首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.The activation of T cells orchestrates an adaptive immune response by translating antigen binding to the T-cell receptor (TCR) into appropriate cellular responses (14). The αβ TCR engages MHC molecules (or HLA) bound to antigenic peptides (pMHC) on the surface of antigen-presenting cells (5). The interaction of the TCR with pMHC is highly specific because T cells are able to distinguish rare foreign pMHC among abundant self pMHC molecules (6). TCR signaling is also extremely sensitive; even a single pMHC molecule is sufficient to trigger activation (79). TCRs are noncovalently coupled to the conserved multisubunit CD3 complex, comprising CD3εγ, CD3εδ, and CD3ζζ dimers (10), whose immunoreceptor tyrosine-based activation motifs (ITAMs) are phosphorylated upon pMHC engagement by the nonreceptor tyrosine kinase Lck (1, 2). ITAM phosphorylation is required for the recruitment and phosphorylation of the ζ-chain-associated protein kinase 70 kDa (Zap70) and the adaptor linker for activation of T cells (Lat) (11) to mediate downstream activation responses (12). Phosphorylation of the TCR–CD3 complex is one of the earliest detectable biochemical events in T-cell signaling and already at this level, important “activation decisions” are being made. For example, when the extent of ITAM phosphorylation was modulated through specific mutations, low levels of TCR–CD3 phosphorylation were sufficient for signaling through the Zap70–SLP-76–Lat pathway and cytokine production, whereas high levels of TCR–CD3 phosphorylation were required for Vav1-Numb-Notch signaling and T-cell proliferation (1214). However, how the TCR–CD3 complex encodes both the quality and quantity of pMHC molecules and steers signaling activities toward appropriate cellular outcomes is not fully understood (14).Although many of the molecular players and TCR signaling pathways have been identified and characterized by biochemical and genetic approaches (12, 15), the precise mechanism by which the binding of the TCR to pMHC results in phosphorylation of the TCR–CD3 complex, referred to as TCR triggering, still remains contested (1, 16). There is increasing evidence that the spatial reorganization of the TCR into micrometer- and submicron-sized clusters is involved in regulating T-cell activation (2, 11, 1719). With the advent of superresolution fluorescence microscopy, we have gained a much more nuanced picture of the spatial organization of TCR signaling proteins (3, 20). In particular, single-molecule localization microscopy [SMLM, including photoactivated localization microscopy (PALM) (21) and direct stochastic optical reconstruction microscopy (dSTORM) (22)] was used to report that at least a proportion of TCRs were organized into small clusters that were 30–300 nm in diameter, termed “nanoclusters” (23, 24). Similarly, Lat (2325), Lck (26), and Zap70 (24, 27) were also found to reside in nanoclusters that are extensively remodeled during T-cell activation. The link between preexisting and pMHC-induced nanoclustering and signaling activities is not clear at present and is the focus of the present study.To identify the functional role of TCR nanoclusters, we used two-color SMLM data and integrated a cluster detection method, density-based spatial clustering of applications with noise (DBSCAN) (28) with a customized colocalization analysis (29). This process allowed us to distinguish phosphorylated from nonphosphorylated TCR–CD3 complex clusters in intact T cells and identify the spatial organization at which individual TCR–CD3 complexes had the highest signaling efficiency. We found that not all TCR–CD3 complexes had the same likelihood of being phosphorylated, even with excess doses of high-affinity pMHC molecules. The signaling efficiency of the TCR–CD3 complex was dependent upon the distance to neighboring complexes so that dense nanoclusters had the highest TCR triggering efficiency.  相似文献   

2.
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR–CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR–CD3 complex. Small-angle X-ray scattering of the soluble TCR–CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR–CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR–CD3 transmembrane complex bound to peptide–MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR–CD3 complex, and provides a conceptual framework for the TCR activation mechanism.T cells are key mediators of the adaptive immune response. Each αβ T cell contains a unique αβ T-cell receptor (TCR), which binds antigens (Ags) displayed by major histocompatibility complexes (MHCs) and MHC-like molecules (1). The TCR serves as a remarkably sensitive driver of cellular function: although TCR ligands typically bind quite weakly (1–200 μM), even a handful of TCR ligands are sufficient to fully activate a T cell (2, 3). The TCR does not possess intracellular signaling domains, uncoupling Ag recognition from T-cell signaling. The TCR is instead noncovalently associated with a multisubunit signaling apparatus, consisting of the CD3εγ and CD3εδ heterodimers and the CD3ζζ homodimer, which collectively form the TCR–CD3 complex (4, 5). The CD3γ/δ/ε subunits each consist of a single extracellular Ig domain and a single immunoreceptor tyrosine-based activation motif (ITAM), whereas CD3ζ has a short extracellular domain (ECD) and three ITAMs (611). The TCR–CD3 complex exists in 1:1:1:1 stoichiometry for the αβTCR:CD3εγ:CD3εδ:CD3ζζ dimers (12). Phosphorylation of the intracellular CD3 ITAMs and recruitment of the adaptor Nck lead to T-cell activation, proliferation, and survival (13, 14). Understanding the underlying principles of TCR–CD3 architecture and T-cell signaling is of therapeutic interest. For example, TCR–CD3 is the target of therapeutic antibodies such as the immunosuppressant OKT3 (15), and there is increasing interest in manipulating T cells in an Ag-dependent manner by using naturally occurring and engineered TCRs (16).Assembly of the TCR–CD3 complex is primarily driven by each protein’s transmembrane (TM) region, enforced through the interaction of evolutionarily conserved, charged, residues in each TM region (4, 5, 12). What, if any, role interactions between TCR and CD3 ECDs play in the assembly and function of the complex remains controversial (5): there are several plausible proposed models of activation, which are not necessarily mutually exclusive (5, 1719). Although structures of TCR–peptide–MHC (pMHC) complexes (2), TCR–MHC-I–like complexes (1), and the CD3 dimers (610) have been separately determined, how the αβ TCR associates with the CD3 complex is largely unknown. Here, we use two independent structural approaches to gain an understanding of the TCR–CD3 complex organization and structure.  相似文献   

3.
4.
5.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   

6.
CD4 molecules on the surface of T lymphocytes greatly augment the sensitivity and activation process of these cells, but how it functions is not fully understood. Here we studied the spatial organization of CD4, and its relationship to T-cell antigen receptor (TCR) and the active form of Src kinase p56lck (Lck) using single and dual-color photoactivated localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM). In nonactivated T cells, CD4 molecules are clustered in small protein islands, as are TCR and Lck. By dual-color imaging, we find that CD4, TCR, and Lck are localized in their separate clusters with limited interactions in the interfaces between them. Upon T-cell activation, the TCR and CD4 begin clustering together, developing into microclusters, and undergo a larger scale redistribution to form supramolecluar activation clusters (SMACs). CD4 and Lck localize in the inner TCR region of the SMAC, but this redistribution of disparate cluster structures results in enhanced segregation from each other. In nonactivated cells these preclustered structures and the limited interactions between them may serve to limit spontaneous and random activation events. However, the small sizes of these island structures also ensure large interfacial surfaces for potential interactions and signal amplification when activation is initiated. In the later activation stages, the increasingly larger clusters and their segregation from each other reduce the interfacial surfaces and could have a dampening effect. These highly differentiated spatial distributions of TCR, CD4, and Lck and their changes during activation suggest that there is a more complex hierarchy than previously thought.For helper T cells, CD4 has been termed a coreceptor based on its important role in antigen recognition class II major histocompatibility complex (MHC)–peptide complexes by the αβ T-cell receptor (TCR) as well as in signal transduction. Indeed, CD4 significantly increases T-cell sensitivity to antigen upon activation (14). This ability of CD4 to enhance antigen recognition has often been connected to the fact that the N-terminal Ig domain of CD4 has specific affinity to invariant sites on MHC class II molecules (5, 6). It has been suggested that CD4 stabilizes the molecular complex of TCR and peptide–MHC (pMHC) by binding to the same MHC either simultaneously with the TCR (7) or shortly after TCR–pMHC engagement (2, 3). However, from more recent 2D measurements, CD4 blockades showed no effect on the stability of TCR binding to agonist peptide–MHC complexes in a synapse (8). In terms of signal transduction, the role of CD4 has been studied based on the binding ability of a cysteine motif in the cytoplasmic tail of CD4 to Src kinase p56lck (Lck) (9), which is responsible for the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) sequences in TCR–CD3 complex as the earliest observable biochemical event during T-cell activation (10). It has been proposed that CD4 mainly contributes to the sensitivity of T cells by facilitating the recruitment of Lck to TCR–CD3s that are actively engaged in ligand recognition (11, 12). Nevertheless, the absence of CD4 does not preclude T cells from being generated at the thymus or being activated by TCR–pMHC engagement (13, 14).It is now well appreciated that spatial reorganization and distribution of some of the membrane receptors and signaling molecules is one of the critical regulating mechanisms in T-cell activation. The molecular assembly and clusters such as supramolecular activation clusters (SMACs) (15) of immunological synapse (IS) (14), microclusters (1620), and their roles in T-cell signaling have been widely studied. More recently, the presence and unique roles of smaller-sized protein clusters, termed “nanoclusters” or “protein islands,” of TCR–CD3 complex (2124), linker for activation of T cell (LAT) (21, 22, 24, 25), Lck (26), and other signaling molecules (24) were revealed by electron microscopy and the newly available superresolution fluorescence microscopy.Considering that the TCR–CD3 complex, CD4, and Lck are constitutively expressed in nonactivated T cells, it is highly likely that the interaction dynamics between these components would also be controlled spatially during the T-cell activation process. Here, we studied the relative molecular distribution of these molecules using single- and dual-color photoactivated localization microscopy (PALM) (27) and direct stochastic optical reconstruction microscopy (dSTORM) (28, 29) in live and fixed T cells for both nonactivated and activating conditions. The corresponding spatial analyses were also used to quantitatively determine the sizes, degree of clustering, and degree of interactions of these clusters. We found that CD4 is also expressed in preclustered structures, separate from TCR–CD3 and LAT, and composed of three to six molecules per cluster. The interactions between these molecules occurred only in the interfaces between the clusters. Upon T-cell activation, the TCR–CD3 and CD4 molecules increased the size of their own clusters without appreciable mixing. Instead, their molecular segregation increased, whereas the T cell develops a synapse structure, often in the SMAC or “bull’s eye” pattern, with the TCR–CD3 in the central supramolecular activation cluster (cSMAC) with the CD4 and Lck clusters localizing around it. These observed clustering behaviors accompanying reorganization of spatial distributions of CD4, Lck, and TCR might be a general and effective mechanism to activate and regulate the T-cell signaling by controlling the magnitude of interfacial interactions between signaling components in each cluster.  相似文献   

7.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

8.
9.
10.
The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling.How proteins are sorted in the endocytic pathway is a fundamental question in cell biology. This is especially relevant for signaling receptors, given that relatively small changes in rates of receptor sorting into the recycling pathway can cause significant changes in surface receptors, and hence in cellular sensitivity (13). Our knowledge of receptor signaling and trafficking comes mainly from studying examples such as the beta-2 adrenergic receptor (B2AR), a prototypical member of G protein-coupled receptor (GPCR) family, the largest family of signaling receptors (25). B2AR activation initiates surface receptor removal and transport to endosomes, causing cellular desensitization (6, 7). The rate and extent of resensitization is then determined by B2AR surface recycling (13, 8, 9).Interestingly, the recycling of signaling receptors is functionally distinct from the recycling of constitutively cycling proteins like the transferrin receptor (TfR) (1, 6, 10, 11). TfR recycles by “bulk” geometric sorting, largely independent of specific cytoplasmic sequences (12, 13). B2AR recycling, in contrast, requires a specific PSD95-Dlg1-zo-1 domain (PDZ)-ligand sequence on its C-terminal tail, which links the receptor to the actin cytoskeleton (14, 15). Recent work has identified physically and biochemically distinct microdomains on early endosomes that mediate B2AR recycling independent of TfR (1416). Although the exact mechanisms of B2AR sorting into these domains remain under investigation, this sorting clearly requires specific sequence elements on B2AR (1, 10, 11, 17). Importantly, why signaling receptor sorting is subject to such specialized requirements, considering that cargo like TfR apparently can recycle without specific sequence requirements, is not clear (1, 1216). One possibility is that these requirements allow signaling pathways to regulate and redirect receptor trafficking between different pathways as needed (1719). Although this is an attractive idea, whether and how physiological signals regulate receptor sorting remain poorly understood (7, 19).Here we show that adrenergic signaling can switch B2AR recycling between the sequence-dependent and bulk recycling pathways. Adrenergic activation, via protein kinase A (PKA)-mediated B2AR phosphorylation on the cytoplasmic tail, restricts B2AR to spatially defined PDZ- and actin-dependent endosomal microdomains. Dephosphorylation of B2AR switches B2AR to the bulk (PDZ-independent) recycling pathway, causing faster recycling of B2AR and increased cellular sensitivity. Our results suggest that cells may leverage sequence requirements for rapid adaptive reprogramming of signaling receptor trafficking and cellular sensitivity.  相似文献   

11.
Background and objectives: Natriuretic peptides have been suggested to be of value in risk stratification in dialysis patients. Data in patients on peritoneal dialysis remain limited.Design, setting, participants, & measurements: Patients of the ADEMEX trial (ADEquacy of peritoneal dialysis in MEXico) were randomized to a control group [standard 4 × 2L continuous ambulatory peritoneal dialysis (CAPD); n = 484] and an intervention group (CAPD with a target creatinine clearance ≥60L/wk/1.73 m2; n = 481). Natriuretic peptides were measured at baseline and correlated with other parameters as well as evaluated for effects on patient outcomes.Results: Control group and intervention group were comparable at baseline with respect to all measured parameters. Baseline values of natriuretic peptides were elevated and correlated significantly with levels of residual renal function but not with body size or diabetes. Baseline values of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) but not proANP(1–30), proANP(31–67), or proANP(1–98) were independently highly predictive of overall survival and cardiovascular mortality. Volume removal was also significantly correlated with patient survival.Conclusions. NT-proBNP have a significant predictive value for survival of CAPD patients and may be of value in guiding risk stratification and potentially targeted therapeutic interventions.Plasma levels of cardiac natriuretic peptides are elevated in patients with chronic kidney disease, owing to impairment of renal function, hypertension, hypervolemia, and/or concomitant heart disease (17). Atrial natriuretic peptide (ANP) and particularly brain natriuretic peptide (BNP) levels are linked independently to left ventricular mass (35,816) and function (3,617) and predict total and cardiovascular mortality (1,3,8,10,12,18) as well as cardiac events (12,19). ANP and BNP decrease significantly during hemodialysis treatment but increase again during the interdialytic interval (1,2,4,6,7,14,17,2023). Levels in patients on peritoneal dialysis (PD) have been found to be lower than in patients on hemodialysis (11,2426), but the correlations with left ventricular function and structure are maintained in both types of dialysis modalities (11,15,27,28).The high mortality of patients on peritoneal dialysis and the failure of dialytic interventions to alter this mortality (29,30) necessitate renewed attention into novel methods of stratification and identification of patients at highest risk to be targeted for specific interventions. Cardiac natriuretic peptides are increasingly considered to fulfill this role in nonrenal patients. Evaluations of cardiac natriuretic peptides in patients on PD have been limited by small numbers (3,9,11,12,15,2426) and only one study examined correlations between natriuretic peptide levels and outcomes (12). The PD population enrolled in the ADEMEX trial offered us the opportunity to evaluate cardiac natriuretic peptides and their value in predicting outcomes in the largest clinical trial ever performed on PD (29,30). It is hoped that such an evaluation would identify patients at risk even in the absence of overt clinical disease and hence facilitate or encourage interventions with salutary outcomes.  相似文献   

12.
13.
14.
15.
16.
Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing. Surprisingly, we found that an overlap between the TCR repertoires of monozygous twins is similar to an overlap between the TCR repertoires of nonrelated individuals. However, the number of identical complementary determining region 3 sequences in two individuals is significantly increased for twin pairs in the fraction of highly abundant TCR molecules, which is enriched by the antigen-experienced T cells. We found that the initial recruitment of particular TCR V genes for recombination and subsequent selection in the thymus is strictly determined by individual genetic factors. J genes of TCRs are selected randomly for recombination; however, the subsequent selection in the thymus gives preference to some α but not β J segments. These findings provide a deeper insight into the mechanism of TCR repertoire generation.Adaptive immunity is provided by B and T cells bearing B-cell receptors (BCRs) and Ig-like T-cell receptors (TCRs), respectively. These hypervariable molecules are the key part of the adaptive immune system as they can potentially recognize any alien agent and drive specific immune responses. The α/β TCRs recognize short peptides in the complex with major histocompatibility complex (MHC) molecules and play the key role in the targeted immune response. The total diversity of TCR molecules in an individual human organism is initially formed via genomic recombination with subsequent positive and negative selection at several stages of maturation and activation. The maximal theoretical diversity of TCRβ chain’s amino acid sequences in humans is estimated between 5 × 1011 (1) and 1014 (2), whereas the maximal number of α/β pairs reaches 1018 (3). This huge number of variants is probably never achieved: the whole TCRβ chain repertoire size in a single human organism is estimated at 1–5 × 106 (1, 46), although this is only a lower bound estimate. Two driving forces shape the final face of individual TCR repertoire: the individual genetics and the complexity of environmental factors. The genes coding for proteins involved in VDJ recombination, antigen processing and presentation, and products of genes participating in the immune response signaling belong to the first type of the repertoire-forming factors. The spectrum of the organism’s self-peptides presented in the thymus also depends on the individual’s set of the MHC molecules. Moreover, this spectrum of peptides is determined by the amino acid sequences of the organism’s proteins, which thus can also be considered a genetic factor. Furthermore, TCRs arising to the same alien antigenic peptides are known to be MHC restricted (7). The environmental factors include the whole range of pathogens met by the individual including disease-causing bacteria and viruses, as well as vaccines, symbionts, etc. The genetic component can potentially have a major impact on the initial recombination and selection in the thymus forming the naïve TCR repertoire, whereas the subsequent interference with antigens provides the selective expansion of some TCRs and forms the final repertoire structure. However, the particular impact of genetic factors on TCR repertoire structure and diversity is unknown.All genes of monozygous (MZ) twins are identical (including those responsible for the TCR repertoire formation), and therefore, MZ twins are widely used in the studies where the genetic impact is evaluated. Several studies of TCR repertoires were performed mainly focusing on diseases concordant and discordant MZ twins and using complementarity determining region 3 (CDR3) spectra-typing and/or low depth sequencing (811). Some of these studies reported the common use of particular V genes and common clonotypes. In recent years, the high-throughput sequencing technologies paved the way to whole-repertoire studies of individual TCRs that led to new findings in the field of adaptive immunity (1, 5, 6, 1222). In this study, for the first time to the best of our knowledge, we obtain and compare the α and β chain TCR repertoires of three pairs of MZ twins using next-generation sequencing (NGS).  相似文献   

17.
Across animal taxa, seminal proteins are important regulators of female reproductive physiology and behavior. However, little is understood about the physiological or molecular mechanisms by which seminal proteins effect these changes. To investigate this topic, we studied the increase in Drosophila melanogaster ovulation behavior induced by mating. Ovulation requires octopamine (OA) signaling from the central nervous system to coordinate an egg’s release from the ovary and its passage into the oviduct. The seminal protein ovulin increases ovulation rates after mating. We tested whether ovulin acts through OA to increase ovulation behavior. Increasing OA neuronal excitability compensated for a lack of ovulin received during mating. Moreover, we identified a mating-dependent relaxation of oviduct musculature, for which ovulin is a necessary and sufficient male contribution. We report further that oviduct muscle relaxation can be induced by activating OA neurons, requires normal metabolic production of OA, and reflects ovulin’s increasing of OA neuronal signaling. Finally, we showed that as a result of ovulin exposure, there is subsequent growth of OA synaptic sites at the oviduct, demonstrating that seminal proteins can contribute to synaptic plasticity. Together, these results demonstrate that ovulin increases ovulation through OA neuronal signaling and, by extension, that seminal proteins can alter reproductive physiology by modulating known female pathways regulating reproduction.Throughout internally fertilizing animals, seminal proteins play important roles in regulating female fertility by altering female physiology and, in some cases, behavior after mating (reviewed in refs. 13). Despite this, little is understood about the physiological mechanisms by which seminal proteins induce postmating changes and how their actions are linked with known networks regulating female reproductive physiology.In Drosophila melanogaster, the suite of seminal proteins has been identified, as have many seminal protein-dependent postmating responses, including changes in egg production and laying, remating behavior, locomotion, feeding, and in ovulation rate (reviewed in refs. 2 and 3). For example, the Drosophila seminal protein ovulin elevates ovulation rate to maximal levels during the 24 h following mating (4, 5), and the seminal protein sex peptide (SP) suppresses female mating receptivity and increases egg-laying behavior for several days after mating (610). However, although a receptor for SP has been identified (11), along with elements of the neural circuit in which it is required (1214), SP’s mechanism of action has not yet been linked to regulatory networks known to control postmating behaviors. Thus, a crucial question remains: how do male-derived seminal proteins interact with regulatory networks in females to trigger postmating responses?We addressed this question by examining the stimulation of Drosophila ovulation by the seminal protein ovulin. In insects, ovulation, defined here as the release of an egg from the ovary to the uterus, is among the best understood reproductive processes in terms of its physiology and neurogenetics (1527). In D. melanogaster, ovulation requires input from neurons in the abdominal ganglia that release the catecholaminergic neuromodulators octopamine (OA) and tyramine (17, 18, 28). Drosophila ovulation also requires an OA receptor, OA receptor in mushroom bodies (OAMB) (19, 20). Moreover, it has been proposed that OA may integrate extrinsic factors to regulate ovulation rates (17). Noradrenaline, the vertebrate structural and functional equivalent to OA (29, 30), is important for mammalian ovulation, and its dysregulation has been associated with ovulation disorders (3138). In this paper we investigate the role of neurons that release OA and tyramine in ovulin’s action. For simplicity, we refer to these neurons as “OA neurons” to reflect the well-established role of OA in ovulation behavior (1620, 22).We investigated how action of the seminal protein ovulin relates to the conserved canonical neuromodulatory pathway that regulates ovulation physiology (3941). We found that ovulin increases ovulation and egg laying through OA neuronal signaling. We also found that ovulin relaxes oviduct muscle tonus, a postmating process that is also mediated by OA neuronal signaling. Finally, subsequent to these effects we detected an ovulin-dependent increase in synaptic sites between OA motor neurons and oviduct muscle, suggesting that ovulin’s stimulation of OA neurons could have increased their synaptic activity. These results suggest that ovulin affects ovulation by manipulating the gain of a neuromodulatory pathway regulating ovulation physiology.  相似文献   

18.
19.
Sequential activity of multineuronal spiking can be observed during theta and high-frequency ripple oscillations in the hippocampal CA1 region and is linked to experience, but the mechanisms underlying such sequences are unknown. We compared multineuronal spiking during theta oscillations, spontaneous ripples, and focal optically induced high-frequency oscillations (“synthetic” ripples) in freely moving mice. Firing rates and rate modulations of individual neurons, and multineuronal sequences of pyramidal cell and interneuron spiking, were correlated during theta oscillations, spontaneous ripples, and synthetic ripples. Interneuron spiking was crucial for sequence consistency. These results suggest that participation of single neurons and their sequential order in population events are not strictly determined by extrinsic inputs but also influenced by local-circuit properties, including synapses between local neurons and single-neuron biophysics.A hypothesized hallmark of cognition is self-organized sequential activation of neuronal assemblies (1). Self-organized neuronal sequences have been observed in several cortical structures (25) and neuronal models (67). In the hippocampus, sequential activity of place cells (8) may be induced by external landmarks perceived by the animal during spatial navigation (9) and conveyed to CA1 by the upstream CA3 region or layer 3 of the entorhinal cortex (10). Internally generated sequences have been also described in CA1 during theta oscillations in memory tasks (4, 11), raising the possibility that a given neuronal substrate is responsible for generating sequences at multiple time scales. The extensive recurrent excitatory collateral system of the CA3 region has been postulated to be critical in this process (4, 7, 12, 13).The sequential activity of place cells is “replayed” during sharp waves (SPW) in a temporally compressed form compared with rate modulation of place cells (1420) and may arise from the CA3 recurrent excitatory networks during immobility and slow wave sleep. The SPW-related convergent depolarization of CA1 neurons gives rise to a local, fast oscillatory event in the CA1 region (“ripple,” 140–180 Hz; refs. 8 and 21). Selective elimination of ripples during or after learning impairs memory performance (2224), suggesting that SPW ripple-related replay assists memory consolidation (12, 13). Although the local origin of the ripple oscillations is well demonstrated (25, 26), it has been tacitly assumed that the ripple-associated, sequentially ordered firing of CA1 neurons is synaptically driven by the upstream CA3 cell assemblies (12, 15), largely because excitatory recurrent collaterals in the CA1 region are sparse (27). However, sequential activity may also emerge by local mechanisms, patterned by the different biophysical properties of CA1 pyramidal cells and their interactions with local interneurons, which discharge at different times during a ripple (2830). A putative function of the rich variety of interneurons is temporal organization of principal cell spiking (2932). We tested the “local-circuit” hypothesis by comparing the probability of participation and sequential firing of CA1 neurons during theta oscillations, natural spontaneous ripple events, and “synthetic” ripples induced by local optogenetic activation of pyramidal neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号