首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porcine reproductive and respiratory syndrome virus: origin hypothesis   总被引:3,自引:0,他引:3  
Porcine reproductive and respiratory syndrome is a serious swine disease that appeared suddenly in the midwestern United States and central Europe approximately 14 years ago; the disease has now spread worldwide. In North America and Europe, the syndrome is caused by two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus whose genomes diverge by approximately 40%. My hypothesis, which explains the origin and evolution of the two distinct PRRSV genotypes, is that a mutant of a closely related arterivirus of mice (lactate dehydrogenase-elevating virus) infected wild boars in central Europe. These wild boars functioned as intermediate hosts and spread the virus to North Carolina in imported, infected European wild boars in 1912; the virus then evolved independently on the two continents in the prevalent wild hog populations for approximately 70 years until independently entering the domestic pig population.  相似文献   

2.
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.  相似文献   

3.
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat in swine industry and causes heavy economic losses worldwide. Currently, the available vaccines are the inactivated and attenuated virus vaccines, but the use of PRRSV in their production raises the issue of safety. We developed a chimeric virus-like particles (VLPs) vaccine candidate for PRRSV protection. The chimeric VLPs was composed of M1 protein from H1N1 influenza virus and a fusion protein, denoted as NA/GP5, containing the cytoplasmic and transmembrane domains of H1N1 virus NA protein and PRRSV GP5 protein. Vaccination of BALB/c mice with 10 μg of chimeirc VLPs by intramuscular immunization stimulated antibody responses to GP5 protein, and induced cellular immune response. The data suggested that the chimeric VLP vaccine candidate may provide a new strategy for further development of vaccines against PRRSV infection.  相似文献   

4.
《Vaccine》2022,40(16):2370-2378
Porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) are two of the most common pathogens involved in the porcine respiratory disease complex (PRDC) resulting in significant economic losses worldwide. Vaccination is the most effective approach to disease prevention. Since PRRSV and Mhp co-infections are very common, an efficient dual vaccine against these pathogens is required for the global swine industry. Compared with traditional vaccines, multi-epitope vaccines have several advantages, they are comparatively easy to produce and construct, are chemically stable, and do not have an infectious potential. In this study, to develop a safe and effective vaccine, B cell and T cell epitopes of PRRSV-GP5, PRRSV-M, Mhp-P46, and Mhp-P65 protein had been screened to construct a recombinant epitope protein rEP-PM that has good hydrophilicity, strong antigenicity, and high surface accessibility, and each epitope is independent and complete. After immunization in mice, rEP-PM could induce the production of high levels of antibodies, and it had good immunoreactivity with anti-rEP-PM, anti-PRRSV, and anti-Mhp antibodies. The anti-rEP-PM antibody specifically recognizes proteins from PRRSV and Mhp. Moreover, rEP-PM induced a Th1-dominant cellular immune response in mice. Our results showed that the rEP-PM protein could be a potential candidate for the development of a safe and effective multi-epitope peptide combined vaccine to control PRRSV and Mhp infections.  相似文献   

5.
《Vaccine》2017,35(1):125-131
Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3 weeks of age followed by challenge at 8 weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9 days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and macroscopic lung lesions. Further work is needed to investigate different vaccination and challenge protocols, including routes, doses, timing and strains.  相似文献   

6.
T-cell epitopes of porcine reproductive and respiratory syndrome virus (PRRSV) glycoproteins 4 (GP4), 5 (GP5) and nucleocapsid (N) were predicted using bioinformatics and later tested by IFN-γ ELISPOT in pigs immunized with either a modified live vaccine (MLV) or DNA (open reading frames 4, 5 or 7). For MLV-vaccinated pigs, immunodominant epitopes were found in N but T-epitopes were also found in GP4 and GP5. For DNA-immunized pigs, some peptides were differently recognized. Using a large set of PRRSV sequences it was shown that N contains a conserved epitope and that for GP5, the genotype-I counterparts of previously reported epitopes of genotype-II strains were also immunogenic.  相似文献   

7.
《Vaccine》2018,36(2):227-236
The objective of the study was to compare responses of pigs vaccinated with a PRRS MLV vaccine against PRRSV-1 or PRRSV-2 with the responses of pigs vaccinated simultaneously with both vaccines. Furthermore, the efficacy of the two PRRSV MLV vaccination strategies was assessed following challenge. The experimental design included four groups of 4-weeks old SPF-pigs. On day 0 (DPV0), groups 1–3 (N = 18 per group) were vaccinated with modified live virus vaccines (MLV) containing PRRSV-1 virus (VAC-T1), PRRSV-2 virus (VAC-T2) or both (VAC-T1T2). One group was left unvaccinated (N = 12). On DPV 62, the pigs from groups 1–4 were mingled in new groups and challenged (DPC 0) with PRRSV-1, subtype 1, PRRSV-1, subtype 2 or PRRSV-2. On DPC 13/14 all pigs were necropsied. Samples were collected after vaccination and challenge. PRRSV was detected in all vaccinated pigs and the majority of the pigs were positive until DPV 28, but few of the pigs were still viremic 62 days after vaccination. Virus was detected in nasal swabs until DPV 7–14. No overt clinical signs were observed after challenge. PRRSV-2 vaccination resulted in a clear reduction in viral load in serum after PRRSV-2 challenge, whereas there was limited effect on the viral load in serum following challenge with the PRRSV-1 strains. Vaccination against PRRSV-1 had less impact on viremia following challenge. The protective effects of simultaneous vaccination with PRRSV Type 1 and 2 MLV vaccines and single PRRS MLV vaccination were comparable. None of the vaccines decreased the viral load in the lungs at necropsy. In conclusion, simultaneous vaccination with MLV vaccines containing PRRSV-1 and PRRSV-2 elicited responses comparable to single vaccination and the commercial PRRSV vaccines protected only partially against challenge with heterologous strains. Thus, simultaneous administration of the two vaccines is an option in herds with both PRRSV types.  相似文献   

8.
Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China’s Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96–97.5%), the other 4 strains shared considerable homology with JXA1 (94–98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6–98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study.  相似文献   

9.
Em2007, a porcine reproductive and respiratory syndrome virus (PRRSV) variant with a unique 68 aa deletion in Nsp2, was recently isolated in China. Phylogenetic and molecular evolutionary analyses indicated that Em2007 is a natural recombinant between a vaccine strain of PRRSV and circulating virus. We also tested its pathogenicity in piglets.  相似文献   

10.
《Vaccine》2015,33(33):4069-4080
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork producers and biologics companies.  相似文献   

11.
The aim of this study was to find out how efficiently pigs that are vaccinated with an attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine based on a virus from the Lelystad cluster are protected against a European wild-type strain from the same or another genetic cluster. Two experiments were performed. In each experiment, 5-week-old PRRSV-seronegative pigs were vaccinated intramuscularly with 10(4.5) TCID50 of a commercial vaccine based on a European virus strain from the Lelystad cluster. Non-vaccinated pigs were included as controls. At 5, 9, 15, 20, 28, 35 and 42 days post vaccination (PV), broncho-alveolar lavage (BAL) fluids and blood were collected to determine vaccine virus quantities. Forty-nine days PV, pigs were challenged intranasally with 10(6.0) TCID50 of a European wild-type strain, belonging either to the Lelystad cluster (98% nucleotide identity in ORF5 with vaccine strain) (experiment A) or to an Italian cluster (84% nucleotide identity in ORF5 with vaccine strain) (experiment B). At 5, 9, 15, 20 and 27 days post challenge (PC), BAL fluids and blood were collected to determine virus quantities. Vaccine virus was first detected in BAL fluids and blood at 5 days PV and reached highest quantities between 9 and 15 days PV. One pig was positive in its BAL fluid until 42 days PV. After challenge, virus was isolated from BAL fluids and blood of all non-vaccinated control pigs. All vaccinated pigs challenged with the Lelystad strain remained negative for virus, while virus was present in BAL fluids and blood of all vaccinated pigs after challenge with the Italian strain. Mean virus titres of the vaccinated pigs challenged with the Italian strain were significantly lower than those of the non-vaccinated control pigs (P <0.05) at 9, 15 and 20 days PC. Thus, the genetic diversity within European-type PRRSV may affect the efficacy of the current European-type vaccines.  相似文献   

12.
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) continues to cause substantial economic losses to the global swine industry. PRRSV appears to inhibit synthesis of type I interferons (IFNs), such as IFN-α and -β, which are critical for the innate immunity and play an important role in the modulation of adaptive immunity. An atypical PRRSV strain, A2MC2, is able to induce type I IFNs in vitro. In this study, A2MC2 induction of neutralizing antibodies in vivo was compared with the Ingelvac PRRS modified live virus (MLV) vaccine strain and VR-2385 (a moderate virulent strain). Three-week-old pigs were exposed to these PRRSV strains via intranasal or intramuscular routes to also account for a possible effect of inoculation routes. The interferon-inducing A2MC2 resulted in earlier onset and significantly higher levels of PRRSV neutralizing antibodies than the MLV. In addition, the A2MC2-induced neutralizing antibodies were capable of neutralizing VR-2385, a heterologous strain. The pigs exposed via intranasal route had higher titers of neutralizing antibodies than those injected via intramuscular route. Macroscopic and microscopic lung lesions 14 days post-exposure indicated that A2MC2 had similar virulence in vivo as VR-2385. Pulmonary alveolar macrophages (PAMs) collected during the necropsy 14 days post-exposure in the A2MC2 group had higher level expression of IFN-γ than the MLV group. These results indicate that A2MC2 can be further explored for development of an improved vaccine against PRRS.  相似文献   

13.
Hu J  Ni Y  Dryman BA  Meng XJ  Zhang C 《Vaccine》2012,30(12):2068-2074
Currently, killed-virus and modified-live PRRSV vaccines are used to control porcine reproductive and respiratory syndrome disease (PRRS). However, very limited efficacy of killed-virus vaccines and serious safety concerns for modified-live virus vaccines demand the development of novel PRRSV vaccines. In this report, we investigated the possibility of using transgenic plants as a cost-effective and scalable system for production and delivery of a viral protein as an oral subunit vaccine against PRRSV. Corn calli were genetically engineered to produce PRRSV viral envelope-associated M protein. Both serum and intestine mucosal antigen-specific antibodies were induced by oral administration of the transgenic plant tissues to mice. In addition, serum and mucosal antibodies showed virus neutralization activity. The neutralization antibody titers after the final boost reached 6.7 in serum and 3.7 in fecal extracts, respectively. A PRRSV-specific IFN-γ response was also detected in splenocytes of vaccinated animals. These results demonstrate that transgenic corn plants are an efficient subunit vaccine production and oral delivery system for generation of both systemic and mucosal immune responses against PRRSV.  相似文献   

14.
Immunogenicity of protein subunit vaccines may be dramatically improved by targeting them through antibodies specific to c-type lectin receptors (CLRs) of dendritic cells in mice, cattle, and primates. This novel vaccine development approach has not yet been explored in pigs or other species largely due to the lack of key reagents. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus (PRRSV) antigen was targeted efficiently to dendritic cells through antibodies specific to a porcine CLR molecule DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) in pigs. A recombinant PRRSV antigen (shGP45M) was constructed by fusing secretory-competent subunits of GP4, GP5 and M proteins derived from genetically-shuffled strains of PRRSV. In vaccinated pigs, when the PRRSV shGP45M antigen was delivered through a recombinant mouse-porcine chimeric antibody specific to the porcine DC-SIGN (pDC-SIGN) neck domain, porcine dendritic cells rapidly internalized them in vitro and induced higher numbers of antigen-specific interferon-γ producing CD4T cells compared to the pigs receiving non-targeted PRRSV shGP45M antigen. The pDC-SIGN targeting of recombinant antigen subunits may serve as an alternative or complementary strategy to existing vaccines to improve protective immunity against PRRSV by inducing efficient T cell responses.  相似文献   

15.
《Vaccine》2015,33(27):3065-3072
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.  相似文献   

16.
17.
The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.  相似文献   

18.
《Vaccine》2017,35(18):2427-2434
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of arguably the most economically important global swine disease. The extensive genetic variation of PRRSV strains is a major obstacle for heterologous protection of current vaccines. Previously, we constructed a panel of chimeric viruses containing only the ectodomain sequences of DNA-shuffled structural genes of different PRRSV strains in the backbone of a commercial vaccine, and found that one chimeric virus had an improved cross-protection efficacy. In this present study, to further enhance the cross-protective efficacy against heterologous strains, we constructed a novel chimeric virus VR2385-S3456 containing the full-length sequences of shuffled structural genes (ORFs 3-6) from 6 heterologous PRRSV strains in the backbone of PRRSV strain VR2385. We showed that the chimeric virus VR2385-S3456 induced a high level of neutralizing antibodies in pigs against two heterologous strains. A subsequent vaccination and challenge study in 48 pigs revealed that the chimeric virus VR2385-S3456 conferred an enhanced cross-protection when challenged with heterologous virus strain NADC20 or a contemporary heterologous strain RFLP 1-7-4. The results suggest that the chimera VR2385-S3456 may be a good PRRSV vaccine candidate for further development to confer heterologous protection.  相似文献   

19.
《Vaccine》2016,34(46):5546-5553
Current porcine reproductive and respiratory syndrome virus (PRRSV) vaccines sometimes fail to provide adequate immunity to protect pigs from PRRSV-induced disease. This may be due to antigenic differences among PRRSV strains. Rapid production of attenuated farm-specific homologous vaccines is a feasible alternative to commercial vaccines. In this study, attenuation and efficacy of a codon-pair de-optimized candidate vaccine generated by synthetic attenuated virus engineering approach (SAVE5) were tested in a conventional growing pig model. Forty pigs were vaccinated intranasally or intramuscularly with SAVE5 at day 0 (D0). The remaining 28 pigs were sham-vaccinated with saline. At D42, 30 vaccinated and 19 sham-vaccinated pigs were challenged with the homologous PRRSV strain VR2385. The experiment was terminated at D54. The SAVE5 virus was effectively attenuated as evidenced by a low magnitude of SAVE5 viremia for 1–5 consecutive weeks in 35.9% (14/39) of the vaccinated pigs, lack of detectable nasal SAVE5 shedding and failure to transmit the vaccine virus from pig to pig. By D42, all vaccinated pigs with detectable SAVE5 viremia also had detectable anti-PRRSV IgG. Anti-IgG positive vaccinated pigs were protected from subsequent VR2385 challenge as evidenced by lack of VR2385 viremia and nasal shedding, significantly reduced macroscopic and microscopic lung lesions and significantly reduced amount of PRRSV antigen in lungs compared to the non-vaccinated VR2385-challenged positive control pigs. The nasal vaccination route appeared to be more effective in inducing protective immunity in a larger number of pigs compared to the intramuscular route. Vaccinated pigs without detectable SAVE5 viremia did not seroconvert and were fully susceptible to VR2385 challenge. Under the study conditions, the SAVE approach was successful in attenuating PRRSV strain VR2385 and protected against homologous virus challenge. Virus dosage likely needs to be adjusted to induce replication and protection in a higher percentage of vaccinated pigs.  相似文献   

20.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat for the pig industry. Vaccines have been developed, but these failed to provide sustainable disease control, in particular against genetically unrelated strains. Here we give an overview of current knowledge and gaps in our knowledge that may be relevant for the development of a future generation of more effective vaccines. PRRSV replicates in cells of the monocyte/macrophage lineage, induces apoptosis and necrosis, interferes with the induction of a proinflammatory response, only slowly induces a specific antiviral response, and may cause persistent infections. The virus appears to use several evasion strategies to circumvent both innate and acquired immunity, including interference with antigen presentation, antibody-mediated enhancement, reduced cell surface expression of viral proteins, and shielding of neutralizing epitopes. In particular the downregulation of type I interferon-α production appears to interfere with the induction of acquired immunity. Current vaccines are ineffective because they suffer both from the immune evasion strategies of the virus and the antigenic heterogeneity of field strains. Future vaccines therefore must “uncouple” the immune evasion and apoptogenic/necrotic properties of the virus from its immunogenic properties, and they should induce a broad immune response covering the plasticity of its major antigenic sites. Alternatively, the composition of the vaccine should be changed regularly to reflect presently and locally circulating strains. Preferably new vaccines should also allow discriminating infected from vaccinated pigs to support a virus elimination strategy. Challenges in vaccine development are the incompletely known mechanisms of immune evasion and immunity, lack of knowledge of viral sequences that are responsible for the pathogenic and immunosuppressive properties of the virus, lack of knowledge of the forces that drive antigenic heterogeneity and its consequences for immunogenicity, and a viral genome that is relatively intolerant for subtle changes at functional sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号