首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Protein tyrosine phosphatases are important regulators of insulin signal transduction. Our studies have shown that in insulin resistant and diabetic ob/ob and db/db mice, reducing the levels of protein tyrosine phosphatase 1B (PTP1B) protein by treatment with a PTP1B antisense oligonucleotide resulted in improved insulin sensitivity and normalized plasma glucose levels. The mechanism by which PTP1B inhibition improves insulin sensitivity is not fully understood. We have used microarray analysis to compare gene expression changes in adipose tissue, liver and muscle of PTP1B antisense-treated ob/ob mice. Our results show that treatment with PTP1B antisense resulted in the downregulation of genes involved in lipogenesis in both fat and liver, and a downregulation of genes involved in adipocyte differentiation in fat, suggesting that PTP1B antisense acts through a different mechanism than thiazolidinedione (TZD) treatment. In summary, microarray results suggest that reduction of PTP1B may alleviate hyperglycemia and enhance insulin sensitivity by a different mechanism than TZD treatment.  相似文献   

2.
Aim: Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signalling, is a novel therapeutic target for type 2 diabetes mellitus. We evaluated in vitro and in vivo the pharmacological profiles of a new PTP1B inhibitor, JTT‐551: monosodium ({[5‐(1,1‐dimethylethyl)thiazol‐2‐yl]methyl} {[(4‐{4‐[4‐(1‐propylbutyl)phenoxy]methyl}phenyl)thiazol‐2‐yl]methyl}amino)acetate. Methods: PTP1B inhibitory activity and the inhibition mode were assayed with p‐nitrophenyl phosphate as a substrate, and the selectivity of JTT‐551 against other PTPs, including T‐cell protein tyrosine phosphatase (TCPTP), CD45 protein tyrosine phosphatase (CD45) and leucocyte common antigen‐related protein tyrosine phosphatase (LAR), was evaluated. Glucose uptake with JTT‐551 treatment was evaluated in L6 rat skeletal myoblasts (L6 cells). In the in vivo study, we investigated the effects on insulin receptor (IR) phosphorylation and blood chemical parameters with JTT‐551 administration in ob/ob mice and db/db mice. Results: JTT‐551 showed an inhibitory effect on PTP1B with a Ki value of 0.22 µM, and a mixed‐type inhibition mode. Ki values of TCPTP, CD45 and LAR were 9.3, 30 or higher and 30 or higher µM, respectively, and JTT‐551 exhibited clear selectivity against the other PTPs. Moreover, JTT‐551 increased the insulin‐stimulated glucose uptake in L6 cells. A single administration of JTT‐551 in ob/ob mice enhanced the IR phosphorylation of liver and reduced the glucose level. In db/db mice, chronic administration showed a hypoglycaemic effect without an acceleration of body weight gain. Conclusions: JTT‐551, a newly developed PTP1B inhibitor, improves glucose metabolism by enhancement of insulin signalling and could be useful in the treatment of type 2 diabetes mellitus.  相似文献   

3.
ObjectiveProtein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent.ResultsHerein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA.ConclusionsThus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders.  相似文献   

4.
Obesity is typically associated with resistance to leptin, yet the mechanism by which leptin signaling becomes impaired is poorly understood. Here we sought to determine if the development of obesity and leptin resistance correlates with increased expression of protein tyrosine phosphatase 1B (PTP1B) in peripheral tissues and whether over-expression of this phosphatase, specifically in liver, could alter the leptin-mediated effects on feeding and glucose metabolism. Obesity was induced in mice through a high-fat diet that resulted in hyperglycemia, hyperinsulinemia and hyperleptinemia. Resistance to leptin was confirmed as exogenous leptin administration reduced food intake in animals on low-fat, but not high-fat diets. Diet-induced resistance to leptin and insulin was associated with increased hepatic levels of PTP1B. Intriguingly, hepatic adenoviral over-expression of PTP1B in ob/ob mice attenuated the ability of exogenous leptin to reduce both plasma glucose levels and food intake. These findings suggest that leptin reduces both plasma glucose and food intake in part through actions on the liver, and hepatic leptin resistance resulting from over-expression of PTP1B may contribute to the development of both diabetes and obesity.  相似文献   

5.
Abstract Specific blockade of glucocorticoid receptor (GCCR) action in the liver without affecting the hypothalamus-pituitary-adrenal axis could be a novel pharmaceutical approach to treat type 2 diabetes. In the present study, we applied an antisense oligonucleotide (ASO) against GCCR (ASO-GCCR) to reduce the expression of liver GCCR and examined its impact on the diabetic syndrome in ob / ob and db / db mice. A 3-week treatment regimen of ASO-GCCR (25 mg/kg IP, twice per week) markedly reduced liver GCCR messenger RNA and protein expression with no alteration of GCCR messenger RNA expression in the hypothalamus, pituitary, or adrenal gland. The ASO-GCCR treatment lowered blood glucose levels by 45% and 23% in ob / ob and db / db mice, respectively, compared with those observed in the control group. The ASO-GCCR-treated mice also showed significant enhancement of insulin-mediated inhibition of hepatic glucose production during a euglycemic-hyperinsulinemic clamp as well as marked reduction of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase activity compared with control mice. The ASO-GCCR treatment did not change peripheral insulin sensitivity during the clamp. The ob / ob mice treated with ASO-GCCR had no significant difference in the plasma corticosterone and corticotropin levels compared with control mice. Lean mice receiving a similar treatment regimen of ASO-GCCR exhibited no change in blood glucose levels, oral glucose tolerance tests, or insulin tolerance tests. Our results demonstrate that selective inhibition of GCCR expression in the liver by the ASO-GCCR treatment reduced hepatic glucose production and improved blood glucose control under diabetic conditions.  相似文献   

6.
A growing percentage of the population is resistant to two key hormones – insulin and leptin – as a result of increased obesity, often leading to significant health consequences such as type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of signalling by both of these hormones, so that inhibitors of this enzyme may provide promise for correcting endocrine abnormalities in both diabetes and obesity. As with other tyrosine phosphatases, identification of viable drug candidates targeting PTP1B has been elusive because of the nature of its active site. Beginning with novel phosphotyrosine mimetics, we have designed some of the most potent PTP1B inhibitors. However, their highly acidic structures limit intrinsic permeability and pharmacokinetics. Ester prodrugs of these inhibitors improve their drug-like properties with the goal of delivering these nanomolar inhibitors to the cytoplasm of cells within target tissues. In addition to identifying prodrugs that is able to deliver active drugs into cells to inhibit PTP1B and increase insulin signalling, these compounds were further modified to gain a variety of cleavage properties for targeting activity in vivo . One such prodrug candidate improved insulin sensitivity in ob/ob mice, with lowered fasting blood glucose levels seen in the context of lowered fasting insulin levels following 4 days of intraperitoneal dosing. The results presented in this study highlight the potential for design of orally active drug candidates targeting PTP1B, while also delineating the considerable challenges remaining.  相似文献   

7.
Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B expression in discrete hypothalamic nuclei. We generated a selective, transient reduction in PTP1B by infusion of an antisense oligonucleotide designed to blunt the expression of PTP1B in rat hypothalamic areas surrounding the third ventricle in control and obese rats. The selective decrease in hypothalamic PTP1B resulted in decreased food intake, reduced body weight, reduced adiposity after high-fat feeding, improved leptin and insulin action and signaling in hypothalamus, and may also have a role in the improvement in glucose metabolism in diabetes-induced obese rats.  相似文献   

8.

Aim/hypothesis

Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling. PTP1B deficiency improves obesity-induced insulin resistance and consequently improves type 2 diabetes in mice. Here, the small molecule norathyriol reversed obesity- and high-fat-diet-induced insulin resistance by inhibiting PTP1B.

Methods

The inhibitory mode of PTP1B was evaluated by using the double-reciprocal substrate in the presence of norathyriol. Primary cultured hepatocytes, myoblasts and white adipocytes were used to investigate the effect of norathyriol on insulin signalling. Glucose homeostasis and insulin sensitivity were characterised by glucose and insulin tolerance tests.

Results

Norathyriol was identified as a competitive inhibitor of PTP1B, with an IC50 of 9.59?±?0.39 μmol/l. In cultured hepatocytes and myoblasts, norathyriol treatment blocked the PTP1B-mediated dephosphorylation of the insulin receptor. Intraperitoneal injection of norathyriol inhibited liver and muscle PTP1B activity in mice, thus contributing to the improved glucose homeostasis and insulin sensitivity. However, these beneficial effects were abolished in PTP1B-deficient mice. Notably, oral administration of norathyriol protected mice from diet-induced obesity and insulin resistance through inhibition of hypothalamic PTP1B activity.

Conclusions/interpretation

Our results indicate that the small molecule norathyriol is a potent PTP1B inhibitor with good cell permeability and oral availability.  相似文献   

9.
Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). In response to acute insulin administration, GLUT4 recruitment to the plasma membrane increased twofold in muscle and adipose tissue from +/+ mice, but was significantly reduced by 42-43% (P<0.05) in both tissues from db/db mice. Insulin increased Akt-Ser(473) phosphorylation by two- to fivefold in muscle and adipose tissue from all mice. However, in db/db mice, maximal Akt-Ser(473) phosphorylation was decreased by 32% (P<0.05) and 69% (P<0.05) in muscle and adipose tissue respectively. This decreased phosphorylation in db/db mice corresponded with a significant decrease in maximal Akt kinase activity using a glycogen synthase kinase-3 fusion protein as a substrate (P<0.05). The level of insulin-stimulated tyrosine phosphorylation of p85alpha from phosphatidylinositol 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal-regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.  相似文献   

11.
The global epidemic of obesity and type-2 diabetes mellitus (T2DM) has highlighted the need for new therapeutic approaches. The association of insulin resistance with these disorders and the knowledge that insulin receptor signaling is mediated by tyrosine (Tyr) phosphorylation have generated great interest in the regulation of the balance between Tyr phosphorylation and dephosphorylation. Several protein Tyr phosphatases (PTPs) have been implicated in the regulation of insulin action, with the most convincing data for PTP1B. Murine models targeting PTP1B, PTP1B(-/-)mice, demonstrate enhanced insulin sensitivity without the weight gain seen with other insulin sensitizers such as peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, probably due to a second action of PTP1B as a negative regulator of leptin signaling. Despite intensive efforts and recent progress, a safe, selective and efficacious PTP1B inhibitor has yet to be identified.  相似文献   

12.

Aims/hypothesis  

Insulin activates insulin receptor protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The insulin receptor can serve as a substrate for the protein tyrosine phosphatase (PTP) 1B and T cell protein tyrosine phosphatase (TCPTP), which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the insulin receptor in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates insulin receptor signalling and gluconeogenesis in the liver. In this study we assessed for the first time the role of TCPTP in the regulation of insulin receptor signalling in muscle.  相似文献   

13.
目的观察高脂饲料诱导的肥胖大鼠下丘脑蛋白酪氨酸磷酸酶1B(PTP-1B)的表达。方法SD大鼠20只随机分为正常饲料组和高脂饲料组喂养8周。测定大鼠Fins、BG、TG、TC、瘦素、副睾脂肪垫重量、PTP-1B活性;观察肝脏形态学改变;蛋白印迹法检测下丘脑组织中PTP-1B蛋白含量。结果(1)高脂组胰岛素敏感性降低,出现瘦素抵抗和肝脏脂肪变性;(2)高脂组大鼠下丘脑PTP-1B蛋白表达和活性增加。结论高脂饲料可诱导大鼠下丘脑PTP-1B蛋白表达和活性升高,这可能是肥胖引发下丘脑产生胰岛素抵抗和瘦素抵抗的机制之一。  相似文献   

14.
SH2-containing inositol 5'-phosphatase 2 (SHIP2) is a 5'-lipid phosphatase hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI(3,4,5)P(3) to PI(3,4)P(2) in the regulation of insulin signaling, and is shown to be increased in peripheral tissues of diabetic C57BL/KSJ-db/db mice. To clarify the impact of SHIP2 in the pathogenesis of insulin resistance with type 2 diabetes, we generated transgenic mice overexpressing SHIP2. The body weight of transgenic mice increased by 5.0% (P < 0.05) compared with control wild-type littermates on a normal chow diet, but not on a high-fat diet. Glucose tolerance and insulin sensitivity were mildly but significantly impaired in the transgenic mice only when maintained on the normal chow diet, as shown by 1.2-fold increase in glucose area under the curve over control levels at 9 months old. Insulin-induced phosphorylation of Akt was decreased in the SHIP2-overexpressing fat, skeletal muscle, and liver. In addition, the expression of hepatic mRNAs for glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was increased, that for sterol regulatory element-binding protein 1 was unchanged, and that for glucokinase was decreased. Consistently, hepatic glycogen content was reduced in the 9-month-old transgenic mice. Structure and insulin content were histologically normal in the pancreatic islets of transgenic mice. These results indicate that increased abundance of SHIP2 in vivo contributes, at least in part, to the impairment of glucose metabolism and insulin sensitivity on a normal chow diet, possibly by attenuating peripheral insulin signaling and by altering hepatic gene expression for glucose homeostasis.  相似文献   

15.
This review postulates and presents recent evidence that insulin resistance is initiated in the adipose tissue and also suggests that the adipose tissue may play a pivotal role in the induction of insulin resistance in the muscles and the liver. Marked impairments in insulin's intracellular signaling cascade are present in fat cells from type 2 diabetic patients, including reduced IRS-1 gene and protein expression, impaired insulin-stimulated PI3-kinase and PKB/Akt activities. In contrast, upstream insulin signaling in skeletal muscle from diabetic subjects only shows modest impairments and PKB/Akt activation in vivo by insulin appears normal. However, insulin-stimulated glucose transport and glycogen synthesis are markedly reduced.Similar marked impairments in insulin signaling, including reduced IRS-1 expression, impaired insulin-stimulated PI3-kinase and PKB/Akt activities are also seen in some (approximately 30%) normoglycemic individuals with genetic predisposition for type 2 diabetes. In addition, GLUT4 expression is markedly reduced in these cells, similar to what is seen in diabetic cells. The individuals with reduced cellular expression of IRS-1 and GLUT4 are also markedly insulin resistant and exhibit several characteristics of the Insulin Resistance Syndrome.Thus, a 'diabetic' pattern is seen in the fat cells also in normoglycemic subjects and this is associated with a marked insulin resistance in vivo. It is proposed that insulin resistance and/or its effectors is initiated in fat cells and that this may secondarily encompass other target tissues for insulin, including the impaired glucose transport in the muscles.  相似文献   

16.
17.
18.
The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.  相似文献   

19.
ObjectiveDiabetic nephropathy is one of the most devastating complications of diabetes, and growing evidence implicates podocyte dysfunction in disease pathogenesis. The objective of this study was to investigate the contribution of protein tyrosine phosphatase 1B (PTP1B) in podocytes to hyperglycemia-induced renal injury.MethodsTo determine the in vivo function of PTP1B in podocytes we generated mice with podocyte-specific PTP1B disruption (hereafter termed pod-PTP1B KO). Kidney functions were determined in control and pod-PTP1B KO mice under normoglycemia and high-fat diet (HFD)- and streptozotocin (STZ)-induced hyperglycemia.ResultsPTP1B expression increased in murine kidneys following HFD and STZ challenges. Under normoglycemia control and pod-PTP1B KO mice exhibited comparable renal functions. However, podocyte PTP1B disruption attenuated hyperglycemia-induced albuminuria and renal injury and preserved glucose control. Also, podocyte PTP1B disruption was accompanied with improved renal insulin signaling and enhanced autophagy with decreased inflammation and fibrosis. Moreover, the beneficial effects of podocyte PTP1B disruption in vivo were recapitulated in E11 murine podocytes with lentiviral-mediated PTP1B knockdown. Reconstitution of PTP1B in knockdown podocytes reversed the enhanced insulin signaling and autophagy suggesting that they were likely a consequence of PTP1B deficiency. Further, pharmacological attenuation of autophagy in PTP1B knockdown podocytes mitigated the protective effects of PTP1B deficiency.ConclusionsThese findings demonstrate that podocyte PTP1B deficiency attenuates hyperglycemia-induced renal damage and suggest that PTP1B may present a therapeutic target in renal injury.  相似文献   

20.
近年研究发现蛋白酪氨酸磷酸酶1B(PTP1B)是胰岛素信号转导和瘦素信号转导的负性调控因子;肥胖相关胰岛素抵抗及瘦素抵抗中均存在PTP1B的过度表达。PTP1B活化可能是胰岛素抵抗和瘦素抵抗的共同机制。因此,抑制PTP1B为治疗2型糖尿病和肥胖开辟了新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号