首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of dopamine receptors (DA-Rs) in astrocytes was examined in vitro and in vivo using primary cultured astrocytes and brain slices from rat basal ganglia. Astrocytes from basal ganglia expressed DA D1-, D3-, D4- and D5-receptors and D4-mediated signal transduction in response to DA, suggesting possible involvement of astrocytes in the pharmacological action of atypical antipsychotic drugs and in DA response in some neurological diseases.  相似文献   

2.
The developmental and age-related changes of the dopamine transporter (DAT), and the dopamine D1 and D2 receptor (D1R and D2R) subtypes were investigated in basal ganglia (BG) of human brain. DAT immunostaining was mainly observed in the neuropil, neurons, and glia of the striatum. The DAT-positive neuropil was detectable at 32 GW, a peak being reached at 9–10 years of age, with a decrease to 50–63 years of age. The developmental pattern of DAT immunoreactivity in neuron was similar to that of the neuropil. DAT-positive glia were observed in the BG at 32 GW, which increased slightly at 38–40 GW, and then did not obviously change until 6–8 months after birth. D2R-positive neurons were clearly observed at 19 GW, a peak being reached at 32 GW and 1–3 months of age in the globus pallidus and striatum, respectively, with a decrease after 9–10 years of age. D1R was expressed as early as D2R, but decreased after 6–8 months. Our results suggest that D1R and D2R expression is an intrinsic property of striatal neurons and is independent of dopaminergic innervation. D1R may play a more important role in neuronal maturation of the BG than D2R. D2R may be closely correlated with late neuronal development. The higher expression of DAT during adolescence may be related to function of the BG which learns complex behavioral patterns. The significance of the age-related decreases in DAT, D1R and D2R in the BG remains to be further investigated.  相似文献   

3.
For many years, the basal ganglia were described in anatomy courses as strictly motor structures. Certainly, some of the most obvious and debilitating symptoms shown by persons with basal ganglia disorders are problems in motor control. However, the basal ganglia are not limited to motoric aspects of behavior: recent research shows that they are involved in most areas of cognitive and emotional functioning, consistent with their anatomical connections with all areas of the cortex. This review will focus on the roles of the basal ganglia in human learning, particularly sequence learning and category learning. Current areas of research that are discussed include the differing roles of different basal ganglia regions, patterns of interaction between the cortex and basal ganglia, differences in positive and negative association learning, effects of dopaminergic medication on learning, whether basal ganglia-mediated learning is implicit or explicit, and how the basal ganglia learning systems interact with other learning systems, particularly within the medial temporal lobe.  相似文献   

4.
The recent availability of selective ligands for NMDA and AMPA receptors has enabled neuroscientists to test the hypothesis that Parkinson' disease is a glutamate hyperactivity; disorder and hence treatable with glutamate antagonists. This review takes a critical look at the motor characteristics of this new class of drugs in rodent and primate models of parkinsonism and assesses the clinical potential and pitfalls of this radical new approach. Monotherapy of Parkinson's disease with glutamate antagonists appears impractical at the present time, due to their low efficacy and unacceptable side effects, but polypharmacy with L-DOPA and a glutamate antagonist as adjuvant is a more realistic prospect. This review will focus on the ways in which glutamate receptor blockade facilitates motor recovery with L-DOPA and will examine whether the basis for this beneficial effect can be traced to a specific interaction with dopamine at D1 or D2 receptors, and therefore to discrete motor pathways within the basal ganglia © 1995 Wiley-Liss, Inc.  相似文献   

5.
We investigated the effect of MPTP-induced lesion of the substantia nigra pars compacta (SNpc) dopaminergic neurons on GABA(B) receptors in the basal ganglia of mice and monkeys using receptor autoradiography and in situ hybridization. The extent of the lesion was measured with striatal catecholamine content, striatal binding of (125)I-RTI-121 to dopamine transporter (DAT), and DAT expression in the SNpc. GABA(B) receptors in mice brain were evaluated using (3)H-CGP54626 and its expression was measured with oligonucleotides probes targeting the mRNAs of GABA(B(1a+b)), GABA(B(1a)), GABA(B(1b)), GABA(B(2)) subunits. In monkeys, (125)I-CGP64213 and selective probes for GABA(B(1a+b)) and GABA(B(2)) mRNAs were used. In mice, dopamine content, (125)I-RTI-121 binding, and DAT expression were reduced by 44%, 40%, and 39% after a dose of 40 mg/kg of MPTP and 74%, 70%, and 34% after 120 mg/kg of MPTP, respectively. In monkeys, dopamine content and DAT expression were decreased by more than 90% and 80%, respectively. In the striatum and the subthalamic nucleus, GABA(B) receptors were unchanged following MPTP in both species. In the SNpc of mice, MPTP (120 mg/kg) induced a significant decrease of (3)H-CGP54626 binding (-10%) and of the expression of GABA(B(1a+b)) mRNA (-13%). The decrease of the expression of GABA(B(1a+b)) mRNA was correlated with dopamine content, (125)I-RTI-121 binding and DAT expression. In MPTP-treated monkeys, (125)I-CGP64213 binding (-40%), GABA(B(1a+b)) mRNA (-69%) and GABA(B(2)) mRNA (-66%) were also significantly decreased in the SNpc. Our results suggest that MPTP-induced denervation is associated with a decrease of GABA(B) receptors restricted to the SNpc. These observations may be relevant to the pathophysiology of motor disorders involving dysfunction of the basal ganglia such as Parkinson disease.  相似文献   

6.
We report herein the modulation of dopamine release in the basal ganglia during peripheral electrical stimulation in animals. The endogenous dopamine release during electrical stimulation was measured in anesthetized cats by positron emission tomography (PET) using the D2 receptor agonist [11C]-raclopride. Binding potential (BP) parametric maps were calculated using a simplified reference region model. The regional dopamine release evoked by electrical stimulation was estimated both by region of interest (ROI) analysis and statistical parametric mapping (SPM 99). Both ROI analysis and statistical parametric mapping showed significant release of endogenous dopamine in the nucleus accumbens and the striatum contralateral to the stimulated side as compared to the resting condition as well as the ipsilateral side. Accordingly, we suggest that the activity of the dopaminergic neurons in the midbrain projecting to the nucleus accumbens and the striatum is modulated by the input from the afferent nerves. This provides an in vivo evidence for the importance of the basal ganglia in the processing of peripheral information required for normal movement. This may also explain the clinically observed sensory system abnormalities in patients with movement disorders.  相似文献   

7.
Detailed studies of the properties of 3H-3-N-methylspiperone (NMSP) binding in rat and human brain homogenates were performed at 37 degrees C. In homogenates of rat striatum and frontal cortex and human caudate and frontal cortex tissues, the specific binding was found to be saturable. Rat caudate contained 33.2 pmol/gm wet-weight tissue and displayed an equilibrium dissociation constant (Kd) of 8.7 X 10(-11) M; rat frontal cortex contained 18.5 pmol/gm wet-weight tissue and displayed a Kd of 1.5 X 10(-10) M. Human caudate contained 8.96 pmol/gm wet-weight tissue and displayed a Kd of 1.1 X 10(-10) M; human frontal cortex possessed 9.8 pmol/gm wet-weight tissue and a Kd of 4.4 X 10(-10) M. Kinetic studies revealed a very rapid rate of association in all the tissues studied. The rate of dissociation was relatively slow in all 4 tissue preparations; the dissociation rate was somewhat slower in rat striatum and human caudate relative to rat and human frontal cortex. This was consistent with the somewhat higher affinity, relative to frontal cortex, displayed by 3H-NMSP in rat striatal and human caudate tissue. The pharmacological properties of the specific binding in rat striatal and human caudate tissues were very similar and indicated the presence of brain D2 dopamine receptors. In rat and human frontal cortex tissue homogenates, the pharmacological characteristics of the specific binding indicated the presence of 5-HT2 receptors.  相似文献   

8.
Radioligand binding studies in animals have demonstrated age-related loss of dopamine receptors in the caudate and putamen. In humans, while age-related declines in dopamine D2 receptors have been consistently reported, the effects of ageing on D1 receptors have been controversial. We used positron emission tomography (PET) with [11C]SCH 23390 to investigate dopamine D1 receptor binding in 21 normal volunteers aged 22–74 years. We also assessed their motor function with a Modified Columbia Score (MCS) and the Purdue Pegboard Test (PPBT). D1 binding potentials were derived using a graphical analysis with a cerebellar tissue input function. Standard linear regression techniques were used to determine the age-related rate of decline of D1 binding. We found an age-dependent decrease of D1 receptor binding in the caudate (6.9% per decade) and putamen (7.4% per decade). There was also a significant inverse correlation between [11C]SCH 23390 binding in the occipital cortex and age (8.6% decline per decade). PPBT score also decreased with age (P = 0.007). There was a direct correlation between PPBT score and D1 binding potential. We conclude that dopamine D1 receptor density declines with age and that the effects of physiological ageing may play a role in the expression of extrapyramidal disorders in the elderly. Synapse 30:56–61, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
Sex differences in dopamine receptors and their relevance to ADHD   总被引:12,自引:0,他引:12  
Gender differences in ADHD may be attributable to gender differences in dopamine receptor density. Striatal male D2 receptor density increases 144+/-26% between 25 and 40 days (the onset of puberty), while female D2 receptor density increases only 31+/-7%. Male receptor density is then sharply eliminated by 55% by adulthood. Periadolescent females show little overproduction and pruning of striatal D1 and D2 receptors, though adult density is similar to males. The rise of male, but not female, striatal dopamine receptors parallels the early developmental appearance of motor symptoms of ADHD and may explain why prevalence rates are 2-4 fold higher in men than women. Pruning of striatal dopamine receptors coincides with the estimated 50-70% remission rate by adulthood. Transient lateralized D2, dopamine receptors (left > right) in male striatum may increase vulnerability to ADHD. More persistent attentional problems may be associated with the overproduction and delayed pruning of dopamine receptors in prefrontal cortex. Differences in D1 receptor density in nucleus accumbens may have implications for increased substance abuse in males.  相似文献   

11.
Striatal dopamine D2 receptors in tardive dyskinesia: PET study.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dopamine D2 receptors were investigated in vivo in eight neuroleptic-free patients with persistent tardive dyskinesia using positron emission tomography and 76Br-bromospiperone. The striatal receptor density, estimated by the striatum/cerebellum radioligand concentration ratio, was not elevated in patients as compared with age-matched controls but was positively correlated with the severity of orofacial dyskinesia assessed with the Abnormal Involuntary Movement Rating Scale. These results indicate that tardive dyskinesia is associated with normal levels of striatal D2 receptors but the severity of orofacial movements may depend on the relative density of striatal D2 receptors.  相似文献   

12.
Current therapies for treating movement disorders such as Parkinson's disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dysregulation and why medication‐induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different basal ganglia nuclei process motor information and output. We have recently identified the importance of an underappreciated collateral projection that bridges the striatal output direct pathway with the indirect pathway. These bridging collaterals are extremely plastic in the adult brain and are involved in the regulation of motor balance. Our findings add a new angle to the classical model of basal ganglia circuitry that could be exploited for the development of new therapies against movement disorders. In this Scientific Perspective, we describe the function of bridging collaterals and other recent discoveries that challenge the simplicity of the classical basal ganglia circuit model. We then discuss the potential implication of bridging collaterals in the pathophysiology of Parkinson's disease and schizophrenia. Because dopamine D2 receptors and striatal neuron excitability have been found to regulate the density of bridging collaterals, we propose that targeting these projections downstream of D2 receptors could be a possible strategy for the treatment of basal ganglia disorders. © 2015 International Parkinson and Movement Disorder Society  相似文献   

13.
14.
BACKGROUND: Proton magnetic resonance spectroscopy was used to determine the effects of intravenous cocaine or placebo administration on human basal ganglia water and metabolite resonances. METHODS: Long echo time, proton magnetic resonance spectra of water and intracellular metabolites were continuously acquired from an 8-cm(3) voxel centered on the left caudate and putamen nuclei before, during, and after the intravenous administration of cocaine or a placebo in a double-blind manner. RESULTS: Cocaine, at both 0.2 and 0.4 mg/kg, did not alter the peak area for water. Cocaine at 0.2 mg/kg induced small and reversible increases in choline-containing compounds and N-acetylaspartate peak areas. Cocaine at 0.4 mg/kg induced larger and more sustained increases in choline-containing compounds and N-acetylaspartate peak areas. No changes in either water or metabolite resonances were noted following placebo administration. CONCLUSIONS: These increases in choline-containing compounds and N-acetylaspartate peak areas may reflect increases in metabolite T2 relaxation times secondary to osmotic stress and/or increased phospholipid signaling within the basal ganglia following cocaine administration. This is the first report of acute, drug-induced changes in the intensity of human brain proton magnetic resonance spectroscopy resonance areas.  相似文献   

15.
16.
目的分析伴脑干萎缩的基底节生殖细胞瘤临床特点及影像学改变,以提高对此病的认识。方法结合文献分析7例基底节生殖细胞瘤患者的临床和影像学特征。结果7例患者均为年轻男性,主要表现为缓慢进展的轻偏瘫;影像学显示肿瘤主要位于基底节,MRIT。加权像上呈低或等低混杂信号,T2加权像上呈高或等高混杂信号,伴有同侧大脑半球或脑干萎缩。结论基底节生殖细胞瘤临床及影像学缺乏特异性;年轻患者出现缓慢进行性偏瘫,伴有病变同侧大脑偏侧萎缩或/和大脑脚萎缩的基底节病变应高度怀疑基底节生殖细胞瘤。  相似文献   

17.
Functional imaging for disorders of basal ganglia]   总被引:3,自引:0,他引:3  
The nigrostriatal dopaminergic function and regional glucose metabolism were evaluated in patients suffering from various disorders of basal ganglia by using positron emission tomography with 18F-dopa and 18F-FDG, respectively. The 18F-dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The 18F-dopa uptake in the striatum also decreased in cases of multiple system atrophy and progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral cortices and the striatum: this finding was also different from those of Parkinson's disease. A normal 18F-dopa uptake with a markedly decreased striatal glucose metabolism was observed in cases of Huntington's disease. The 18F-dopa uptake increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of 18F-dopa uptake and glucose metabolism were thus observed in the various disorders of basal ganglia. These results suggest that the measurements of the 18F-dopa uptake and glucose metabolism would be useful for evaluating the function of the basal ganglia in various disorders of basal ganglia.  相似文献   

18.
19.
20.
High levels of dopamine activity in the basal ganglia of cigarette smokers   总被引:5,自引:0,他引:5  
OBJECTIVE: The authors' goal was to study presynaptic dopamine activity in smoking and nonsmoking human subjects in vivo. METHOD: [(18)F]Fluorodopa ([(18)F]DOPA) uptake K(i) values in the basal ganglia of nine smoking and 10 nonsmoking healthy men were measured with positron emission tomography. RESULTS: Significantly higher [(18)F]DOPA uptake was observed in both the putamen (average 17.3% higher) and the caudate (average 30.4% higher) of smokers than in those of nonsmokers. CONCLUSIONS: Smoking is related to greater dopamine activity in the human basal ganglia. Nicotine-induced dopamine activity may be a relevant mechanism in dependence on cigarette smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号