首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide synthase inhibitors could act as important therapies for disorders arising from overstimulation or overexpression of individual nitric oxide synthase (NOS) isoforms. But preservation of physiologically important nitric oxide functions require the use of isoform-selective inhibitors. Recently we reported reduced amide bond pseudodipeptide analogues as potent and selective neuronal nitric oxide synthase (nNOS) inhibitors (Hah, J.-M.; Roman, L. J.; Martasek, P.; Silverman, R. B. J. Med. Chem. 2001, 44, 2667-2670). To increase the lipophilicity a series of aromatic, reduced amide bond analogues (6-25) were designed and synthesized as potential selective nNOS inhibitors. The hypothesized large increase in isoform selectivity of nNOS over inducible NOS was not obtained in this series. However, the high potency with nNOS as well as high selectivity of nNOS over endothelial NOS was retained in some of these compounds (15, 17, 21), as well as good selectivity over inducible NOS. The most potent nNOS inhibitor among these compounds is N-(4S)-[4-amino-5-[2-(2-aminoethyl)phenylamino]-pentyl]-N'-nitroguanidine (17) (K(i) = 50 nM), which also shows the highest selectivity over eNOS (greater than 2100-fold) and 70-fold selectivity over iNOS. Further modification of compound 17 should lead to even more potent and selective nNOS inhibitors.  相似文献   

2.
Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to L-citrulline and nitric oxide (NO). Selective inhibition of the isoforms of NOS could have great therapeutic potential in the treatment of certain disease states arising from pathologically elevated synthesis of NO. Recently, we reported dipeptide amides containing a basic amine side chain as potent and selective inhibitors of neuronal NOS (Huang, H.; Martasek, P.; Roman, L. J.; Masters, B. S. S.; Silverman, R. B. J. Med. Chem. 1999, 42, 3147). The most potent nNOS inhibitor among these compounds is L-ArgNO2-L-Dbu-NH2 (1) (Ki = 130 nM), which also exhibits the highest selectivity over eNOS (>1,500-fold) with excellent selectivity over iNOS (190-fold). Here we describe the design and synthesis of a series of peptidomimetic analogues of this dipeptide as potential selective inhibitors of nNOS. The biochemical evaluation of these compounds also revealed the binding requirements of the dipeptide inhibitors with NOS. Incorporation of protecting groups at the N-terminus of the dipeptide amide 1 (compounds 4 and 5) resulted in dramatic decreases in the inhibitory potency of nNOS. Masking the NH group of the peptide bond (peptoids 6-8 and N-methylated compounds 9-11) also gave much poorer nNOS inhibitors than 1. Both of the results demonstrate the importance of the alpha-amine of the dipeptide and the NH moiety of the peptide bond for binding at the active site. Modifications at the C-terminus of the peptide included converting the amide to the methyl ester (12), tert-butyl ester (13), and carboxylic acid (14) and also descarboxamide analogues (15-17), which revealed less restricted binding requirements for the C-terminus of the dipeptide. Further optimization should be possible when we learn more about the binding requirements at the active sites of NOSs.  相似文献   

3.
Selective inhibition of the isoforms of nitric oxide synthase (NOS) could be therapeutically useful in the treatment of certain disease states arising from the overproduction of nitric oxide (NO). Recently, we reported the dipeptide methyl ester, D-Phe-D-Arg(NO)()2-OMe (19), as a modest inhibitor of nNOS (K(i) = 2 microM), but with selectivity over iNOS as high as 1800-fold (Silverman, R. B.; Huang, H.; Marletta, M. A.; Martasek, P. J. Med. Chem. 1997, 40, 2813-2817). Here a library of 152 dipeptide amides containing nitroarginine and amino acids other than Phe are synthesized and screened for activity. Excellent inhibitory potency and selectivity for nNOS over eNOS and iNOS is achieved with the dipeptide amides containing a basic amine side chain (20-24), which indicates a possible electrostatic (or hydrogen bonding) interaction at the enzyme active site. The most potent nNOS inhibitor among these compounds is L-Arg(NO)()2-L-Dbu-NH(2) (23) (K(i) = 130 nM), which also exhibits the highest selectivity over eNOS (>1500-fold) with a 192-fold selectivity over iNOS. These compounds do not exhibit time-dependent inhibition. The order and the chirality of the amino acids in the dipeptide amides have profound influences on the inhibitory potency as well as on the isoform selectivity. These dipeptide amide inhibitors open the door to the design of potent and highly selective inhibitors of nNOS.  相似文献   

4.
We report novel neuronal nitric oxide synthase (nNOS) inhibitors based on a symmetric double-headed aminopyridine scaffold. The inhibitors were designed from crystal structures of leads 1 and 2 (Delker, S. L.; Ji, H.; Li, H.; Jamal, J.; Fang, J.; Xue, F.; Silverman, R. B.; Poulos, T. L. Unexpected binding modes of nitric oxide synthase inhibitors effective in the prevention of cerebral palsy . J. Am. Chem. Soc. 2010, 132, 5437-5442) and synthesized using a highly efficient route. The best inhibitor, 3j, showed low nanomolar inhibitory potency and modest isoform selectivity. It also exhibited enhanced membrane permeability. Inhibitor 3j binds to both the substrate site and the pterin site in nNOS but only to the substrate site in eNOS. These compounds provide a basis for further development of novel, potent, isoform selective, and bioavailable inhibitors for nNOS.  相似文献   

5.
Selective inhibition of the isoforms of nitric oxide synthase (NOS) in pathologically elevated synthesis of nitric oxide has great therapeutic potential. We previously reported nitroarginine-containing dipeptide amides and some peptidomimetic analogues as potent and selective inhibitors of neuronal NOS (nNOS). Here we report conformationally restricted dipeptides derived from the dipeptide L-Arg(NO2)-L-Dbu-NH2 (8). The selectivities for nNOS over endothelial NOS and inducible NOS of the most potent nNOS inhibitor (10a) among these compounds are comparable to that of the parent compound. An unsubstituted amide bond is necessary for potency against nNOS. The stereochemistry of compound 10a was optimum for potency and selectivity and thus provides the binding conformation of the parent compound with nNOS.  相似文献   

6.
1. The ability of a range of substituted imidazole compounds to inhibit mouse cerebellar neuronal nitric oxide synthase (nNOS), bovine aortic endothelial NOS (eNOS) and inducible NOS (iNOS) from lungs of endotoxin-pretreated rats was investigated. In each case the substrate (L-arginine) concentration employed was 120 nM. 2. 1-(2-Trifluoromethylphenyl) imidazole (TRIM) was a relatively potent inhibitor of nNOS and iNOS (IC50S of 28.2 microM and 27.0 microM respectively) but was a relatively weak inhibitor of eNOS (IC50, 1057.5 microM). The parent compound, imidazole, was a weak inhibitor of all three NOS isoforms (IC50S: nNOS, 290.6 microM; eNOS, 101.3 microM; iNOS, 616.0 microM). Substitution of imidazole with a phenyl group to yield I-phenylimidazole (PI) resulted in an isoform non-selective increase in inhibitory potency (IC50S: nNOS, 72.1 microM; eNOS, 86.9 microM; iNOS, 53.9 microM). Further substitution of the attached phenyl group resulted in an increase in nNOS and a decrease in eNOS inhibitory potency as in TRIM, 1-chlorophenylimidazole (CPI; IC50S: nNOS, 43.4 microM; eNOS, 392.3 microM; iNOS, 786.5 microM) and 1-(2,3,5,6-tetrafluorophenyl) imidazole (TETRA-FPI; IC50S; nNOS, 56.3 microM; eNOS, 559.6 microM; iNOS, 202.4 microM). 3. The ability of TRIM to inhibit mouse cerebellar nNOS activity in vitro was influenced by the concentration of L-arginine (0.12-10.0 microM) in the incubation medium. When mouse cerebellar nNOS was used as enzyme source a double reciprocal (Lineweaver-Burk) plot in the presence/absence of TRIM (50 microM) revealed a competitive inhibitory profile. The K(m) for L-arginine and the Ki for TRIM calculated from these data were 2.4 microM and 21.7 microM, respectively. The ability of TRIM to inhibit mouse cerebellar nNOS activity in vitro was unaffected by varying the time of exposure of the enzyme to TRIM from 0-60 min at 0 degree C. 4. TRIM exhibits potent antinociceptive activity in the mouse as evidenced by inhibition of acetic acid induced abdominal constrictions. The ED50 for TRIM following i.p. administration was 20 mg kg-1 (94.5 mumol kg-1). The antinociceptive effect of TRIM was reversed by pretreatment of animals with L-arginine (50 mg kg-1, i.p.) and was not accompanied by sedation, motor ataxia or behavioural changes (rearing, crossing, circling, dipping) as assessed by use of a box maze procedure. 5. L-NG nitro arginine methyl ester (L-NAME, 20 mg kg-1, i.v.) but not TRIM (0.5-20 mg kg-1, i.v.) increased mean arterial blood pressure (MAP) in the urethane-anaesthetized rat. 6. L-NAME (100 microM) potentiated the contractile response of the rabbit isolated aorta to phenylephrine (ED50; 0.084 +/- 0.01 microM in the presence and 0.25 +/- 0.05 microM in the absence of L-NAME; maximum response, 7.7 +/- 0.4 g in the presence and 5.6 +/- 0.5 g in the absence of L-NAME, n = 6, (P < 0.05) whilst TRIM (1-100 microM) was without effect. L-NAME (100 microM) but not TRIM (1-100 microM) also reduced carbachol-induced relaxation of the phenylephrine-precontracted rabbit aorta preparation. 7. L-NAME (50 microM) potentiated the vasoconstrictor effect of bolus-injected noradrenaline (10-1000 nmol) and reduced the vasodilator effect of carbachol (10 microM) added to the Krebs reservoir in the rat perfused mesentery preparation. L-NAME (50 microM) also reduced nitric oxide (NO) release (measured by chemiluminescence of nitrite in the Krebs perfusate) in response to noradrenaline (100 nmol; 53.8 +/- 4.0 pmol ml-1 in the presence and 84.8 +/- 8.0 pmol ml-1 in the absence of L-NAME, n = 15, P < 0.05) and carbachol (10 microM; 63.9 +/- 5.0 pmol ml-1 in the presence and 154.0 +/- 9.0 pmol ml-1 in the absence of L-NAME, n = 15, P < 0.05). TRIM (50 microM) did not affect either the vasoconstrictor response to noradrenaline or the vasodilator response to carbachol or the accompanying release of NO from the perfused rat mesentery.  相似文献   

7.
Recently, we found (Qiu, J.; Pingsterhaus, J. M.; Silverman, R. B. J. Med. Chem. 1999, 42, 4725-4728) that conformationally rigid analogues of the GABA aminotransferase (GABA-AT) inactivator vigabatrin were not inactivators of GABA-AT. To determine if this is a general phenomenon of GABA-AT inactivators, several mono- and di-halogen-substituted conformationally rigid analogues (7-15) of other GABA-AT inactivators, 4-amino-5-halopentanoic acids, were synthesized as potential inactivators of GABA-AT. Four of them, (+)-7, (-)-9, (+)-10, and (+)-15, were inactivators, although not as potent as the corresponding open-chain analogues. The maximal inactivation rate constants, k(inact), for the fluoro- and bromo-substituted analogues were comparable, indicating that cleavage of the C-X bond is not rate determining. Consistent with that observation is the finding that [3-(2)H]-10 exhibits a deuterium isotope effect on inactivation of 3.3, suggesting that C-H bond cleavage is the rate-determining step. The rate of inactivation of GABA-AT by the fluorinated analogue 7 is 1/15 that of inactivation by the corresponding open-chain analogue, 4-amino-5-fluoropentanoic acid (3a). Whereas inactivation by 3a releases only one fluoride ion, inactivation by 7 releases 148 fluoride ions, accounting for the less efficient inactivation rate. Inactivation leads to covalent attachment of 2 equiv of inactivator after gel filtration; upon urea denaturation, 1 equiv of radioactivity remains bound to the enzyme. This suggests that, unlike the open-chain anlogue, the conformationally rigid analogue becomes, at least partially, attached to an active-site residue. It appears that the conformational constraint has a larger effect on inactivators that inactivate by a Michael addition mechanism than by an enamine mechanism.  相似文献   

8.
Four new conformationally restricted analogues of a potent and selective neuronal nitric oxide synthase inhibitor, l-nitroargininyl-l-2,4-diaminobutyramide (1), have been synthesized. N(alpha)-Methyl and N(alpha)-benzyl derivatives (3 and 4, respectively) of 4-N-(l-Arg(NO(2))-trans-4-amino-l-prolineamide (2) are also selective inhibitors, but the potency and selectivity of 3 are weak. Analogue 4 has only one-third the potency and one-half to one-third the selectivity of 2 against iNOS (inducible nitric oxide synthase) and eNOS (endothelial nitric oxide synthase), respectively. 3-N-(l-Arg(NO)(2))-trans-3-amino-l-prolineamide (6) is as potent an inhibitor of nNOS (neuronal nitric oxide synthase) as 2; selectivity for nNOS over iNOS is half of that for 2, but the selectivity for nNOS over eNOS is almost double that for 2. The corresponding cis-isomer (5) is a weak inhibitor of nNOS. These results are supported by computer modeling.  相似文献   

9.
Massive, multiple fire ant, Solenopsis invicta, stings are often treated aggressively, particularly in the elderly, despite limited evidence of systemic toxicity due to the venom. Over 95% of the S. invicta venom is composed of piperidine alkaloid components, whose toxicity, if any, is unknown. To assess a possible pharmacological basis for systemic toxicity, an alkaloid-rich, protein-free methanol extract of the venom from whole ants was assayed for inhibitory activity on the following nitric oxide synthase (NOS) isoforms, rat cerebellar neuronal (nNOS), bovine recombinant endothelial (eNOS), and murine recombinant immunologic (iNOS). Cytosolic NOS activity was determined by measuring the conversion of [(3)H]arginine to [(3)H]citrulline in vitro. Rat nNOS activity was inhibited significantly and in a concentration-dependent manner by the alkaloid-rich venom extract. For nNOS, enzyme activity was inhibited by approximately 50% with 0.33 +/- 0.06 microg of this venom extract, and over 95% inhibition of the three isoforms, nNOS, eNOS, and iNOS, was found with doses of 60 microg in 60 microl reaction mixture. These results indicate that the alkaloid components of S. invicta venom can produce potent inhibition of all three major NOS isoforms. Isosolenopsin A (cis-2-methyl-6-undecylpiperidine), a naturally occurring fire ant piperidine alkaloid, was synthesized and tested for inhibitory activity against the three NOS isoforms. Enzyme activities for nNOS and eNOS were over 95% inhibited with 1000 microM of isosolenopsin A, whereas the activity of iNOS was inhibited by only about 20% at the same concentration. The IC(50) for each of three NOS isoforms was approximately 18 +/- 3.9 microM for nNOS, 156 +/- 10 microM for eNOS, and >1000 microM for iNOS, respectively. Kinetic studies showed isosolenopsin A inhibition to be noncompetitive with L-arginine (K(i) = 19 +/- 2 microM). The potency of isosolenopsin A as an inhibitor of nNOS compares favorably with the inhibitory potency of widely used nNOS inhibitors. Inhibition of NOS isoforms by isosolenopsin A and structurally similar compounds may have toxicological significance with respect to adverse reactions to fire ant stings.  相似文献   

10.
A series of 1,6-disubstituted indoline derivatives were synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS) designed to mitigate the cardiovascular liabilities associated with previously reported tetrahydroquinoline-based selective neuronal NOS inhibitors due to higher lipophilicity ( J. Med. Chem. 2011 , 54 , 5562 - 5575 ). This new series produced similar potency and selectivity among the NOS isoforms and was devoid of any cardiovascular liabilities associated with QT prolongation due to hERG activity or endothelial NOS mediated vasoconstriction effect. The SAR studies led to the identification of cis-45, which was shown to reverse thermal hyperalgesia in vivo in the spinal nerve ligation model of neuropathic pain with excellent safety profile (off-target activities at 80 CNS related receptors/ion channels/transporters). The results presented in this report make cis-45 as an ideal tool for evaluating the potential role of selective nNOS inhibitors in CNS related disorders where excess NO produced by nNOS is thought to play a crucial role.  相似文献   

11.
The roles of individual nitric oxide synthases (NOS) in anthracycline-related cardiotoxicity are not completely understood. We investigated the effects of a chronic treatment with doxorubicin (DOX) on knockouts of the individual NOS isozymes and on transgenic mice with myocardial overexpression of eNOS. Fractional shortening (FS) was reduced in untreated homozygous nNOS and iNOS knockouts as well as in eNOS transgenics. DOX-induced FS decrease in wild-type mice was attenuated only in eNOS knockouts, which were found to overexpress nNOS. No worsening of contractility was observed in DOX-treated eNOS transgenics and iNOS knockouts. Although the surviving DOX-treated nNOS knockouts exhibited no further impairment in contractility, most (70%) animals died within 7 weeks after treatment onset. In comparison to untreated wild-type hearts, the nitric oxide (NO) level was lower in hearts from DOX-treated wild-type mice and in all three untreated knockouts. DOX treatment had no effect on NO in the knockouts. These data indicate differential roles of the individual NOS in DOX-induced cardiotoxicity. Protection against DOX effects conferred by eNOS deletion may be mediated by a compensatory overexpression of nNOS. NOS inhibition-based prevention of anthracycline-induced cardiotoxicity should be eNOS-selective, simultaneously avoiding inhibiting nNOS.  相似文献   

12.
Nitric oxide (NO), a molecular messenger synthesized by nitric oxide synthase (NOS) from L-arginine and molecular oxygen, is involved in a number of physiological and pathological processes in mammalians. Three structurally distinct isoforms of NOS have been identified: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). Although NO mediates several physiological functions, overproduction of NO by nNOS has been reported in a number of clinical disorders including acute (stroke) and chronic (schizophrenia, Alzheimer s, Parkinson s and AIDS dementia) neurodegenerative diseases, convulsions and pain; overproduction of NO by iNOS has been implicated in various pathological processes including septic shock, tissue damage following inflammation and rheumatoid arthritis. On the contrary, NO produced by eNOS has only physiological roles such as maintaining physiological vascular tone. Accordingly, selective inhibition of nNOS or iNOS vs eNOS may provide a novel therapeutic approach to various diseases; in addition selective inhibitors may represent useful tools for investigating other biological functions of NO. For these reasons, after the identification of N-methyl-L-arginine (L-NMA) as the first inhibitor of NO biosynthesis, design of selective NOS inhibitors has received much attention. In this article the recent developments of new molecules endowed with inhibitory properties against the various isoforms of NOS are reviewed. Major focus is placed on structure-activity-selectivity relationships especially concerning compounds belonging to the non-amino acid-based inhibitors.  相似文献   

13.
To clarify the presence of cross-talk between H(2)S and NO, we investigated effect of NaHS, an H(2)S donor, on activity of recombinant NO synthase (NOS) isoforms. Activity of all nNOS, iNOS and eNOS was inhibited by NaHS (IC(50): 0.13-0.21 mM). In contrast, Na(2)SO(3), L-cysteine and threo-1,4-dimercapto-2,3-butanediol, a reductant, exerted poor inhibition of NOS activity. Increasing concentrations of tetrahydrobiopterin (BH(4)) reversed the NaHS inhibition of nNOS and eNOS, but not iNOS. Our data thus demonstrate inhibition of three NOS isoforms by NaHS/H(2)S, and suggest involvement of interaction of NaHS/H(2)S with BH(4) in inhibition of nNOS and eNOS, but not iNOS.  相似文献   

14.
The role of endogenous nitric oxide in regulating platelet function in vivo is incompletely understood. The enzymic and anatomic sources of bioactive NO remain unclear and the consequences of the differences in endothelial function between males and females to platelet responsiveness are not known. We employed a mouse model of platelet thromboembolism to assess platelet aggregation in vivo along with supporting in vitro studies to investigate these issues. Pharmacological nitric oxide synthase (NOS) inhibition protracted the duration of thromboembolic responses to ADP (adenosine diphosphate) and enhanced in vivo platelet aggregation following activation of the coagulation cascade. Collagen induced in vivo platelet aggregation was enhanced in female eNOS(-/-) mice and the NOS inhibitor L-NAME (Nω-Nitro-l-arginine methyl ester hydrochloride) potentiated collagen induced thromboembolism although selective iNOS and nNOS antagonists had no effect. None of the NOS inhibitors tested had significant effects on platelet aggregation in isolated whole blood. In conclusion, endogenous NO derived from eNOS in the vascular endothelium is a critical regulator of platelet function in vivo in both males and females with negligible roles of iNOS and nNOS. Despite the expression of NOS enzymes in circulating blood elements, there is no evidence of a functional role of endogenous NO from these cells in regulating platelets. eNOS and its up- and down-stream mediators are therefore potential anti-thrombotic targets.  相似文献   

15.
目的 研究一氧化氮合成酶在大鼠坐骨神经中的表达。方法 选用 SD大鼠 2 0只 ,其中 10只的坐骨神经用于 RT- PCR和 Western Blot的测定 ,另外 10只的坐骨神经用于免疫组织化学染色 ,通过这三种方法来观察一氧化氮合成酶是否在坐骨神经中存在以及它的分布状况。结果 经 RT- PCR获得 n NOS,e NOS和 i NOS。Western Blot显示在坐骨神经中一个 15 5 0 0 0的蛋白与大鼠脑的 n NOS阳性对照一起迁移 ,一个 140 0 0 0的蛋白与内皮细胞的 e NOS阳性对照一起迁移 ,而 i NOS未能检测。免疫组织化学染色显示在雪旺氏细胞和多数轴突中存在n NOS、e NOS只是位于坐骨神经上的血管内皮细胞中。神经中无 i NOS显色。结论 一氧化氮合成酶存在于正常大鼠的坐骨神经中 ,可能作为一种神经递质执行着重要的生物学功能。  相似文献   

16.
ZX-5对一氧化氮合酶表达和活性的调节作用   总被引:4,自引:2,他引:2  
目的前期研究表明ZX-5中的一个异构体(R,R)ZX-5,能够促进脉络膜血流和增加NO的释放量。该研究是为了进一步阐明ZX-5是通过上调哪种一氧化氮合酶(NOS)的表达或活性而达到增加NO释放和促进脉络膜血流的作用。方法 Western blot和一氧化氮合酶活性检测试剂盒测定不同一氧化氮合酶表达和酶活性。结果 (S,S)ZX-5能够上调诱导型一氧化氮合酶(iNOS)表达,而不影响内皮型一氧化氮合酶(eNOS)和神经型一氧化氮合酶(nNOS)表达;而(R,R)ZX-5能够上调eNOS表达,并且iNOS表达也有轻微上调作用,但是不改变nNOS的表达;酶活性测定研究发现(S,S)ZX-5仅仅能通过激活iNOS酶活而增加NO释放量;而(R,R)ZX-5也仅仅能够通过激活eNOS的酶活而增加NO释放。结论和(S,S)ZX-5相比,(R,R)ZX-5能够通过上调eNOS表达和活力,增加NO的释放,进而增加脉络膜的血流;因此(R,R)ZX-5也更加适合开发为治疗年龄相关性黄斑变性的药物。  相似文献   

17.
18.
19.
目的:探讨正常大鼠肾组织一氧化氮合成酶mRNA(NOSmRNA)表达的特点。方法 采用组织细胞原位杂交及图像分析技术,对正常大鼠肾组织中 NOS,NOSey NOSRNA表达的定位及含量进行了检测。同时测定肾组织NOS总活性。结果eNOS,nNOS及iNOS在正常肾组织中均有表达。eNOS和nNOS主要分布于肾小球及血管内皮,其中eNOS表达最丰富,髓质明显多于皮质。iNOS含量较低,且仅分布于皮质远,近曲小管上皮,结论 生理情况下,肾组织cNOS的表达量主要决定于eNOS的表达,其高表达对维持肾脏正常功能具有重要作用。  相似文献   

20.
Triclosan (TCS) is a well-known compound that can be found in disinfectants, personal care products. There is one publication concerning the involvement of PPARγ in the mechanism of action of TCS. It is known that activation of PPARγ regulates the expression of the NF-κB mediated inflammation by acting on nitric oxide synthase (NOS) genes. However, there are no studies demonstrating a relationship between the effects of TCS on the PPARγ signaling pathway, changes in NF-κB expression, and NOS isoform synthesis. Therefore, the aim of this study was to evaluate the effect of TCS on the expression of PPARγ, NF-κB, nNOS, iNOS, and eNOS in mouse neocortical neurons. In addition, the effects of co-administration of synthetic alpha-naphthoflavone (αNF) or beta-naphthoflavone (βNF) flavonoids and triclosan were investigated. Our results show that TCS alters PPARγ, NF-κB, iNOS, and eNOS expression in mouse neurons in vitro. After 48 h of exposure, TCS increased PPARγ expression and decreased NF-κB expression. Moreover, under the influence of TCS, the expression of iNOS was increased and at the same time the expression of nNOS was decreased, which was probably caused by high levels of ROS. The experiments have shown that both αNF and βNF are able to modulate the effects of TCS in primary cultures of mouse cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号