首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The release rate of 5-fluorouracil (5-FU) from liposomes, microspheres, and lipid-coated nanoparticles (LNPs) was determined by microdialysis to investigate their use as a respirable delivery system for adjuvant (postsurgery) therapy of lung cancer. 5-FU was incorporated into liposomes using thin film hydration and into microspheres and LNPs by spray drying. Primary particle size distributions were measured by dynamic light scattering. Liposomes released 5-FU in 4-10 h (k(1) = 0.44-2.31/h, first-order release model). Extruded vesicles with diameters less than one micron released 5-FU more quickly than nonextruded vesicles. With poly-(lactide) (PLA) and Poly-(lactide-co-glycolide) (PLGA) microspheres, slower release rates were observed (k(1) = 0.067-0.202/h). Increasing the lactide:glycolide ratio (50:50-100:0) resulted in a progressive decrease in the release rate of 5-FU. poly-(lactide-co-caprolactone) (PLCL) microspheres released 5-FU more rapidly compared to PLGA systems (k(1) = 0.254-0.259/h). LNPs formulated with polymeric core excipients had lower release rates compared to monomeric excipients (k(1) = 0.043-0.105/h vs. k(1) = 0.192-0.345/h). Changing the lipid chain length of the shell lipid components had a relatively minor effect (k(1) = 0.043-0.129/h). Overall, these systems yielded a wide range of delivery durations that may be suitable for use as an inhalation delivery system for adjuvant therapy of lung cancer.  相似文献   

2.
PURPOSE: To design liposome-loaded microspheres, which release the liposomes in a time-controlled manner and in intact form. METHODS: Liposomes were encapsulated in biodegradable dextran-based microspheres, which were prepared using an aqueous two phase system consisting of poly(ethylene glycol) and methacrylated dextran. The effects of liposome size and membrane fluidity, microsphere water content, degree of methacrylate substitution, and type of dextran derivative used, on encapsulation efficiency, release, and integrity of the liposomes were investigated. RESULTS: Liposomes were entrapped in dextran-based microspheres quantitatively and with full preservation of their integrity. Liposomes with a low, as well as with a high membrane fluidity, were released from the microspheres in their intact form and with preservation of their size. Release kinetics depended only on the degradation rate of the microspheres. For rapidly degrading systems, pulsed release was observed and the time after which the pulse occurred (from 5 until 25 days) could be tailored by the gel characteristics such as initial water content, degree of methacrylate substitution, and type of hydrolytically sensitive spacer present in the cross-links. This delay time was not dependent on the size of the liposomes in the range studied (0.1-0.2 microm). Microspheres which degraded more slowly showed, after a certain delay time, sustained release of the liposomes extended up to 100 days. CONCLUSIONS: A novel drug delivery concept based on the encapsulation of liposomes in biodegradable dextran-based microspheres was designed. The system released the liposomes in intact form in a controlled way after a prolonged period of time.  相似文献   

3.
4.
目的:制备苦参碱缓释微球并考察其体外释放度。方法:采用正交试验设计,优选处方,乳化-固化法制备苦参碱微球,对其包封率、形态、粒径及体外释药性质进行了研究。结果:苦参碱白蛋白微球平均粒径为12.64 μm,大小均匀。平均包封率为79.60%±0.98%。体外释放符合零级方程,t1/2为46.8 h。结论:苦参碱缓释微球制备方法简便,缓释效果好。  相似文献   

5.
Antisense oligonucleotides (AODNs) can selectively inhibit oncogene expression by Watson-Crick hybridisation to target mRNA and are being increasingly considered for use in combination with conventional drugs for potential anticancer therapy. Combination therapy of AODNs and cytotoxic agents using biodegradable polymeric delivery systems potentially offers several advantages including site-specific or organ-directed targeting, protection from digesting enzymes, and improved pharmacokinetics/pharmacodynamics resulting from sustained delivery of the entrapped drugs. Using a model AODN targeting the epidermal growth factor receptor (that is over-expressed in several cancers including breast and brain cancer) and the commonly used cytotoxic agent, 5-fluorouracil (5-FU), we have examined the use of poly (lactide-co-glycolide) (P(LA-GA)) microsphere formulations for co-delivery of these agents. Both agents were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations and release profiles determined in vitro. Using a double emulsion method for preparing the P(LA-GA) microspheres suitable entrapment and sustained release over 35 days was observed in both types of formulation. Release of AODN and 5-FU from all formulations appeared to be biphasic. However, the release rates of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Electrophoretic mobility shift assays suggested that this might be, in part, due to an interaction of 5-FU with the oligodeoxynucleotide (ODN). Further, our data suggest that by mixing individual formulations of 5-FU and ODNs at different mass ratios allowed greater flexibility in achieving the desired release profile as well as avoiding potential drug-drug interactions. Thus, co-administration of individual P(LA-GA) microsphere formulations of AODNs and 5-FU, at appropriate mass ratios, appears worthy of further investigation for the potential co-delivery of these anti-cancer agents in vivo.  相似文献   

6.
Degradable dextran microspheres for the controlled release of liposomes   总被引:1,自引:0,他引:1  
A novel delivery concept based on the encapsulation of liposomes in biodegradable dextran microspheres was developed. The microspheres were prepared using a two-phase system, consisting of water/poly(ethylene glycol), and water/methacrylated dextran. Liposomes were encapsulated almost quantitatively and in their intact form, and were released with full preservation of their integrity. The effects of microsphere water content, degree of methacrylate substitution, and type of dextran derivative used on the release rate were investigated. The release of the liposomes from the dextran microspheres was fully controlled by the degradation rate of the spheres. This resulted, after a lag time, in a pulsed release of the liposomes from relatively rapidly degrading microspheres. On the other hand, slower degrading microspheres resulted in sustained release of liposomes over 100 days. The degradation rate of the dextran microspheres, in turn, depended on the water content, the degree of methacrylate substitution, and type of hydrolytically sensitive spacer present in the cross-links.  相似文献   

7.
Release rates from BSA microspheres prepared from various conditions are analysed using a previously reported equation expressing the first-order release rate constant. The permeability constants calculated applying the equation on experimental release rates are in good agreement with the constants measured from permeation studies using planar membrane, for various preparation conditions. It is shown that the equation expressing the first-order release rate constant is valid more extensively. The permeability constant varies depending on the preparation conditions, and the reason for variation is shown clearly to be the difference in degree of swelling of the polymer. It was found from regression analysis that there is relatively simple correlation between unknown parameters of the equation and the preparation conditions. Release rate constants can be calculated applying the equation on the known parameters and the estimated values of the unknown parameters from the correlation. Good agreement was found between the calculated values and experimental ones; therefore, at least as far as we examined here, the release rate constant of the microsphere can be estimated from the preparation conditions.  相似文献   

8.
The development of injectable microspheres for anticancer drug delivery into the brain is a major challenge. The possibility of entrapping 5-fluorouracil (5-FU) in chitosan coated monodisperse biodegradable microspheres with a mean diameter of 10-25 um was demonstrated. An emulsion of 5-FU (in water) and polylactic acid (PLA) dissolved in acetone-dichloromethane mixture was poured into an aqueous solution of chitosan (or poly-vinyl alcohol) with stirring using a high-speed homogenizer, for the formation of microspheres. 5-FU recovery in microspheres ranged from 44-66% depending on the polymer and emulsification systems used for the preparation. Scanning electron microscopy revealed that the chitosan coated microspheres had less surface micropores compared to PVA based preparations. The drug release behaviour from microspheres suspended in phosphate buffered saline exhibited a biphasic pattern. The amount of drug release was much higher initially (approximately 25%), followed by a constant slow release profile for a 30 days period of study. This chitosan coated PLA/PLGA microsphere formulation may have potential for the targeted delivery of 5-FU to treat cerebral tumours.  相似文献   

9.
The objective of our study was to compare the in vitro release kinetics of a sustained-release injectable microsphere formulation of the polypeptide drug, calcitonin (CT), to optimize the characteristics of drug release from poly-(lactide-co-glycolide) (PLGA) copolymer biodegradable microspheres. A modified solvent evaporation and double emulsion technique was used to prepare the microspheres. Release kinetic studies were carried out in silanized tubes and dialysis bags, whereby microspheres were suspended and incubated in phosphate buffered saline, sampled at fixed intervals, and analyzed for drug content using a modified Lowry protein assay procedure. An initial burst was observed whereby about 50% of the total dose of the drug was released from the microspheres within 24 hr and 75% within 3 days. This was followed by a period of slow release over a period of 3 weeks in which another 10-15% of drug was released. Drug release from the dialysis bags was more gradual, and 50% CT was released only after 4 days and 75% after 12 days of release. Scanning electron micrographs revealed spherical particles with channel-like structures and a porous surface after being suspended in an aqueous solution for 5 days. Differential scanning calorimetric studies revealed that CT was present as a mix of amorphous and crystalline forms within the microspheres. Overall, these studies demonstrated that sustained release of CT from PLGA microspheres over a 3-week period is feasible and that release of drug from dialysis bags was more predictable than from tubes.  相似文献   

10.
The objective of our study was to compare the in vitro release kinetics of a sustained-release injectable microsphere formulation of the polypeptide drug, calcitonin (CT), to optimize the characteristics of drug release from poly-(lactide-co-glycolide) (PLGA) copolymer biodegradable microspheres. A modified solvent evaporation and double emulsion technique was used to prepare the microspheres. Release kinetic studies were carried out in silanized tubes and dialysis bags, whereby microspheres were suspended and incubated in phosphate buffered saline, sampled at fixed intervals, and analyzed for drug content using a modified Lowry protein assay procedure. An initial burst was observed whereby about 50% of the total dose of the drug was released from the microspheres within 24 hr and 75% within 3 days. This was followed by a period of slow release over a period of 3 weeks in which another 10-15% of drug was released. Drug release from the dialysis bags was more gradual, and 50% CT was released only after 4 days and 75% after 12 days of release. Scanning electron micrographs revealed spherical particles with channel-like structures and a porous surface after being suspended in an aqueous solution for 5 days. Differential scanning calorimetric studies revealed that CT was present as a mix of amorphous and crystalline forms within the microspheres. Overall, these studies demonstrated that sustained release of CT from PLGA microspheres over a 3-week period is feasible and that release of drug from dialysis bags was more predictable than from tubes.  相似文献   

11.
The development of injectable microspheres for anticancer drug delivery into the brain is a major challenge. The possibility of entrapping 5-fluorouracil (5-FU) in chitosan coated monodisperse biodegradable microspheres with a mean diameter of 10-25um was demonstrated. An emulsion of 5-FU (in water) and polylactic acid (PLA) dissolved in acetone-dichloromethane mixture was poured into an aqueous solution of chitosan (or poly-vinyl alcohol) with stirring using a high-speed homogenizer, for the formation of microspheres. 5-FU recovery in microspheres ranged from 44-66% depending on the polymer and emulsification systems used for the preparation. Scanning electron microscopy revealed that the chitosan coated microspheres had less surface micropores compared to PVA based preparations. The drug release behaviour from microspheres suspended in phosphate buffered saline exhibited a biphasic pattern. The amount of drug release was much higher initially (25%),followed by a constant slow release profile for a 30 days period of study. This chitosan coated PLA/PLGA microsphere formulation may have potential for the targeted delivery of 5-FU to treat cerebral tumours.  相似文献   

12.
Abstract— Glutaraldehyde cross-linked casein microspheres were loaded with 5-fluorouracil (5-FU) from concentrated aqueous solutions of the drug after the microspheres were synthesized and cleaned. In-vitro release of the drug was examined in phosphate buffer in the absence and in the presence of protease at 37°C. Drug release data showed that only about 20% of the drug is released in the absence of protease even after 5 days, while digestion of the matrix with protease released the entrapped drug completely in about 24 h. A protein-drug conjugate was synthesized via carbamoyl linkage using 6-(5-FU-1-yl)hexyl isocyanate and the drug release was examined in phosphate buffer at 37°C. Release from the protein-5-FU conjugate was slower compared with the release from microspheres in the presence of protease. Implantation of placebo microspheres of different cross-linking densities in the gluteal muscle of rats showed no adverse tissue reactions over a one-year period. Histopathological examination of the tissues containing injected microspheres suggested that the biological life of casein microspheres in muscle is about 6 months, which is three times that of cross-linked albumin microspheres.  相似文献   

13.
目的考察多西他赛他莫昔芬复方脂质体体外释放。方法薄膜分散法制备单方和复方脂质体样品,通过透析法进行脂质体体外释放,采用高效液相色谱法测定他莫昔芬和多西他赛药物浓度,并对体外释放曲线进行数学模型拟合。结果单方和复方脂质体中,他莫昔芬和多西他赛均无突释,多西他赛较他莫昔芬释放快,他莫昔芬和多西他赛释放模型符合一级释放方程,他莫昔芬和多西他赛的释放曲线相似。结论他莫昔芬和多西他赛在单方和复方脂质体体外释放并无显著差异。  相似文献   

14.
Biodegradable poly(D,L-lactic acid) (PLA) microspheres containing hexamethylmelamine (HMM) were developed for potential use in chemoembolization and intraperitoneal implantation. The emulsion-solvent-evaporation/extraction method was used to prepare 15 formulations with different drug/polymer ratios, solvent compositions and emulsifer concentrations in the continuous aqueous phase. A central composite experimental design was used, with five levels of the three different factors. All formulations resulted in the formation of discrete matrix microspheres containing crystalline drug. The mean particle sizes of the microsphere formulations ranged from 62-348 microm and the effect of the independent variables on microsphere size was satisfactorily predicted using response surface methodology. For theoretical drug loads of 5-40%, efficiency of entrapment ranged from 75-107% and porosities of the microspheres were between 0-6.5%. The rate of drug release from the microspheres depended on drug loading and particle size. Microspheres with 22.5% or greater theoretical drug content released drug rapidly, with almost complete release occurring in 70 h or less. Formulations with drug loading of 5% and 9.57%, however, released drug very slowly, with less than 50% released in 40 days. Release kinetics of narrow sieve cuts of microspheres with high drug load (35.4%) followed square root of time profiles.  相似文献   

15.
This study investigated the usefulness of chitosan and chondroitin sulphate microspheres for controlled release of metoclopramide hydrochloride in oral administration. Microspheres were prepared by spray drying of aqueous polymer dispersions containing the drug and different amounts of formaldehyde as cross-linker. Drug release kinetics were investigated in vitro in media of different pH. Chondroitin sulphate microspheres scarcely retarded drug release, regardless of cross-linker concentration and medium pH, and were thus not further characterized. Chitosan microspheres prepared with more than 15% formaldehyde (w/w with respect to polymer) showed good control release (more than 8 h), and release rates were little affected by medium pH. Release from chitosan microspheres prepared with 20% formaldehyde was independent of pH, suggesting that this may be the most appropriate formulation. The size distribution of the chitosan microparticles was clearly bimodal, with the smaller-diameter subpopulation corresponding to microsphere fragments and other particles. Electron microscopy showed the chitosan microspheres to be almost-spherical, though with shallow invaginations. The kinetics of drug release from chitosan microspheres were best fitted by models originally developed for systems in which release rate is largely governed by rate of diffusion through the matrix.  相似文献   

16.
The release rate of 5-fluorouracil (5-FU) from lipid-coated nanoparticles (LNPs) was determined to develop a respirable delivery system for use as adjuvant (postsurgery) therapy for lung cancer. LNPs were prepared by spray drying, and the in vitro release was measured by microdialysis. The composition of the core and shell affected the release rate. Increasing the core diameter at constant shell thickness and increasing shell thickness at constant core diameter reduced the release rate, suggesting that the lipid shell is the rate limiting step for the release of 5-FU. A model consisting of a sequential zero-order/first-order dependence on time from polydispersed cores within polydispersed shells was developed to describe the release. Based on studies of the effect of geometry of the layered particles, the optimal formulation was identified as a 600-nm diameter 5-FU/poly-(glutamic acid) core with a 200-nm thick tripalmitin/cetyl alcohol shell. This system is readily aerosolized by ultrasonic atomization, which did not change the release properties. Preliminary instillation and inhalation delivery studies to the hamster resulted in lung levels of the particles and 5-FU that were near the desired values. Through this effort, a sustained-release, respirable delivery system for adjuvant therapy of lung cancer in humans may ultimately be realized.  相似文献   

17.
目的:研究西罗莫司脂质体的体外释放特性。方法:建立反相高效液相色谱法测定西罗莫司含量;采用反透析法,以500mL 20%乙醇为释放介质,考察24 h不同时间西罗莫司脂质体的体外累积释放率,利用药物释放模型方程拟合释放曲线。结果:西罗莫司检测浓度的线性范围为0.5~20 μg.mL~(-1)(r=0.999 8),平均回收率为99.42%,RSD=1.23%;脂质体前4 h的释药速率快,累积释放率为50%,之后释药相对缓慢,24 h的累积释放率为80%,释放曲线符合一级动力学方程。结论:西罗莫司脂质体具有一定缓释效应,其体外释放属于浓度依赖型渗透释药。  相似文献   

18.
The objective of this study was to prepare poly(DL-lactide-co-glycolide) (PLGA) microspheres containing guanosine as a model drug for intraocular administration. Microspheres were prepared by solvent evaporation technique using o/w emulsion system. The influence of composition and molecular weight of PLGA, drug loading efficiency, microsphere size, and in vitro and in vivo release rates were determined. Differential scanning calorimetry (DSC) and FTIR studies were conducted to examine the guanosine-polymer interaction. In vitro release studies indicated that the permeant release from microspheres exhibits an initial burst followed by slow first-order kinetics. Ascending molecular weights of the polymers generated progressively slower release rates. Three different sizes of microspheres were prepared. The release continued for 7 days with a maximum of 70% of the content released within that time period. DSC and FTIR studies showed no polymer-guanosine interaction. A novel microdialysis technique was used to examine the initial release kinetics from microspheres in isolated vitreous humor. This technique was also employed to observe in vivo intravitreal release in albino rabbits. A good correlation exists between in vitro and in vivo release rates from both 75 and 140 kDa PLGA microspheres. Guanosine-loaded microspheres could be prepared for once-a-week intravitreal injection with minimum required concentration maintained throughout the dosing interval. Because the structural and solubility characteristics of guanosine are similar to those of acyclovir and ganciclovir (two acycloguanosine analogues effective against herpes simplex virus [HSV-1] and cytomegalovirus [CMV], respectively), similar biodegradable polymer-based microsphere technology can be employed for the long-term intraocular delivery of these two drugs.  相似文献   

19.
5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.  相似文献   

20.
The interaction of liposomes with human plasma was investigated using 6(5)-carboxyfluorescein (CF) as an aqueous phase marker of cetylmannoside-modified multilamellar vesicles (Man-MLVs) of various sizes. The release of CF decreased with increasing liposome concentration. The time courses of the CF release from Man-MLVs were monitored continuously and were analysed kinetically. The curves were characterized by two phases, the first-order release process and the maximum release, which represent the rate and the extent of CF release, respectively. The increase of liposome size increased the rate of release by 42% and the extent of release by 121%, respectively. These effects of liposome size on the release processes were suggested to result from the size-dependent affinities of liposomes to the human complement system. The assay system of liposomally bound fragments of complement component 3 (C3), such as C3b and/or iC3b, was developed by applying a sandwich enzyme-linked immunospecific assay. The percentage of C3 fragments to total proteins bound to liposomes increased with the size of liposomes and there was a good correlation between the extent of CF release and the percentage of C3 fragments bound. These results indicated that Man-MLVs released entrapped CF via activating the human complement system and the affinity of Man-MLV to complement increased with the size of Man-MLVs in human plasma. These in vitro results suggest the role of complement as an opsonin in the disposition of Man-MLVs in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号