanceTRINIA demonstrated distinct anisotropy. TRINIA can be used as a superior restorative material when specifying directions of its fiber mesh layers.  相似文献   

9.
PurposeThe purpose of this study was to examine the bond strength between tooth-colored porcelain and sandblasted zirconia framework.MethodsThe surfaces of zirconia specimens that had been cut into a size suitable for a bending test were sandblasted at three different pressures (0.2, 0.4 and 0.6 MPa). The surface roughness of each specimen was measured and then a 3-point bending test was performed. After that, other zirconia specimens simulating a crown framework were fabricated and their surfaces were sandblasted. Three types of tooth-colored porcelain were fired onto the surface of those zirconia specimens, and the tensile bond strength between the two substances was examined.ResultsWhen the sandblasting pressure was increased, the surface roughness of zirconia specimens tended to become, but the flexural strength remained unchanged. The specimens simulating a zirconia framework had a higher strength of bond when sandblasted at 0.4 or 0.6 MPa than when blasted at 0.2 MPa. The zirconia specimens sandblasted at a pressure of 0.4 MPa had a bond strength to tooth-colored porcelain of 37.7–49.5 MPa.ConclusionWhen sandblasted at a pressure of 0.4 MPa, the zirconia specimens developed a strong bond with the tooth-colored porcelain, regardless of the type of porcelain.  相似文献   

10.
IntroductionNumerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management.AimsTo investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms.MethodsThe surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24 h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM).ResultsWhilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24 h and this was accompanied with higher expression of virulence genes at all periods.ConclusionInduction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections.  相似文献   

11.
Statement of the problemThe effect of long-term water immersion on the shear bond strength between denture base resin and Triad visible-light-polymerized (VLP) direct hard reline resin is not known.PurposeThe aim of this study was to investigate the bonding characteristics of Triad VLP direct hard reline resin to heat-polymerized denture base resin subjected to long-term water immersion.Material and methodsNinety circular disks, 15 mm in diameter and 3 mm thick, of denture base resin were polymerized from a gypsum mold. Sixty specimens were subjected to water immersion and 30 were stored at ambient room temperature for 4 months. Thirty water-immersed specimens were dried with gauze (group 1), while the other 30 water-immersed specimens were dried with a hair dryer (group 2). The dry specimens (n = 30) represented the control group (group 3). All specimens were air abraded and painted with bonding agent before packing Triad VLP direct hard-reline resin. Specimens in each group were subjected to thermal cycling for 50,000 cycles between 4 °C and 60 °C water baths with 1-min dwell time at each temperature. The bond strength at which the bond failed under stress was recorded using a universal testing machine. One-way ANOVA and Tukey post hoc comparison were applied to find significant differences between groups (α = 0.05).ResultsSignificant differences in mean shear bond strength among the specimens existed because of variable water content in the denture base resin (P < 0.05). Group 3 (dry) was higher than group 2 (desiccated), and the lowest was group 1 (saturated).ConclusionThe shear bond strength of Triad VLP direct hard reline resin to denture base resin depended on the water content in the denture base resin. The dry denture base resin demonstrated superior bond strength compared with the desiccated and water-saturated denture base resins.  相似文献   

12.
《Dental materials》2014,30(12):e306-e316
ObjectivesDental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations.MethodsOne hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max® ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx = 60) were divided in three groups (control, aged for 5 h, aged for 10 h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (P < 0.05). The variability of the flexural strength values was analyzed using the two-parameter Weibull distribution function, which was applied for the estimation of Weibull modulus (m) and characteristic strength (σ0). The crystalline phase polymorphs of the materials (tetragonal, t, and monoclinic, m, zirconia) were investigated by X-ray diffraction (XRD) analysis, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy.ResultsA slight increase of the flexural strength after 5 h, and a decrease after 10 h of aging, was recorded for both ceramics, however statistically significant was for the WI group (P < 0.05). Both ceramics presented a t  m phase transformation, with the m-phase increasing from 4 to 5% at 5 h to around 15% after 10 h.SignificanceThe significant reduction of the flexural strength after 10 h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested.  相似文献   

13.
ObjectivesThe aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites.MethodsOne hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a stainless steel split-mould: (i) thirty specimens of particulate filler composite (PFC) (Filtek Z100, 3 M ESPE, St Paul, MN, USA), (ii) thirty specimens of fiber-reinforced composite (FRC) (Everstick C&B, Sticktech Ltd., Turku, Finland) and (iii) forty specimens of PFC and FRC combined in two longitudinal layers of equal thickness. Each specimen was trimmed into a cylindrical hourglass shape. The fracture strength (cantilever beam test, n = 10) and the fatigue resistance (rotating cantilever beam test; staircase method: 104 cycles, 1.2 Hz, n = 20) were determined. Fracture strength, fatigue resistance and work-of-fracture were calculated. The fracture surfaces of failed specimens were analyzed with SEM. Data was analyzed by logistic regression, one-way ANOVA followed by Tukey's post hoc test and, a Student's t-test.ResultsANOVA revealed that fiber-reinforcement had significant effect (P < 0.001) on fracture strength, fatigue resistance, and work-of-fracture. Student's t-test showed significant differences (P < 0.001) in fatigue resistance compared to fracture strength.ConclusionsWithin the limitations of this study, the following conclusions can be drawn (i) the fatigue resistance of resin-based composites is lower than their fracture strength and (ii) FRC are more fatigue resistant than PFC or combinations of FRC and PFC.  相似文献   

14.
15.
《Dental materials》2020,36(12):1595-1607
ObjectiveTo determine the mechanical and surface characteristics of two novel biomimetic interpenetrating phase alumina-polycarbonate (Al2O3-PC) composite materials, comprising aligned honeycomb-like porous ceramic preforms infiltrated with polycarbonate polymer.MethodTwo composite materials were produced and characterised. Each comprised a porous structure with a ceramic-rich (polymer-poor) top layer, graduated through to a more porous ceramic-poor (polymer-rich) bottom layer. In addition, pure polycarbonate and dense alumina specimens were subjected to the same characterisation namely: density, compression, three-point bend, hardness, surface loss and surface roughness testing. Scanning electron microscopy and micro computerised tomography were employed for structural examination.ResultsThree-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using MicroCT. Depending on the ceramic volume in the initial aqueous ceramic suspension, the density of the final interpenetrating composites ranged from 2.64 to 3.01 g/cm3, compressive strength ranged from 192.43 to 274.91 MPa, flexural strength from 105.54 to 148.47 MPa, fracture toughness from 2.17 to 3.11 MPa.m½, hardness from 0.82 to 1.52 GPa, surface loss from 0.71 to 1.40 μm and surface roughness, following tooth brushing, from 0.70 to 0.99 μm. Composite specimens showed characteristic properties part way between enamel and polycarbonate.SignificanceThere was a correlation between the initial solid ceramic loading in the aqueous suspension, used to produce the porous ceramic scaffolds, and the subsequent characteristic properties of the composite materials. These novel composites show potential as aesthetic orthodontic bracket materials, as their properties fit part way between those of ceramic, enamel and polycarbonate.  相似文献   

16.
PurposeTo evaluate the different cooling procedures on the mechanical properties of five heat-cured polymethyl methacrylate (PMMA) denture materials.Methods250 specimens were made equally from Meliodent (ME), Paladon 65 (PA), Probase Hot (PB), Stellon QC–20 (QC) and Vertex Rapid Simplified (VE) implementing five different cooling procedures (n = 10/procedure): A) removal from water bath, bench-cooling (10 min) and cooling under water (15 min), B) remain in water bath till room temperature, C) removal from water bath and cooling in water for 15 min, D) removal from water bath and bench cooling till room temperature and E) removal from water bath, bench cooling for 30 min and cooling under water for 15 min. The specimens were immersed in distilled water (15 days/37 ºC) and then subjected to Instrumented Indentation Testing for Martens Hardness (HM), indentation modulus (EIT) and elastic index (ηΙΤ). Results were statistically analyzed by two- and one-way Analysis of variance (ANOVA) plus Tukey post hoc tests (α = 0.05).ResultsThe highest values for HM were recorded for QC, PA, VE with B cooling procedure, PB with A and ME with E, for EΙΤ for QC, PB with A, for PA, VE with B and ME with E, and for ηIT for QC, PB with B, PB with E, ME with C and VE with D.ConclusionsThe cooling procedures recommended for PB resulted in the lowest mechanical properties. A and B may be considered as universal short- and long-cooling procedures respectively providing the highest mechanical properties for the materials tested.  相似文献   

17.
《Dental materials》2014,30(12):e419-e424
ObjectivesAim of this study was to evaluate the effect of different sintering parameters on color reproduction, translucency and biaxial flexural strength of monolithic zirconia.MethodsTranslucent zirconia discs having 15 mm diameter, 1 mm thickness, and shade A3 were milled and divided according to the sintering temperatures (1460 °C, 1530 °C, and 1600 °C) into three groups (n = 30). Each group was later divided into three subgroups (n = 10) according to the sintering holding time (1, 2, and 4 h). Easyshade spectrophotometer (Vita, Bad Säckingen, Germany) was used to obtain the ΔE between the specimens and the shade A3. Mean ΔE values below 3.0 were considered “clinically imperceptible”, ΔE values between 3.0 and 5.0 were considered “clinically acceptable” and ΔE values above 5.0 were considered “clinically unacceptable”. Contrast ratio (CR) was obtained after comparing the reflectance of light through the specimens over black and white background. Biaxial flexural strength was tested using the piston-on-three balls technique in a universal testing machine.ResultsMean ΔE results ranged from 4.4 to 2.2. Statistically significant decrease in the Delta E was observed as the sintering time and temperature increased. CR decreased from 0.75 to 0.68 as the sintering time and temperature increased. No significant change in the biaxial flexural strength was observed.SignificanceSintering zirconia using long cycles and high temperatures will result in reduction of ΔE and CR. Biaxial flexural strength is not affected by changes in the evaluated sintering parameters.  相似文献   

18.
ObjectivesTo determine flexural strength and modulus after water storage and thermal cycling of carbon–graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM).MethodsSolvent cleaned carbon–graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58 wt% (20, 29, 38 and 47 vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 °C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM.ResultsHydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36 wt% fiber loadings; flexural strength values after thermocycling were 244.8 (±32.33) MPa for 24 wt% and 441.3 (±68.96) MPa for 36 wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (±45.32) MPa) and 58 wt% (310.4 (±52.79) MPa).SEM revealed good adhesion between fibers and matrix for all fiber loadings examined.ConclusionsThe combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36 wt% appear promising for prosthodontic applications such as implant-retained prostheses.  相似文献   

19.
ObjectivesThe purpose of this study was to evaluate the effect of two additives, propionaldehyde/aldehyde or 2,3-butanedione/diketone, on mechanical properties of Bis-GMA-based composites containing TEGDMA, propoxylated Bis-GMA (CH3Bis-GMA) or propoxylated fluorinated Bis-GMA (CF3Bis-GMA).MethodsThree control composites, Bis-GMA/diluent monomer (25/75 mol%), and six test composites, Bis-GMA/diluent monomer/aldehyde or diketone (17/51/32 mol%) were prepared. All composites contained hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%), and 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Degree of conversion (DC%), flexural strength (FS), modulus of elasticity (E), modulus of resilience (R) and diametral tensile strength (DTS) were determined. DC% (n = 3) was investigated by FT-IR. For FS and E, beam-shaped specimens (25 mm × 2 mm × 2 mm) were prepared (n = 6), stored for 7 days in 37 °C deionized water and tested on an Instron utilizing a three-point loading jig (0.5 mm/min). The R-values were obtained from the following equation: R = (FS)2/2E. For DTS, cylindrical specimens (4 mm × 8 mm) were prepared (n = 6), stored for 7 days in 37 °C deionized water and diametrically loaded on an Instron (0.5 mm/min). Data were analyzed by one-way ANOVA and Tukey's test (α = 0.05).ResultsIncorporation of additives led to an increase in DC%, FS and E for Bis-GMA/TEGDMA and Bis-GMA/CH3Bis-GMA systems. R-values for all systems were unaffected by addition of additives. They had no significant effect on DC% or mechanical properties of Bis-GMA/CF3Bis-GMA.SignificanceThe findings correlate with the ability of additives to improve degree of conversion of some composite systems thereby enhancing mechanical properties.  相似文献   

20.
《Dental materials》2020,36(6):808-815
ObjectivesThe present investigation evaluated the step stress accelerated test (SSALT) load profiles on the survival probability of a glass ceramic under two surface conditions (polished or roughened).MethodsSuprinity–ZLS blocks (Vita Zhanfabrik) were shaped into cylinders, cut in a sawing machine, and crystalized according to the manufacturer's instructions. 60 discs were obtained (Ø = 12 mm, thickness = 1.2 mm) and randomly assigned into two surface conditions: “p” polished surface (400–1200-grit SiC papers), and “r” roughened surface (200-grit SiC papers). Profilometry was performed in all discs to evaluate average surface roughness prior to flexural fatigue strength testing. 3 discs of each group were submitted to biaxial flexural strength in an universal testing machine (0.5 mm/min) and the mean load to failure (N) was calculated to determine SSALT profiles. 27 specimens per surface condition were assigned into three profiles – Mild (n = 9), Moderate (n = 9), and Aggressive (n = 9), and submitted to the fatigue test (60–320 N, 140,000 cycles at 1.4 Hz). The results were analyzed using the Kaplan-Meier and Wilcoxon tests (5%), 2-way ANOVA and Tukey test (α = 5%).ResultsKaplan-Meier and generalized Wilcoxon showed (P = 0.002) that polished groups showed higher survival probability than roughened condition (P < 0.05). A rough internal surface impacted deleteriously on the fatigue strength and reliability of ZLS ceramic. Both surface conditions were more sensitive to the aggressive profile than the other profiles, even worst for the roughened group. Regardless the load profile, 0% survival probability was observed at 384 MPa for polished condition. While for roughened, aggressive tested specimens did not survived 147 MPa followed by moderate at 312 MPa and mild at 384 MPa. The failure modes showed fracture marks originating from superficial grooves for both surface conditions.SignificancePolished specimens are sensitive to the load profile variation, confirming the effect of surface morphology on the fatigue results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号