首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim:

It is unclear why α1D-adrenergic receptors (α1D-ARs) play a critical role in the mediation of peripheral vascular resistance and blood pressure in situ but function inefficiently when studied in vitro. The present study examined the causes for these inconsistencies in native α1-adrenergic functional performance between the vascular smooth muscle and myocytes.

Methods:

The α1-adrenergic mediated contraction, Ca2+ signaling and the subcellular receptor distribution were evaluated using the Fluo-4, BODIPY-FL prazosin and subtype-specific antibodies.

Results:

Rat aortic rings and freshly dissociated myocytes displayed contractile and increased intracellular Ca2+ responses to stimulation with phenylephrine (PE, 10 μmol), respectively. However, the PE-induced responses disappeared completely in cultured aortic myocytes, whereas PE-enhanced Ca2+ transients were seen in cultured rat cardiac myocytes. Further studies indicated that α1D-ARs, the major receptor subtype responsible for the α1-adrenergic regulation of aortic contraction, were distributed both intracellularly and at the cell membrane in freshly dispersed aortic myocytes, similar to the α1A-AR subcellular localization in the cultured cardiomyocytes. In the cultured aortic myocytes, however, in addition to a marked decrease in their protein expression relative to the aorta, most labeling signals for α1D-ARs were found in the cytoplasm. Importantly, treating the culture medium with charcoal/dextran caused the reappearance of α1D-ARs at the cell surface and a partial restoration of the Ca2+ signal response to PE in approximately 30% of the cultured cells.

Conclusion:

Reduction in α1D-AR total protein expression and disappearance from the cell surface contribute to the insensitivity of cultured vascular smooth muscle cells to α1-adrenergic receptor activation.  相似文献   

2.
AIM: To investigate the effect of icariin on the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1alpha), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear respiratory factor 1 (NRF-1) on cardiomyocyte differentiation of murine embryonic stem (ES) cells in vitro. METHODS: The cardiomyocytes derived from murine ES cells were verified by immunocytochemistry using confocal laser scanning microscopy. Cardiac-specific sarcomeric proteins (ie alpha-actinin, troponin T) were evaluated when embryoid bodies (EB) were treated with icariin or retinoid acid. The expression of PGC-1alpha, PPARalpha, and NRF-1 were analyzed using both semiquantitative RT-PCR and Western blotting in cardiomyocyte differentiation. The phosphorylation of the p38 mitogen-activated protein kinase (MAPK) was studied in the differentiation process, and its specific inhibitor SB203580 was employed to confirm the function of the p38 MAPK on icariin-induced cardiac differentiation. RESULTS: The application of icariin significantly induced the cardiomyocyte differentiation of EB as indicated by the promoted expression of alpha-actinin and troponin T. The expression of PGC-1alpha, PPARalpha, and NRF-1 increased coincidently in early differentiation and the increase was dose-dependently upregulated by icariin treatment. The phosphorylation of the p38 MAPK peaked on d 6 and decreased after d 8, and the activation was further enhanced and prolonged when the EB were subjected to icariin, which was concurrent with the elevation of PGC-1alpha, PPARalpha, and NRF-1. Moreover, the inhibition of the p38 MAPK pathway by SB203580 efficiently abolished icariin-stimulated cardiomyocyte differentiation and resulted in the capture of the upregulation of PGC-1alpha, PPARalpha, and NRF-1. CONCLUSION: Taken together, icariin promoted the expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine ES cells in vitro and the effect was partly responsible for the activation of the p38 MAPK.  相似文献   

3.
Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF165) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF165-mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF165-induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2–PKCζ axis in HRMECs.  相似文献   

4.
5.
Aim: Chemokines usually direct the movement of circulating leukocytes to sites of inflammation or injury. CXCL1/GRO-a has been shown to be upregulated in atherosclerotic lesions and various cancers. The aim of this study was to investigate the mechanisms underlying the TNF-α-induced release of CXCL1 from human vascular endothelial cells in vitro. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with different proinflam-matory mediators and growth factors. CXCL1 expression and secretion were determined using RT-PCR and ELISA, respectively. TNF-a-induced cell signaling was assayed with Western blotting. Cell viability/growth was determined using MTTassay. Monocyte migration was measured with transwell migration assay. Results: Among the 17 mediators and growth factors tested, TNF-α, LPS and thrombin induced marked increase in CXCL1 release from HUVEC cells. TNF-α (2, 5 ng/mL) induced CXCL1 release and mRNA expression in the cells in concentration- and time-dependent manners. TNF-α (5 ng/mL) caused activation of JNK, p38 MAPK, PI3K and Akt, whereas pretreatment with JNK inhibitor (SP600125), p38 MAPK inhibitor (SB202190) or PI-3K inhibitor (LY294002) significantly suppressed TNF-a-induced CXCL1 release from the cells. But only SP600125 significantly reduced TNF-a-induced CXCL1 mRNA expression in the cells. Moreover, dexamethasone (up to 500 nmol/L) failed to affect TNF-a-induced CXCL1 release from the cells. In functional studies, recombinant CXCL1 enhanced HUVEC proliferation, and both recombinant CXCL1 and TNF-a-induced CXCL1 from HUVECs attracted human monocyte migration. Conclusion: TNF-a stimulates CXCL1 release from human ECs through JNK-mediated CXCL1 mRNA expression and p38 MAPK- and PI-3K-mediated CXCL1 secretory processes.  相似文献   

6.
AIM : To study the effects of PAMd ( Phenolic alkaloids from Menispermum dauricum on Brain ischemia and ischemic reperfusion injury in mice. METHODS : Bilateral carotid arteries of mice were ligated and 0. 3ml blood was letted from post-eyeball venous jungle, one hour later the carotid arteries were loosed. After cerebral ischemia-reperfusion, mice  相似文献   

7.
DNA polymerase eta (Polη), the product of the xeroderma pigmentosum variant gene, is required for translesion DNA synthesis, and plays a pivotal role in preventing genome instability after DNA damage induced by genotoxic agents. Studies have previously suggested a link between Polη and susceptibility to hydroquinone (HQ)-induced toxicity. To further address the role of Polη in the response of L-02 cells to HQ, we employed RNA interference to silence Polη expression in L-02 cells and examined the susceptibility of these Polη-deficient cells to the toxic effects of HQ. In this study, cell survival rate was determined using the MTT assay, DNA damage was determined by the Comet assay, apoptosis and cell cycle distribution were determined using flow cytometry, the mRNA expression levels of Polη were determined by real-time PCR, and the protein expression levels of Polη and γ-H2AX were determined by Western blot, γ-H2AX foci were visualized by confocal laser scanning fluorescence microscopy after cells were exposed to HQ at various concentrations for 24 h in vitro. The results showed that stable Polη-knockdown cells were successfully constructed and more than 80% inhibition of Polη expression was confirmed. The results also showed that down-regulation of Polη led to a decrease in cell proliferation and an enhanced susceptibility to HQ-induced cytotoxicity. Polη-deficient cells were 2-fold more sensitive to HQ when compared with nonspecific siRNA control cells. Moreover, Polη-silenced L-02 cells treated with HQ displayed an increased level of DNA double-strand breaks as measured by olive tail moment, and an elevated DNA damage response as indicated by the induction of γ-H2AX. In addition, knockdown of Polη resulted in more enhanced apoptosis and more pronounced S phase arrest following HQ treatment. Together, these results show that Polη plays an important role in the response of L-02 cells to HQ-induced DNA damage.  相似文献   

8.
The effect of prostaglandins (PGs) A1, E1, E2, F1, and F2 administered intraventricularly at doses of 0.02–4.0 g/rat were studied in some behavioral, antinociceptive and anticonvulsant tests in rats. Exploratory and locomotor activity were decreased by all PGs except A1 and F2 which had no effect on locomotor activity. All PGs studied, except A1, induced hyperthermia and afforded protection in the hot-plate analgesic test and against maximal electroshock seizures.  相似文献   

9.
Prostaglandins (PGs) injected into the right lateral brain ventricle (i.v.c.) of the rat increased the sleeping time induced by hexobarbital, chloral hydrate, and ethanol. PGE1 and PGE2 intensified chlorpromazine-induced catalepsy, inhibited amphetamine hyperactivity, and significantly depressed the amphetamine-induced stereotypy. NA concentrations were decreased by PGE1 and PGE2 and were increased by PGF2. PGF2 increased both 5-HT and 5-HIAA levels in rat brain. Total ACh concentrations were increased by PGF1 and PGF2. PGE1, PGE2, and PGF2 enhanced the turnover of NA, DA, and 5-HT. PGE2 counteracted the decreased activity induced by -MT and abolished the hypothermic action of -MT. PGF2 had little effect on the activity of PCPA pretreated rats, whereas the higher doses of PGF2 increased body temperature in these animals.  相似文献   

10.
Hepatic cytochrome P4501A1 (CYP1A1) expression in fishes is frequently used to evaluate bioavailable aromatic hydrocarbon contamination of aquatic ecosystems. In controlled laboratory experiments, CYP1A1 expression in na?ve fishes is usually dose-responsive to aromatic hydrocarbons and in field studies levels of gene expression in natural populations often correspond with known levels of sediment-borne contaminants. We quantified CYP1A1 mRNA levels in juvenile Atlantic tomcod Microgadus tomcod from 42 sites in the Hudson River estuary to evaluate the correspondence between hepatic CYP1A1 expression and hepatic concentrations of persistent halogenated aromatic hydrocarbons and to determine the utility of CYP1A1 expression as a biomarker in evaluating the microgeographic distribution of bioavailable contaminants within a large aquatic ecosystem. We found significant spatial heterogeneity in CYP1A1 mRNA levels among collection sites with levels of gene expression differing in some cases by 23-34 folds. CYP1A1 mRNA expression was highest in tomcod from the Newark Bay complex and lowest in tomcod from the most upriver collection sites in the main stem of the Hudson River. Although levels of PCDDs, PCDFs, and PCBs expressed as TCDD TEQs and CYP1A1 mRNA were highest in tomcod from the Newark Bay complex, there was no relationship between hepatic halogenated aromatic hydrocarbon levels and hepatic CYP1A1 mRNA in tomcod from sites in the main stem of the Hudson River. These results suggest that levels of CYP1A1 expression in fish from sites highly polluted with mixtures of halogenated aromatic hydrocarbons and other xenobiotics may not always be reflective of levels of bioavailable aromatic hydrocarbon contaminants. Based on these results and earlier controlled laboratory experiments, we hypothesize that elevated levels of CYP1A1 expression in tomcod from the Hudson River may be due primarily to PAHs or other contaminants not measured in this study.  相似文献   

11.
OBJECTIVE α-Hederin is an effective component of the traditional Chinese medicine Pulsatilla chinensis,which has been reported to exert many pharmacological activities. However, the effect of α-hederin on metabolism is still unclear. This study aimed to illuminate the role of α-hederin in glucose metabolism in lung cancer cells and investigate the molecular mechanism of α-hederin. METHODS CCK8 and colony formation assays were employed to assess the anti-proliferative effects induced by α-hederin. Glucose uptake, ATP generation, and reduced lactate production were measured using kits, and an A549 tumor xenograft mouse model of lung cancer was used to assess the in vivo antitumor effect of α-hederin(5, 10 mg·kg~(-1)). Glycolytic-related key enzymes were detected by Western blotting and immunohistochemical staining. RESULTS Cell proliferation was significantly inhibited by α-hederin in a dose-dependent manner and that α-hederin inhibited glucose uptake and ATP generation and reduced lactate production. Furthermore, α-hederin remarkably inhibited hexokinase 2(HK2), glucose transporters 1(GLUT1), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), monocarboxylate transporter(MCT4), c-Myc, and hypoxia inducible factor-1α(HIF-1α) protein expression. Using inhibitors, we proved that α-hederin inhibits glycolysis by inhibiting glycolytic regulators. Moreover, a tumor xenograft mouse model of lung cancer further confirmed that α-hederin inhibits lung cancer growth via inhibiting glycolysisin vivo. CONCLUSION α-Hederin inhibits the growth of non-small cell lung cancer A549 cells by inhibiting glycolysis.The mechanism of glycolysis inhibition includes α-hederin inhibiting the expression of the glycolytic regulatory factors HIF-1α and c-Myc.  相似文献   

12.
Hepatic stellate cells(HSCs)play an important role in the initiation and development of liver fibrogenesis,and abnormal glucose metabolism is increasingly being...  相似文献   

13.
14.
The interaction between leukocytes and the vascular endothelial cells (EC) via cellular adhesion molecules plays an important role in the pathogenesis of various inflammatory and autoimmune diseases. Small molecules that block these interactions have been targeted as potential therapeutic agents against acute and chronic inflammatory diseases. In an effort to identify potent intercellular cell adhesion molecule-1 (ICAM-1) inhibitors, a large number of arylalkyl ketones, benzophenones, desoxybenzoins and chalcones and their analogs (54 in total) have been synthesized and screened for their ICAM-1 inhibitory activity. The structure-activity relationship studies of these compounds identified three potent chalcone derivatives and also demonstrated the possible mechanism for their ICAM-1 inhibitory activities. The most active compound was found to be 79.  相似文献   

15.
The phenolic glucoside salicortin was isolated from a Willow bark extract, and its ability to reduce the TNF- α induced ICAM-1 expression (10 ng/mL, 30 min pretreatment with salicortin) was tested IN VITRO on human microvascular endothelial cells (HMEC-1). After 24 h, 25 μM salicortin decreased the TNF- α induced ICAM-1 expression to 65.9 % compared to cells which were treated only with TNF- α. In parallel, the stability of 25 μM salicortin under assay conditions was determined by HPLC. Within 24 h, the salicortin concentration decreased to 3.1 μM whereas catechol, a known NF- κB inhibitor, rose as a metabolite. After 8 h the catechol concentration was relatively constant and varied between 8.2 and 10.9 μM. Considering this degradation in the IN VITRO test system, 10 μM catechol was added 8 h after TNF- α stimulation, and 16 h later the ICAM-1 expression was determined. In this setting, the ICAM-1 expression was reduced to 74.8 %. This is comparable to the effect obtained from 25 μM salicortin and indicates that its activity is related to the generation of catechol, as salicin, saligenin, and salicylic acid are only marginally active or inactive in this test system in a concentration up to 50 μM. These results indicate catechol as an important bioactive metabolite from salicortin.  相似文献   

16.
17.
AIM: To examine the subcellular distribution of the 3 alpha1-adrenoceptor (alpha1-AR) subtypes and their internalization and trafficking upon agonist stimulation in human embryonic kidney 293A cells. METHODS: Confocal real-time imaging, enzyme linked immunosorbent assay (ELISA) and whole cell [3H]-prazosin binding assay were applied to detect the distribution and localization of the 3 alpha1-AR subtypes. RESULTS: alpha1A-AR was found both on the cell surface and in the cytoplasm; alpha1BAR, however, was predominantly detected on the cell surface, while alpha1D-AR was detected mainly in the intracellular compartments. After stimulation with phenylephrine, localization changes were detected by confocal microscopy for alpha1A- and alpha1B-AR,but the localization of alpha1D-AR were unaffected. Phenylephrine stimulation promoted a more rapid internalization of alpha1B-AR than alpha1A-AR. alpha1D-AR internalization was detected only by ELISA. Whole cell [3H]-prazosin binding assay showed that alpha1A-AR functional receptors were detected both on the cell surface and in the cytoplasm; alpha1B-AR, however, were detected predominantly on the cell surface, while alpha1D-AR were detected mainly in intracellular compartments. Phenylephrine stimulation promoted internalization of alpha1A- and alpha1B-AR. CONCLUSION: Phenylephrine stimulation induced changes in the localization of the 3 alpha1-AR.  相似文献   

18.
Rationale Accumulating evidence indicates that modulation of the activity of cytochrome P450 (CYP) enzymes and the multidrug resistance transporter P-glycoprotein (P-gp) is responsible for many drug–drug interactions. Objectives The potential interaction of risperidone (RISP), which is metabolized by 2D6 and transported across the blood brain barrier (BBB) by P-gp, was studied in combination with bupropion (BUP) and also with sertraline (SERT). Methods BUP, SERT, and RISP were administered intraperitoneally into CF1 mice at doses of 100, 10, and 1 μg/g mouse, respectively. Plasma and brain samples were collected at timed intervals from 0.5 to 6 h. A pharmacokinetic analysis was performed using both traditional compartmental modeling and a population pharmacokinetic approach. Results BUP increased the RISP plasma (5.9-fold, P<0.01) and brain (2.2-fold, P<0.01) area under the drug concentration vs time curve (AUC), but did not alter the brain-to-plasma concentration ratio. SERT did not significantly change the plasma AUC of RISP and 9-hydroxy-RISP, but increased the brain AUC of RISP and 9-hydroxy-RISP 1.5-fold (P<0.05) and 5-fold (P<0.01), respectively. RISP did not produce significant alterations of plasma or brain concentrations of BUP. It increased the plasma AUC and elimination half-life (T 1/2e) of desmethyl-SERT 12.5-fold (P<0.01) and 107-fold (P<0.01), respectively. Conclusions These results suggest that pharmacokinetic interactions exist among these three psychoactive drugs involving inhibition of drug metabolizing enzymes and/or P-gp and other drug transporters present in the BBB. The mechanisms and consequences of these interactions require further study in humans to establish clinical relevance.  相似文献   

19.
Genistein modulates inflammatory responses in part by reducing the production of the pro-inflammatory cytokines IL-12, TNF-α, and nitric oxide, by activated macrophages in response to lipopolysaccharide stimulus. Previous studies have shown that synthetic lipophilic genistein glycosides were significantly more active than hydrophilic glycosides. The aims of this study were to synthesize and to evaluate the effect of novel lipophilic genistein derivatives on IL-12, TNF-α, and nitric oxide production by J774A.1 cells. The results show that the modification of genistein enables the generation of non-cytotoxic compounds with increased IL-12 inhibition. However, these derivatives failed to inhibit TNF-α. The nitric oxide production was notably inhibited by the monoester (2, 3) and monoether (6, 7) compounds in a dose-dependent manner.  相似文献   

20.
Effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), natural ligand of the VDR, on the fates of adefovir dipivoxil (P-gp substrate) and its metabolites, mono(POM)-PMEA and adefovir (MRP4 substrate), were investigated in Caco-2 cells. After 1,25(OH)2D3-treatment, higher apical efflux of adefovir was observed after a 60 min incubation of adefovir divipoxil. Changes in these washout studies were predicted by a catenary model for the Caco-2 monolayer that described a higher MRP4 activity with 1,25(OH)2D3 treatment, as confirmed by Western blotting. Moreover, 1,25(OH)2D3 treatment (100 nM for 3 days) resulted in increased basolateral (B) to apical (A) (B-to-A) transport of adefovir dipivoxil but an unchanged A-to-B flux, rendering an elevated efflux ratio (EfR) (from 1.97 to 3.19). The EfR values in control and 1,25(OH)2D3-treated groups in these transport studies were reduced to 1.32 and 1.57, respectively, in the presence of verapamil (50 μM), the P-gp inhibitor. The B-to-A transport of the metabolite, adefovir, was increased in 1,25(OH)2D3-treated cells in the presence of verapamil, whereas the A-to-B and B-to-A transport of mono(POM)-PMEA remained unchanged. But the verapamil and 1,25(OH)2D3 treatments failed to alter rates of sequential metabolism of adefovir dipivoxil in cell lysate. The composite data established that 1,25(OH)2D3 treatment increased both P-gp and MRP4 transport activities without affecting the metabolism of adefovir dipivoxil by esterases. Moreover, an asymmetric appearance of metabolites, being higher with apical application, was observed. According to the catenary model, the asymmetry is suggestive that esterases are predominantly localized on the apical membrane and within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号