首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
The postnatal dendritic maturation of small field type 1 (SF1), medium field type 1 (MF1) and type 2 (MF2), and large field type 1 (alpha) ganglion cells in the rabbit retina was compared qualitatively and quantitatively. Dendritic tree structure was revealed by intracellular injection of the fluorescent dye Lucifer yellow, and the stained cells were then morphologically separated on the basis of some area, dendritic field size, total dendritic length, number of nodes, and mean internodal distance. Cells in the visual streak and an area inferior to the streak were sampled from retinae between birth and adulthood. The dendrites of all studied classes of rabbit ganglion cells were extensively covered by short spine-like appendages. As in cat retina, many dendritic spines disappeared by the end of the third postnatal week, at which stage the adult dendritic form could be recognised. However, there was differential loss in the number of spines from the dendrites of the four cell classes. In both the streak and inferior retina, adult SF1 cells had the same number of spines/dendritic unit length throughout postnatal life, whereas MF1 and MF2 ganglion cells lost at least half of their number of spines/unit dendritic length by maturity. Alpha ganglion cells lost virtually all their dendritic spines by adulthood. In both retinal locations, there were small changes in the number of nodes (dendritic branch points) of small field and medium field ganglion cells but alpha cells lost between 70 to 80% of their nodes by adulthood. The dendrites of ganglion cells with contrasting morphology thus undergo differential remodelling during postnatal maturation. The completion of the period of dendritic remodelling coincided with the first appearance of adult receptive field organisation, suggesting that structural remodelling, in particular that involving dendritic spines, may be associated with the development of the cell's synaptic circuitry. The dendrites of neighbouring postnatal ganglion cells in the rabbit retina also grow by different amounts; the increase in dendritic tree area, total dendritic length, and mean internodal distances of alpha cells exceeded that of small field and medium field cells in corresponding retinal positions. This implies that retinal dendrites elongate by active growth rather than by "passive stretching."  相似文献   

2.
Investigation of the morphology of ganglion cells in the cat retina has shown that a remarkable reduction in the number of dendritic spines and branches occurs during development of the alpha and beta cell classes. To learn whether dendritic remodelling represents a generalized mechanism of mammalian retinal ganglion cell development, we have examined the morphology of ganglion cells in the retina of the developing rat. The present study has concentrated on type II cells, which retain a great number of dendritic spines and branches in the adult and comprise a large proportion of the population of rat retinal ganglion cells. To reveal fine dendritic and axonal processes, Lucifer yellow was injected intracellularly in living retinae maintained in vitro. Size and complexity of the dendritic trees were found to increase rapidly during an intial stage of development lasting from late fetal life until approximately postnatal day 12 (P12). Dendrites and axons of immature ganglion cells expressed several transient morphological features comprising an excessive number of dendritic branches and spine-like processes, and short, delicate axonal sidebranches. The following developmental stage was characterized by a remarkable decrease in the morphological complexity of retinal ganglion cells and a slowed growth of their dendritic fields. The number of dendritic branches and spines of types I and II retinal ganglion cells declined after P12 to reach a mature level by the end of the first postnatal month. Thus, even cells that retain a highly complex dendritic tree into the adult state undergo extensive remodelling. These results suggest that regressive modifications at the level of the dendritic field constitute a generalized mechanism of maturation in mammalian retinal ganglion cells. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The synaptic organization of starburst amacrine cells was studied by electron microscopy of individual or overlapping pairs of Golgi-impregnated cells. Both type a and type b cells were analyzed, the former with normally placed somata and dendritic branching in sublamina a, and the latter with somata displaced to the ganglion cell layer and branching in sublamina b. Starburst amacrine cells were thin-sectioned horizontally, tangential to the retinal surface, and electron micrographs of each section in a series were taken en montage. Cell bodies and dendritic trees were reconstructed graphically from sets of photographic montages representing the serial sections. Synaptic inputs from cone bipolar cells and amacrine cells are distributed sparsely and irregularly all along the dendritic tree. Sites of termination include the synaptic boutons of starburst amacrine cells, which lie at the perimeter of the dendritic tree in the "distal dendritic zone." In central retina, bipolar cell input is associated with very small dendritic spines near the cell body in the "proximal dendritic zone." The proximal dendrites of type a and type b cells generally lie in planes or "strata" of the inner plexiform layer (IPL), near the margins of the IPL. The boutons and varicosities of starburst amacrine cells, distributed int he distal dendritic zone, lie in the "starburst substrata," which occupy a narrow middle region in each of the two sublaminae, a and b, in rabbit retina. As a consequence of differences in stratification, proximal and distal dendritic zones are potentially subject to different types of input. Type b starburst amacrines do not receive inputs from rod bipolar terminals, which lie mainly in the inner marginal zone of the IPL (stratum 5), but type a cells receive some input from the lobular presynaptic appendages of rod amacrine cells in sublamina a, at the border of strata 1 and 2. There is good correspondence between boutons or varicosities and synaptic outputs of starburst amacrine cells, but not all boutons gave ultrastructural evidence of presynaptic junctions. The boutons and varicosities may be both pre- and postsynaptic. They are postsynaptic to cone bipolar cell and amacrine cell terminals, and presynaptic primarily to ganglion cell dendrites. In two pairs of type b starburst amacrine cells with overlapping dendritic fields, close apposition of synaptic boutons was observed, raising the possibility of synaptic contact between them. The density of the Golgi-impregnation and other technical factors prevented definite resolution of this question. No unimpregnated profiles, obviously amacrine in origin, were found postsynaptic to the impregnated starburst boutons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The areas of the ganglion cell dendritic trees were determined in Golgistained, flatmounted retinas of crucian carp ranging in age from one summer to 7 years. The dendritic trees of small ganglion cells (S-GC), forming the majority of retinal ganglion cells, add new branches as the retina grows. The increase in dendritic tree area exactly compensates for the decrease in ganglion cell density during growth of the eye so that the number of dendritic trees covering a particular point remains constant. While the retinal diameter increases by a factor of 2.5, the mean diameter of the S-GC dendritic fields increases by a factor of 1.9 and the visual angle covered by one S-GC dendritic tree decreases from 1.6° to 1.2°. The number of branching points of the S-GC dendrites is significantly higher in the ventral retina than in the dorsal. In general the dendrites of the S-GCs tend to grow towards the retinal margin. Dendritic orientation patterns of large (LGC) and large displaced (LDGC) ganglion cells closely resemble those of the amacrines, being oriented parallel to the retinal margin over a wide peripheral region, while the SGCs rapidly lose their tangential orientation. The dendrites of the SGCs are restricted mainly to the proximal sublayer of the inner plexiform layer, suggesting they are ON-cells, while LGC, LDGC, and amacrine cell dendrites are distributed in depth bimodally. As determined from Golgi-stained sections the crucian carp has the same basic IPL organization as the carp and cat.  相似文献   

5.
The dendrites of ganglion cells in the mammalian retina become extensively remodelled during synapse formation in the inner plexiform layer. In particular, after birth in the cat, many short spiny protrusions are lost from the dendrites of ganglion cells during the time when ribbon, presumably bipolar, synapses appear in the inner plexiform layer and when conventional, presumed amacrine, synapses increase significantly in number. It has therefore been postulated that these transient spines may be the initial or preferred substrates for competitive interactions between amacrine or bipolar cell terminals that subsequently result in the formation of appropriate synapses onto the ganglion cells. If so, the majority of synapses made onto developing ganglion cells should be found on these dendritic spines. To test this hypothesis, we determined the synaptic connectivity of identified ganglion cells in the postnatal cat retina during the period of peak spine loss and synapse formation. The dendritic trees of ganglion cells were intracellularly filled with Lucifer yellow that was subsequently photo-oxidized into an electron-dense product suitable for electron microscopy. In serial reconstructions of the dendrites of a postnatal day 11 (P11) alpha ganglion cell and a P14 beta ganglion cell, conventional and ribbon synapses were found predominantly on dendritic shafts. Only three out of a total of 341 dendritic spines from the two cells received direct presynaptic input, all of which were conventional synapses. Thus, our observations suggest that the transient dendritic spines are not the preferred postsynaptic sites as previously suspected. However, it is possible that these structures play a different role in synaptogenesis, such as mediating interactions between retinal neurons that may lead to cell-cell recognition, a necessary step prior to synapse formation at the appropriate target sites (Cooper and Smith, Soc. Neurosci. Abstr. , 14 , 893, 1988).  相似文献   

6.
We have studied the development of retinal ganglion cell morphology in the cat's visual system from early fetal to postnatal times. In particular, we have examined the contribution of growth and remodeling to the establishment of mature retinal ganglion cell form. Ganglion cells were identified by retrograde labeling with rhodamine latex microspheres deposited in the superior colliculus and lateral geniculate nucleus between embryonic day 34 (E34; birth = E65) and adulthood. To reveal the fine morphological details of retrogradely labeled ganglion cells, 48 hr later Lucifer yellow was injected intracellularly in living retinae that had been dissected and maintained in vitro. Our results show that at E35-37 the majority of ganglion cells are very simple in morphology, with a few dendritic processes that are generally aligned in a radial direction towards or away from the optic disc. During the ensuing 2 week period, there is a progressive growth and elaboration of dendrites. By E50, some ganglion cells resembling the adult alpha, beta, and gamma classes can be identified based on comparisons of the appearance and dimensions of their dendritic trees and somata with neighboring filled cells. However, ganglion cell dendrites and axons at this age express several transient morphological features. The axons of ganglion cells give rise to delicate processes originating from the intraretinal portion of the axon, including side branches, present in about half of the cells, and occasionally bifurcations that give rise to axon collaterals. These transient axonal features are present throughout development, including the neonatal period; no axon collaterals were observed after postnatal day 15, while axonal side branches persisted even at P31 but were gone by adulthood. Ganglion cell dendrites exhibit excessive branches and exuberant somatic and dendritic spines. Quantitative analysis of these processes shows that after E45 dendritic trees increase dramatically in complexity, reaching the peak number of spines and branch points by the first week of postnatal life. The number of dendritic processes then falls abruptly to reach near-adult levels by the end of the first postnatal month. Even though dendritic morphology closely resembles that seen in the adult at this age, ganglion cell bodies and dendrites must continue to grow to reach their adult size.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The dendritic morphology of cells in the lateral superior olivary nucleus was studied with the Golgi method in adult and postnatal ferrets. The lateral superior olivary nucleus in the adult ferret is a convoluted structure with an M-shape in frontal sections. The major cell type appears to have disk-shaped dendritic trees. Most dendritic trees appear to be approximately orthogonal to the curved medial-lateral axis of the nucleus. Depending on their position in the limb and on the plane of section with respect to the dendritic tree, the disk-shaped cells are either bipolar or radiate in orientation. One subclass of disk-shaped cells has secondary dendritic branches that end as tufts of tendril-like processes. In a second subclass of cells, the dendrites exhibit several orders of dichotomous branching and lack obvious tufts of terminal processes. Marginal cells are observed at the border of the nucleus and have dendrites restricted to the margins of the cell plate. The bipolar orientation of disk-shaped cells orthogonal to the axis of the limbs is already apparent by the time of birth. Transient spines and other appendages are abundant on somata and dendrites during the first postnatal week. By the end of the first postnatal month only distal appendages are found. Tufts of fine tendril-like processes appear at the ends of dendrites between postnatal days 28 and 56.  相似文献   

8.
Polyaxonal amacrine cells are a new class of amacrine cell bearing one to six branching, axon-like processes, closely resembling the axons of Golgi type II cells found elsewhere in the central nervous system. Of the four types of polyaxonal amacrine cell that we have recognized in rabbit retina, three have been described previously in brief communications, and one is the subject of this paper. Type 1 polyaxonal (PA1) amacrine cells have larger cell bodies than most amacrine cells in Golgi preparations, averaging about 13 microns in diameter. These are typically positioned interstitially in the middle of the inner plexiform layer (IPL), although some are also found in the amacrine and ganglion cell layers. Axons and dendrites are broadly stratified in the middle of the IPL, in the vicinity of the a/b sublaminar border. Sparsely branching dendrites have a conventional appearance, branching at a narrow angle, and giving rise to smaller daughter branches, which taper gradually toward their termination. An unusual feature of the dendrites is the zig-zag course of some terminal branches. Clusters of small, pedunculated spines are common on proximal dendrites, and spines are virtually absent on axons. Axons emerge from proximal dendrites within 50 microns of the soma, and more rarely from the soma, in a tapering initial segment, commonly interrupted by one or two large swellings. Subsequent branching is at a wide angle, and the fine caliber is maintained in the transition from parent to daughter branches. The uniform thickness of the axonal branches is interrupted at intervals by boutons en passant. Although the extent of the dendritic tree is large, exceeding 500 microns in radial extent from the cell body, for cells a few millimeters distant from the visual streak, the axonal tree is much larger, and its radial extent is measured in millimeters. PA1 amacrine cells are believed to be polarized in their functional organization, with a primarily recipient dendritic tree and a primarily transmissive axonal tree. PA1 amacrine cells co-stratify with nab cone bipolar cells and with certain small tufted amacrine and ganglion cells at the a/b sublaminar border. The co-stratification of both axons and dendrites at the a/b sublaminar border of the IPL suggests that PA1 amacrine cells are important modulators of neural activity in the middle of the IPL, affecting both ON and OFF responses, and perhaps ON-OFF cells selectively.  相似文献   

9.
The development of neuropeptide Y-like (NPY-LI) and substance P-like (SP-LI) immunoreactive neurons was studied in retinas of Xenopus laevis from young tadpole through to adult animals. In adult retina these neuropeptides are present in wide-field amacrine cells located in the inner nuclear layer and the ganglion cell layer of the retina. Retinal wholemount preparations and sectioned material showed that immunoreactive cells appeared during early larval life and NPY-LI occurred earlier than SP-LI cells. The primary dendritic branching of NPY-LI neurons appeared from early larval life whilst SP-LI was evident in dendrites from mid-larval stages. In postmetamorphic animals the numbers of immunoreactive cells increased in proportion to retinal area growth with a relatively constant cell density of about 35 cells/mm2 for SP-LI and 45 cells/mm2 for NPY-LI. The maturation of dendritic morphology of both NPY- and SP-LI amacrine cells appeared later in larval development than the appearance of immunoreactivity in cell somas. However, the sequence of expression of NPY- or SP-LI and their dendritic maturation was different for the two classes of amacrine cells. It is suggested that the maturation of dendritic fields of amacrine cells is complete just prior to metamorphosis, consistent with the postmetamorphic onset of electrophysiological features of ganglion cells attributed to amacrine cells.  相似文献   

10.
Polyaxonal (PA) amacrine cells are a new class of amacrine cell bearing one to six branching, axon-like processes that emerge from the cell body or dendritic trees within 50 microns of the cell body. These slender processes of uniform caliber branch at right angles and in many respects closely resemble the axons of Golgi type II cells found elsewhere in the brain. Of the four types of polyaxonal amacrine cell that we have recognized in rabbit retina, two have been described previously in brief communications. One of these, the PA1 amacrine cell with its interstitially displaced cell body, located in the inner plexiform layer (IPL), has been analyzed extensively in two preceding reports. This paper concerns PA2, PA3, and PA4 amacrine cells. Type 2 polyaxonal (PA2) amacrine cells, identified in Golgi preparations of whole-mounted rabbit retinas, have smaller cell bodies (9-14 microns) than the other three types and these are always displaced to the ganglion cell layer (GCL) or the inner border of the inner plexiform layer (IPL). The dendritic fields of PA2 cells are also smaller than those of other PA amacrine cells, and most of their sparse dendritic branching is narrowly stratified at the border of strata (S) 4 and 5. Some members of this more heterogeneous amacrine cell "type" are bistratified, however, and more highly branched with terminal branches rising to end in S1. PA2 amacrine cells bear a scattering of small dendritic spines and may also exhibit complex dendritic appendages arising at the ends of terminal branches in proximal regions of the dendritic tree. PA2 cells emit one to three axons from the proximal dendritic tree, and about half of the cells bear a single axon. Type 3 polyaxonal (PA3) amacrine cells resemble PA1 cells in the large size of their cells bodies (11-16 microns) and dendritic fields, but differ from the latter in placement of cell bodies, which is in the GCL, and dendritic and axonal stratification, which is multistratified, ranging from S4 to S1, with a concentration in S3 or S4 and a variable contribution to S1. PA3 cells differ from PA1 cells in several other respects, including dendritic branching which occurs at higher frequency and is biased toward temporal retina, and in characteristic bristling dendritic spines, clustered in the intermediate regions of the dendritic tree, that are longer, more variable in appearance and more tightly clustered than the small, uniform spines of PA1 cells that are clustered on proximal dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Numerous neurotransmitters have been studied in detail in the developing retina. Almost all known neurotransmitters and neuromodulators were demonstrated in vertebrate retinas using formaldehyde-induced fluorescence, uptake autoradiography or immunohistochemistry procedures. Serotoninergic (5HT) amacrine neurons were described in the inner nuclear layer (INL) of the retina with their dendrites spreading within the inner plexiform layer (IPL). The present work describes the morphological pattern of development of serotoninergic amacrine neurons with a stratified dendritic branching pattern in the chick retina from embryonic day 12 to postnatal day 7. Serotoninergic-bipolar neurons are also described. 5HT-amacrine neurons have round or pear-shaped somata and primary dendritic trees oriented toward the IPL that runs through the INL, showing several varicosities. Secondary dendrites then go through the INL, without any collateral branch. At the outer and inner margin of the IPL the primary and secondary dendrites originate an outer and an inner serotoninergic network, respectively. When the primary dendritic tree reaches the IPL it deflects laterally in sublayer 1—the outer serotoninergic network. Tertiary branches then arise from the secondary dendrite and deflect in the innermost sublayer of the IPL— the inner serotoninergic network. The final pattern of branching of 5HT amacrine cells was present at embryonic day 14 and was completely developed at hatching. Serotoninergic (5HT) bipolar neurons were also present in the INL at hatching. They are weakly immunoreactive and are probably a subset of bipolar cells that accumulate serotonin from the intersynaptic cleft and are not ‘‘true’’ 5HT neurons.  相似文献   

12.
Axon-bearing amacrine cells of the macaque monkey retina   总被引:2,自引:0,他引:2  
A new and remarkable type of amacrine cell has been identified in the primate retina. Application of the vital dye acridine orange to macaque retinas maintained in vitro produced a stable fluorescence in the somata of apparently all retinal neurons in both the inner nuclear and ganglion cell layers. Large somata (approximately 15-20 microns diam) were also consistently observed in the approximate center of the inner plexiform layer (IPL). Intracellular injections of horseradish peroxidase (HRP) made under direct microscopic control showed that the cells in the middle of the IPL constitute a single, morphologically distinct amacrine cell subpopulation. An unusual and characteristic feature of this cell type is the presence of multiple axons that arise from the dendritic tree and project beyond it to form a second, morphologically distinct arborization within the IPL; these cells have thus been referred to as axon-bearing amacrine cells. The dendritic tree of the axon-bearing amacrine cell is highly branched (approximately 40-50 terminal dendrites) and broadly stratified, spanning the central 50% of the IPL so that the soma is situated between the outermost and innermost branches. Dendritic field size increases from approximately 200 microns in diameter within 2 mm of the fovea to approximately 500 microns in the retinal periphery. HRP injections of groups of neighboring cells revealed a regular intercell spacing (approximately 200-300 microns in the retinal periphery), suggesting that dendritic territories uniformly cover the retina. One to four axons originate from the proximal dendrites as thin (less than 0.5 microns), smooth processes. The axons increase in diameter (approximately 1-2 microns) as they course beyond the dendritic field and bifurcate once or twice into secondary branches. These branches give rise to a number of thin, bouton-bearing collaterals that extend radially from the dendritic tree for 1-3 mm without much further branching. The result is a sparsely branched and widely spreading axonal tree that concentrically surrounds the smaller, more highly branched dendritic tree. The axonal tree is narrowly stratified over the central 10-20% of the IPL; it is approximately ten times the diameter of the dendritic tree, resulting in a 100 times greater coverage factor. The clear division of an amacrine cell's processes into distinct dendritic and axonal components has recently been observed in other, morphologically distinct amacrine cell types of the cat and monkey retina and therefore represents a property common to a number of functionally distinct cell types. It is hypothesized that the axon-bearing amacrine cells, like classical neurons,  相似文献   

13.
The postnatal development of a population of superior colliculus projecting retinal ganglion cells with large somata in hamsters aged from postnatal day (P) 4 to adult was studied by the intracellular injection of Lucifer Yellow. This population of cells was interpreted as Type I cells based on their large soma sizes and dendritic morphology resembling that of mature Type I cells. In addition to the growth of the soma and the dendritic field, transient morphological features such as intraretinal axon collaterals and exuberant dendritic spines, but not somatic spines, were frequently observed on this population of cells in hamsters during development. None of them exhibited any intraretinal axon collaterals after P7. The number of transient spine-like processes on dendrites increased from P4 onwards to reach a peak at P16, decreased abruptly within a few days after the peak, and stabilised to reach the adult level by P30. These developing cells attained the maximum number of dendritic branches by P16 and there seems to be little, if any, reduction in the number of branch points after this time point. In addition, the length of individual branches of dendrites was not increased excessively during development and then shortened during maturation. Thus, the dendritic remodeling of these cells after P16 seems to be mainly the increase of the length of dendrites and the removal of exuberant dendritic spines.  相似文献   

14.
One of the fundamental features of the visual system is the segregation of neural circuits that process increments and decrements of luminance into ON and OFF pathways. In mature retina, the dendrites of retinal ganglion cells (RGCs) in the inner plexiform layer (IPL) of retina are separated into ON or OFF sublamina-specific stratification. At an early developmental stage, however, the dendrites of most RGCs are ramified throughout the IPL. The maturation of RGC ON/OFF dendritic stratification requires neural activities mediated by afferent inputs from bipolar and amacrine cells. The synchronized spontaneous burst activities in early postnatal developing retina regulate RGC dendritic filopodial movements and the maintenance or elimination of dendritic processes. After eye opening, visual experience further remodels and consolidates the retinal neural circuit into mature forms. Several neurotransmitter systems, including glutamatergic, acetylcholinergic, GABAergic, and glycinergic systems, might act together to modulate the RGC dendritic refinement. In addition, both the bipolar cells and cholinergic amacrine cells may provide laminar cues for the maturation of RGC dendritic stratification.  相似文献   

15.
The morphology, dendritic branching patterns, and dendritic stratification of retinal ganglion cells have been studied in Golgi-impregnated, whole-mount preparations of rabbit retina. Among a large number of morphological types identified, two have been found that correspond to the morphology of ON and ON-OFF directionally selective (DS) ganglion cells identified in other studies. These cells have been characterized in the preceding paper in terms of their cell body size, dendritic field size, and branching pattern. In this paper, the two kinds of DS ganglion cell are compared in terms of their levels of dendritic stratification. They are compared with each other and also with examples of class III.1 cells, defined in the preceding paper with reference to our previous studies. Studies employing computer-aided, 3D reconstruction of dendritic trees, as well as analysis of a pair of ON DS and ON-OFF DS ganglion cells with overlapping dendritic trees show that the two types of DS ganglion cell partly co-stratify in the middle of sublamina b (stratum 4). The report that some ON DS ganglion cells extend a few dendrites into sublamina a is confirmed. The study of pairs of ON-OFF DS ganglion cells and starburst amacrine cells with overlapping dendritic trees reveals a precise co-stratification of these two cell types, and many points of close apposition of starburst boutons with ON-OFF DS ganglion cell dendrites in both sublaminae of the inner plexiform layer (IPL). This is confirmed by high-resolution light microscopy and by electron microscopy. It is possible to conclude, therefore, that ON DS are also partly co-stratified with type b starburst (cholinergic) amacrine cells, and are apparently also partly co-stratified with type a starburst amacrine cells, when occasional dendrites rise to that level. The co-stratification of the two kinds of DS ganglion cell is consistent with the sharing of some inputs in common, including some cone bipolar cell inputs. The co-stratification of both with starburst amacrine cells agrees with the physiological demonstration of the powerful pharmacological effects upon ON and ON-OFF DS ganglion cells reported for cholinergic agonists. The major difference in the dendritic stratification of bistratified ON-OFF DS ganglion cells and generally unistratified ON DS ganglion cells is consistent with the bisublaminar organization of ON and OFF pathways in the IPL. The problem of occasional branches of ON DS cells in sublamina a is discussed in terms of a threshold for OFF responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The ganglion cell dendrites of the rat retina were investigated by means of the strongly fluorescent, non-polar carbocyanine dye 1,1-dioctadecyl-3,3,3',3'-tetramethyl-indocarbodyanine perchlorate (diI or diI-C18-3 or D282) which was taken up by retinofugal axons and transported in the retrograde direction. The dye completely outlined the somata, the axons and the dendritic trees of several retinal ganglion cells and allowed qualitative and quantitative investigations. By means of this labeling technique, the diameters were determined in 272 dendrites and somata of various ganglion cell sizes. A comparison of the measurements with those reported in the literature revealed that the diI could be taken up by all classes of retinal ganglion cells. The most frequently labeled cells were those of class II, which have small to middle-sized perikarya (16.7 +/- 2.5 microns in diameter) and small to middle-sized dendritic trees (187 +/- 70 microns in diameter) with a high branching frequency (88 +/- 19 branching points). Retinal ganglion cells of class I were less frequent and have large perikarya (21.9 +/- 3.4 microns in diameter) with large dendritic trees (318 +/- 55 microns in diameter) and medium branching frequency (60 +/- 19 branching points). Class III cells which were described incompletely in the literature, appeared to be small to middle-sized in their perikaryal diameter (15.9 +/- 2.5 microns) but have large dendritic trees (299 +/- 63 microns in diameter) and a low branching frequency (40 +/- 10 branching points). In about 10% of the retinal ganglion cells with completely filled dendritic fields, the somata were situated outside the dendritic extensions, as viewed on the whole mounted retina. These "asymmetric" retinal ganglion cells appeared to belong to class II cells and were evenly distributed throughout the entire retina and were not related to neighboring blood vessels. The orientation of the asymmetric dendrites was random in relation to the optic disc. The axons of asymmetric retinal ganglion cells were almost always oriented opposite to the direction of the dendritic trees. If the dendrites extended towards the optic disc, the proximal parts of the corresponding axons were oriented towards the periphery of the retina, turning then at 180 degrees to the optic disc. Less than 1.5% of the retrogradely filled cells were displaced ganglion cells and extended dendritic trees within the deep inner plexiform larger.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Qualitative and computer-assisted analyses were performed on Golgi-impregnated neurons which were serially reconstructed in 3 dimensions. Analysis of the temporal pattern of growth indicated that the initial outgrowth, formation of the adult number of dendrites and virtually all dendritic branching occurred in the prenatal period. About 40% of the total growth of the dendrites occurred in the postnatal period. Maturation was completed by 90-120 days. Analyses of the mode of dendritic growth and of the morphological changes associated with growth revealed two significant findings. First, the outward expansion of the dendritic tree was not due to the addition of new branches but resulted from the elongation of terminal and non-terminal branches. Thus, growth occurred between branch points as well as on terminal portions of dendrites. Second, a transient population of spines was found during the period of postnatal growth. These spines may play an integral role in synaptogenesis and dendritic branch elongation. We suggest that developing afferent fibers initially contact spines. As spines retract, axon terminals are brought to the shaft of the dendrites. Further, the dendrites elongated because membrane associated with spines is incorporated into the shafts of dendrites. Striopallidal projections and other afferents may provide an important trophic influence for the normal dendritic differentiation of pallidal neurons by inducing the elaboration or retraction of spines.  相似文献   

18.
A new technique of retrograde labeling of ganglion cells with horseradish peroxidase (HRP) has been developed, based on orbital injections of HRP combined with a detergent (lysolecithin). When injections are followed by an appropriate survival time, dense staining of a small number of widely scattered cells results in Golgi-like filling of each neuron. This technique, as well as a variation which causes mass staining of ganglion cell somas, has been used to analyze the morphology of mudpuppy retinal ganglion cells. Morphological analysis has relied on computer reconstruction techniques for display, analysis of dendritic sublamination pattern, and morphometric analysis of the dendrites and soma. Based on morphological criteria, the mudpuppy retina contains a rich variety of ganglion cell types which vary according to soma placement, dendritic field size, polar vs. non-polar dendritic fields, dendritic branching pattern, and dendritic sublamination. The mudpuppy retina contains both conventional and displaced ganglion cells: the latter constitute about 15% of the total ganglion cell population. Both conventional and displaced ganglion cells show morphological diversity of dendritic sublamination branching pattern; cells from each group have a dendritic branching pattern confined to either distal or proximal divisions of the inner plexiform layer, whereas other cells have dendrites which branch in both sublaminae. Using morphological criteria, two subtypes of ganglion cells were identified, which have a distinctive branching pattern and dendritic tree size. The size and distribution of ganglion cell somas were analyzed from retinas in which mass staining of ganglion cells was present. The total number of ganglion cells was estimated at approximately 14,500 cells per retina. There was a tendency for soma size and density to decrease near the optic disk. The somas of displaced ganglion cells are smaller than their conventional counterparts, at the same retinal eccentricity. The somas of all HRP filled cells swell when compared to those of unstained fixed and freshly dissected retinas. The degree of swelling is proportional to the length of exposure to HRP. Cell swelling was evident for both retrograde labeling and intracellularly injected HRP. This artifact of HRP staining could influence the interpretation of studies in which quantitative differences in soma sizes are based on the use of HRP labeling.  相似文献   

19.
The dopaminergic amacrine cell   总被引:2,自引:0,他引:2  
The detailed morphology of the dopaminergic amacrine cell type has been characterized in the macaque monkey retina by intracellular injection of horseradish peroxidase (HRP). This cell type was recognized by its large soma in an in vitro, wholemount preparation of the retina stained with the fluorescent dye, acridine orange. HRP-fills revealed a large, sparsely branching, spiny dendritic tree and a number of extremely thin, axon-like processes that arose from the soma and proximal dendrites. The axon-like processes were studded with distinct varicosities and were traced for up to 3 mm beyond the dendritic tree. The true lengths of the axon-like processes were greater than 3 mm, however, because the HRP reaction product consistently diminished before an endpoint was reached. Both the dendrites and the axon-like processes were narrowly stratified close to the outer border of the inner plexiform layer, although in a few cases single axon-like processes projected into the outer nuclear and outer plexiform layers. The HRP-filled amacrines appeared equivalent to a subpopulation of neurons that are intensely immunoreactive for tyrosine hydroxylase (TH). TH-immunoreactive cells showed a nearly identical soma size and dendritic field size range, the same pattern of dendritic branching and spiny morphology, and also gave rise to distinct axon-like processes from both the soma and proximal dendrites. To test this correspondence more directly, the large acridine stained cells were injected with Lucifer Yellow and the retina was subsequently processed for TH immunoreactivity using diaminobenzidine as the chromagen. In all cases Lucifer Yellow injected cells also showed intense TH immunoreactivity. Spatial densities of the TH amacrine cells were therefore used to calculate coverage factors for the dendritic trees and for the axon-like components of the HRP-filled cells. The axon-like processes showed a coverage factor of at least 300, about 100 times that of the dendritic fields. This great overlap could be directly observed in TH-immunoreacted retinal wholemounts as a dense plexus of fine, varicose processes. The density of the TH plexus is greater than the density predicted from the lengths (1-3 mm) of the HRP-filled axon-like processes however, and suggests that the axon-like processes have an actual length of about 4-5 mm.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The morphology, dendritic stratification and laminal position of the soma of retinal ganglion cells were analyzed in Golgi preparations and in other rabbit retinas containing cells backfilled from the superior colliculus. Only one type, among 40 Golgi-impregnated types identified, always had its cell body displaced to the amacrine cell sublayer of the inner nuclear layer. The displaced ganglion cell of rabbit retina has a small cell body, very wide dendritic field with sometimes unbranched dendrites extending up to a millimeter from the cell body. The dendritic tree is narrowly stratified just under the amacrine cell bodies in stratum 1, and therefore does not co-stratify with starburst (cholinergic) amacrine cells, but rather with dopaminergic amacrine cells. Its correlate among ganglion cells backfilled from tectum is apparently a very sparse population of small-bodied cells mixed with a variable population of misplaced ganglion cells of varying size and type. The authentic displaced ganglion cell of rabbit retina, unlike the large displaced ganglion cell of birds, is apparently not a directionally selective ganglion cell, and its functional role in vision is presently unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号