首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
4.
5.
The bone morphogenetic protein 15 (Bmp15) and growth differentiation factor 9 (Gdf9) genes are two members of the transforming growth factor-beta superfamily. In mammals, these genes are known to be specifically expressed in oocytes and to be essential for female fertility. However, potential ovarian roles of BMPs remain unexplored in birds. The aim of the present work was to study for the first time the expression of Bmp15 in the hen ovary, to compare its expression pattern with that of Gdf9, and then to investigate the effects of BMP15 on granulosa cell (GC) proliferation and steroidogenesis. We found that chicken Bmp15 and Gdf9 genes were preferentially expressed in the ovary. We showed using in situ hybridization that Bmp15 and Gdf9 mRNAs were specifically localized in oocytes of all ovarian follicles examined. We also demonstrated using real-time quantitative RT-PCR that Bmp15 and Gdf9 expression was maintained during hierarchical follicular maturation in the gerrminal disc region and then progressively declined after ovulation. BMP15 was able to activate Smad1 (mothers against decapentaplegichomolog1) signaling pathway in hen GCs. Moreover, we showed a strong inhibitory effect of BMP15 on gonadotropin-induced progesterone production in hen GCs. This inhibitory effect was associated with a decrease in steroidogenic acute regulatory protein (STAR) level. Taken together, our results suggest that BMP15 may have a key role in the female fertility of birds.  相似文献   

6.
7.
8.
9.
Vertebrate oocytes actively contribute to follicle development by secreting a variety of growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the present study, we describe the cellular localization, the developmental profiles, and the response to unilateral ovariectomy (a procedure implying the surgical removal of one of the ovaries) of protein and mRNA steady-state levels of Bmp15 and Gdf9 in the ovary of European sea bass, an important fish species for marine aquaculture industry. In situ hybridization and immunohistochemistry demonstrated that the oocyte is the main production site of Bmp15 and Gdf9 in European sea bass ovary. During oocyte development, Bmp15 protein expression started to be detected only from the lipid vesicle stage onwards but not in primary pre-vitellogenic (i.e. perinucleolar) oocytes as the bmp15 mRNA already did. Gdf9 protein and gdf9 mRNA expression were both detected in primary perinucleolar oocytes and followed similar decreasing patterns thereafter. Unilateral ovariectomy induced a full compensatory growth of the remaining ovary in the 2-month period following surgery (Á. García-López, M.I. Sánchez-Amaya, C.R. Tyler, F. Prat 2011). The compensatory growth elicited different changes in the expression levels of mRNA and protein of both factors, although the involvement of Bmp15 and Gdf9 in the regulatory network orchestrating such process remains unclear at present. Altogether, our results establish a solid base for further studies focused on elucidating the specific functions of Bmp15 and Gdf9 during primary and secondary oocyte growth in European sea bass.  相似文献   

10.
11.
12.
13.
Iron overload induces BMP6 expression in the liver but not in the duodenum   总被引:2,自引:0,他引:2  

Background

The bone morphogenetic protein BMP6 regulates hepcidin production by the liver. However, it is not yet known whether BMP6 derives from the liver itself or from other sources such as the small intestine, as has been recently suggested. This study was aimed at investigating the source of BMP6 further.

Design and Methods

We used three different strains of mice (C57BL/6, DBA/2, and 129/Sv) with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene. We examined Bmp6 expression at both the mRNA (by quantitative PCR) and protein (by immunohistochemistry and Western blotting analyses) levels.

Results

We showed that iron overload induces Bmp6 mRNA expression in the liver but not in the duodenum of these mice. Bmp6 is also detected by immunohistochemistry in liver tissue sections of mice with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene, but not in liver tissue sections from iron-loaded Bmp6-deficient mice. Bmp6 in the duodenum was below immunodetection threshold, thus confirming quantitative PCR data. Lack of specificity of available antibodies together with slight heterogeneity between 129 substrains may account for the differences with previously published data.

Conclusions

Our data strongly support the importance of liver BMP6 for regulation of iron metabolism. Indeed, they demonstrate that intestinal Bmp6 expression is modulated by iron neither at the mRNA nor at the protein level.  相似文献   

14.
The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. Although liver iron content is independently positively correlated with hepatic Bmp6 messenger RNA (mRNA) expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. CONCLUSION: Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, whereas the hepatic Erk1/2 signaling pathway is not activated by iron in vivo.  相似文献   

15.
Romero C  Paredes A  Dissen GA  Ojeda SR 《Endocrinology》2002,143(4):1485-1494
The neurotrophin nerve growth factor (NGF) and its two membrane-anchored receptors are expressed in the developing ovary before the organization of the first primordial follicles. In the absence of NGF, the growth of primordial follicles is retarded, indicating that NGF contributes to facilitating early follicular development. The present experiments were undertaken to determine whether NGF can also be involved in the differentiation process by which ovarian follicles become responsive to gonadotropins. Treatment of 2-d-old rat ovaries in organ culture with NGF increased FSH receptor (FSHR) mRNA within 8 h of exposure. This effect was cAMP-independent but additive to the cAMP-mediated increase in FSHR gene expression induced by either forskolin or vasoactive intestinal peptide, a neurotransmitter previously shown to induce FSHR formation in neonatal rat ovaries. After NGF treatment, the ovary acquired the capacity of responding to FSH with cAMP formation and preantral follicular growth, indicating that exposure to the neurotrophin resulted in the formation of biologically active FSHRs. Quantitative measurement of FSHR mRNA demonstrated that the content of FSHR mRNA is reduced in the ovaries of mice carrying a null mutation of the NGF gene. These results indicate that one of the functions of NGF in the developing ovary is to facilitate the differentiation process by which early growing follicles become gonadotropin-dependent during postnatal life, and that it does so by increasing the synthesis of FSHRs.  相似文献   

16.
Teeth have been missing from birds (Aves) for at least 60 million years. However, in the chick oral cavity a rudiment forms that resembles the lamina stage of the mammalian molar tooth germ. We have addressed the molecular basis for this secondary loss of tooth formation in Aves by analyzing in chick embryos the status of molecular pathways known to regulate mouse tooth development. Similar to the mouse dental lamina, expression of Fgf8, Pitx2, Barx1, and Pax9 defines a potential chick odontogenic region. However, the expression of three molecules involved in tooth initiation, Bmp4, Msx1, and Msx2, are absent from the presumptive chick dental lamina. In chick mandibles, exogenous bone morphogenetic protein (BMP) induces Msx expression and together with fibroblast growth factor promotes the development of Sonic hedgehog expressing epithelial structures. Distinct epithelial appendages also were induced when chick mandibular epithelium was recombined with a tissue source of BMPs and fibroblast growth factors, chick skin mesenchyme. These results show that, although latent, the early signaling pathways involved in odontogenesis remain inducible in Aves and suggest that loss of odontogenic Bmp4 expression may be responsible for the early arrest of tooth development in living birds.  相似文献   

17.
In response to iron loading, hepcidin synthesis is homeostatically increased to limit further absorption of dietary iron and its release from stores. Mutations in HFE, transferrin receptor 2 (Tfr2), hemojuvelin (HJV), or bone morphogenetic protein 6 (BMP6) prevent appropriate hepcidin response to iron, allowing increased absorption of dietary iron, and eventually iron overload. To understand the role each of these proteins plays in hepcidin regulation by iron, we analyzed hepcidin messenger RNA (mRNA) responsiveness to short and long-term iron challenge in iron-depleted Hfe, Tfr2, Hjv, and Bmp6 mutant mice. After 1-day (acute) iron challenge, Hfe(-/-) mice showed a smaller hepcidin increase than their wild-type strain-matched controls, Bmp6(-/-) mice showed nearly no increase, and Tfr2 and Hjv mutant mice showed no increase in hepcidin expression, indicating that all four proteins participate in hepcidin regulation by acute iron changes. After a 21-day (chronic) iron challenge, Hfe and Tfr2 mutant mice increased hepcidin expression to nearly wild-type levels, but a blunted increase of hepcidin was seen in Bmp6(-/-) and Hjv(-/-) mice. BMP6, whose expression is also regulated by iron, may mediate hepcidin regulation by iron stores. None of the mutant strains (except Bmp6(-/-) mice) had impaired BMP6 mRNA response to chronic iron loading. CONCLUSION: TfR2, HJV, BMP6, and, to a lesser extent, HFE are required for the hepcidin response to acute iron loading, but are partially redundant for hepcidin regulation during chronic iron loading and are not involved in the regulation of BMP6 expression. Our findings support a model in which acute increases in holotransferrin concentrations transmitted through HFE, TfR2, and HJV augment BMP receptor sensitivity to BMPs. A distinct regulatory mechanism that senses hepatic iron may modulate hepcidin response to chronic iron loading.  相似文献   

18.
Small nuclear RING finger protein (SNURF/RNF4) is a steroid receptor coregulator that is down-regulated in testicular germ cell cancer. In this work, we examined SNURF expression during murine fetal gonad development and postnatal ovarian folliculogenesis by in situ hybridization and immunohistochemical staining. SNURF mRNA was detectable in gonads of both sexes from embryonic 10.5 days post conception onward. SNURF protein localized to gonocytes and somatic Leydig and Sertoli cells of fetal testis and in oogonia and supporting cells of fetal ovary. In murine postnatal ovary, SNURF mRNA and protein were expressed throughout folliculogenesis, peaking in the oocytes of preantral follicles. Lower amounts of SNURF mRNA and protein were also present in granulosa cells of secondary, antral, and preovulatory follicles and in luteal glands. Exposure of immature female mice and rats to gonadotropin from pregnant mare serum and human chorionic gonadotropin did not change dramatically SNURF mRNA levels in ovary. SNURF mRNA expression was increased in ovaries of immature mice treated with diethylstilbestrol, an effect that was blocked by the pure antiestrogen ICI 182,780. SNURF protein was constitutively expressed in oocytes of hypophysectomized rats, and its content was augmented by estradiol in granulosa cells. In granulosa cell culture, SNURF mRNA accumulation was transiently increased by treatment with the LH agonists phorbol myristate and forskolin at 4 h after treatment and at 48 h in differentiated cells expressing markers of the preovulatory phenotype. These results suggest a role for SNURF in fetal germ cell development as well as in oocyte and granulosa cell maturation in an estrogen- and gonadotropin-regulated fashion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号