首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation plays a critical role in controlling states of gene activity in most eukaryotic organisms, and it is essential for proper growth and development. Patterns of methylation are established by de novo methyltransferases and maintained by maintenance methyltransferase activities. The Dnmt3 family of de novo DNA methyltransferases has recently been characterized in animals. Here we describe DNA methyltransferase genes from both Arabidopsis and maize that show a high level of sequence similarity to Dnmt3, suggesting that they encode plant de novo methyltransferases. Relative to all known eukaryotic methyltransferases, these plant proteins contain a novel arrangement of the motifs required for DNA methyltransferase catalytic activity. The N termini of these methyltransferases contain a series of ubiquitin-associated (UBA) domains. UBA domains are found in several ubiquitin pathway proteins and in DNA repair enzymes such as Rad23, and they may be involved in ubiquitin binding. The presence of UBA domains provides a possible link between DNA methylation and ubiquitin/proteasome pathways.  相似文献   

2.
We previously reported that heterozygous DNA methyltransferase 1-deficient (Dnmt1(+/-)) mice maintain T-cell immune function and DNA methylation levels with aging, whereas controls develop autoimmunity, immune senescence, and DNA hypomethylation. We therefore compared survival, cause of death, and T-cell DNA methylation gene expression during aging in Dnmt1(+/-) mice and controls. No difference in longevity was observed, but greater numbers of Dnmt1(+/-) mice developed jejunal apolipoprotein AII amyloidosis. Both groups showed decreased Dnmt1 expression with aging. However, expression of the de novo methyltransferases Dnmt3a and Dnmt3b increased with aging in stimulated T cells from control mice. MeCP2, a methylcytosine binding protein that participates in maintenance DNA methylation, increased with age in Dnmt1(+/-) mice, suggesting a mechanism for the sustained DNA methylation levels. This model thus provides potential mechanisms for DNA methylation changes of aging, and suggests that changes in DNA methylation may contribute to some forms of amyloidosis that develop with aging.  相似文献   

3.
Alterations in DNA methylation have been associated with genome-wide hypomethylation and regional de novo methylation in numerous cancers. De novo methylation is mediated by the de novo methyltransferases Dnmt3a and 3b, but only Dnmt3b has been implicated in promoting cancer by silencing of tumor-suppressor genes. In this study, we have analyzed the role of Dnmt3a in lung cancer by using a conditional mouse tumor model. We show that Dnmt3a deficiency significantly promotes tumor growth and progression but not initiation. Changes in gene expression show that Dnmt3a deficiency affects key steps in cancer progression, such as angiogenesis, cell adhesion, and cell motion, consistent with accelerated and more malignant growth. Our results suggest that Dnmt3a may act like a tumor-suppressor gene in lung tumor progression and may be a critical determinant of lung cancer malignancy.  相似文献   

4.
The inverse correlation between DNA methylation and lineage-specific gene expression during T helper cell development is well documented. However, the specific functions of the de novo methyltransferases Dnmt3a and Dnmt3b in cytokine gene regulation have not been defined. We demonstrate that the expression of Dnmt3a and Dnmt3b are induced to a greater extent in T helper 2 (Th2) cells than in T helper 1 cells during polarization. Using conditional mutant mice, we determined that Dnmt3a, but not Dnmt3b, regulated expression of T helper cell cytokine genes, with the Il13 gene most prominently affected. Dnmt3a deficiency was accompanied by decreases in DNA methylation and changes in the H3K27 acetylation/methylation status at the Il13 locus. Dnmt3a-dependent regulation of Il13 also occurred in vivo because Dnmt3a(fl/fl)Cd4cre mice exhibited increased lung inflammation in a murine asthma model, compared with littermate controls. Based on these observations, we conclude that Dnmt3a is required for controlling normal Il13 gene expression and functions as a rate-limiting factor to restrict T helper 2-mediated inflammation.  相似文献   

5.
6.
B-cell chronic lymphocytic leukemia (CLL) is the most common human leukemia. Deregulation of the T-cell leukemia/lymphoma 1 oncogene (TCL1) in mouse B cells causes a CD5(+) leukemia similar to aggressive human CLL. To examine the mechanisms by which Tcl1 protein exerts its oncogenic activity in B cells, we performed proteomics experiments to identify its interacting partners. We found that Tcl1 physically interacts with de novo DNA methylthansferases Dnmt3A and Dnmt3B. We further investigated the effects of Tcl1 up-regulation on the enzymatic activity of Dnmt3A and found that Tcl1 overexpression drastically inhibits Dnmt3A function. In addition, B cells from TCL1 transgenic mice showed a significant decrease in DNA methylation compared with WT controls. Similarly, CLL samples with high Tcl1 expression showed a decrease in DNA methylation compared with CLL samples with low Tcl1 expression. Given the previous reports of inactivating mutations of DNMT3A in acute myelogenous leukemia and myelodysplastic syndrome, our results suggest that inhibition of de novo DNA methylation may be a common oncogenic mechanism in leukemogenesis.  相似文献   

7.
Previous studies have shown that DNA methyltransferase (Dnmt) 1 is required for maintenance of bulk DNA methylation and is essential for mouse development. However, somatic disruption of DNMT1 in the human cancer cell line HCT116 was not lethal and caused only minor decreases in methylation. Here, we report the identification of a truncated DNMT1 protein, which was generated by the disruption of DNMT1 in HCT116 cells. The truncated protein, which had parts of the regulatory N-terminal domain deleted but preserved the catalytic C-terminal domain, was present at different levels in all DNMT1 single-knockout and DNMT1/DNMT3b double-knockout cell lines tested and retained hemimethylase activity. DNMT1 RNAi resulted in decreased cell viability in WT and knockout cells and further loss of DNA methylation in DNMT1 knockout cells. Furthermore, we observed a delay in methylation after replication and an increase in hemimethylation of specific CpG sites in cells expressing the truncated protein. Remethylation studies after drug-induced hypomethylation suggest a putative role of DNMT1 in the de novo methylation of a subtelomeric repeat, D4Z4, which is lost in cells lacking full-length DNMT1. Our data suggest that DNMT1 might be essential for maintenance of DNA methylation, proliferation, and survival of cancer cells.  相似文献   

8.
Current evidence indicates that methylation of cytosine in mammalian DNA is restricted to both strands of the symmetrical sequence CpG, although there have been sporadic reports that sequences other than CpG may also be methylated. We have used a dual-labeling nearest neighbor technique and bisulphite genomic sequencing methods to investigate the nearest neighbors of 5-methylcytosine residues in mammalian DNA. We find that embryonic stem cells, but not somatic tissues, have significant cytosine-5 methylation at CpA and, to a lesser extent, at CpT. As the expression of the de novo methyltransferase Dnmt3a correlates well with the presence of non-CpG methylation, we asked whether Dnmt3a might be responsible for this modification. Analysis of genomic methylation in transgenic Drosophila expressing Dnmt3a reveals that Dnmt3a is predominantly a CpG methylase but also is able to induce methylation at CpA and at CpT.  相似文献   

9.
Dnmt3L is required for the establishment of maternal methylation imprints at imprinting centers (ICs). Dnmt3L, however, lacks the conserved catalytic domain common to DNA methyltransferases. In an attempt to define its function, we coexpressed DNMT3L with each of the two known de novo methyltransferases, Dnmt3a and DNMT3B, in human cells and monitored de novo methylation by using replicating minichromosomes carrying various ICs as targets. Coexpression of DNMT3L with DNMT3B led to little or no change in target methylation. However, coexpression of DNMT3L with Dnmt3a resulted in a striking stimulation of de novo methylation by Dnmt3a. Stimulation was observed at maternally methylated ICs such as small nuclear ribonucleoprotein polypeptide N (SNRPN), Snrpn, and Igf2rAir, as well as at various nonimprinted sequences present on the episomes. Stimulation of Dnmt3a by DNMT3L was also observed at endogenous sequences in the genome. Therefore, DNMT3L acts as a general stimulatory factor for de novo methylation by Dnmt3a. The implications of these findings for the function of DNMT3L and Dnmt3a in DNA methylation and genomic imprinting are discussed.  相似文献   

10.
DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3' splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.  相似文献   

11.
Recruitment of DNA methyltransferase I to DNA repair sites   总被引:2,自引:0,他引:2  
In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair.  相似文献   

12.
DNA fragments encoding the mouse steroid 21-hydroxylase (C21 or Cyp21A1) gene are de novo methylated when introduced into the mouse adrenocortical tumor cell line Y1 by DNA-mediated gene transfer. Although CCGG sequences within the C21 gene are de novo methylated, CCGG sites within flanking vector sequences, other mammalian gene sequences driven by the C21 promoter, and the neomycin-resistance gene, which was cotransfected with the C21 gene, do not become methylated. At least two separate signals for de novo methylation are encoded within the gene since three fragments derived from the C21 gene were methylated de novo. Specific de novo methylation of C21-derived sequences does not occur in L cells or Y1 kin8 cells; this suggests that the cellular factors needed for de novo methylation of the C21 gene are not ubiquitous. Most DNA sequences are not de novo methylated when introduced into somatic cells and DNA sequences other than the C21 gene are not de novo methylated when introduced into Y1 cells. Several groups have suggested that de novo methylation occurs in early embryonic cells and that somatic cells strictly maintain their methylation pattern by a semiconservative methyltransferase. Our results suggest that de novo methylation of specific nucleotide sequences can occur in some mammalian somatic cells.  相似文献   

13.
Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes.  相似文献   

14.
15.
目的研究细胞外信号渊节激酶-丝裂原激活蛋白激酶途径(ERKMAPK)与DNA甲基化问的关系及对结肠癌细胞生物学行为的协同影响。方法培养人结肠癌细胞SW1116,分别以PBS、二甲基亚砜(DMSO)为对照组,PD 9805950μmol/L、5氮脱氧胞苷(5-aza—dC)5μmol/L、PD9805950μmol/L+5-aza-dC5μmol/L进行药物干预.以定量RT-PCR检测DNA甲基化酶(Dnmt)1、3a和3b基因转录水平;流式细胞仪分析细胞周期;MTT测定细胞活力;光学显微镜下观察细胞形态学变化。结果ERK—MAPK途径阻断剂PD98059下调Dnmt 1和Dnmt 3b.Dnmt抑制剂5-aza-dC下调Dnmt 1、Dnmt 3a和Dnmt 3b,且5-aza-dC联合PD98059对Dnmt1及Dnmt 3a mRNA的表达下调更为显著。5-azo-dC明显降低G0/G1期细胞百分比(P〈0.05),G2/M期细胞百分比明显增加(P〈0.05);PD98059使G0/G1期细胞百分比降低(P(0.05).G2/M期增加(P〈0.05)。PD98059明显抑制细胞生长。PD98059促进细胞分化,呈上皮样改变,细胞变狭长,胞质减少,细胞排列开始出现相对整齐;5-azm-dC干预组细胞大小不一,出现较多多倍体细胞(多个核分裂相)。结论ERK-MAPK途径阻断剂及Dnmt抑制剂均能抑制结肠癌SW1116细胞分裂、增殖,并诱导细胞分化;两者有协同作用;ERK—MAPK信号转导途径能调控DNA甲基化水平。  相似文献   

16.
The Dnmt1o form of the Dnmt1 (cytosine-5)-methyltransferase enzyme is synthesized and stored in the cytoplasm of the oocyte and is used after fertilization to maintain methylation patterns on imprinted genes. After implantation of the blastocyst, Dnmt1o is replaced by the Dnmt1 form, which has an additional 118 aa at its amino terminus. To investigate functional differences between Dnmt1o and Dnmt1, mice were generated with a mutant allele, Dnmt1(V), which synthesized Dnmt1o instead of Dnmt1 in all somatic cells. Homozygous Dnmt1(V) mice were phenotypically normal, and had normal levels of genomic methylation, indicating that Dnmt1o adopts the maintenance methyltransferase function of Dnmt1. Despite the apparent equivalence of Dnmt1o and Dnmt1 maintenance methyltransferase function in somatic cells, the Dnmt1o protein was found at high levels (with a corresponding high enzymatic activity) in Dnmt1(V) mice. In heterozygous Dnmt1(V)/+ embryonic stem cells and early embryos, equal steady-state levels of Dnmt1o and Dnmt1 proteins were produced from the Dnmt1(V) and the WT Dnmt1 alleles, respectively. However, in older embryos and adults, the Dnmt1(V) allele produced five times the steady-state level of protein of the WT Dnmt1 allele. The difference in Dnmt1o and Dnmt1 levels is due to a developmentally regulated mechanism that degrades the Dnmt1 protein. The intrinsic stability of the Dnmt1o protein is the most likely reason for its use as a maternal-effect protein; stable ooplasmic stores of Dnmt1o would be available to traffick into the nuclei of the eight-cell stage embryo and maintain methylation patterns on alleles of imprinted genes during the fourth embryonic S phase.  相似文献   

17.
Methylation of cytosine residues in DNA plays an important role in regulating gene expression during vertebrate embryonic development. Conversely, disruption of normal patterns of methylation is common in tumors and occurs early in progression of some human cancers. In vertebrates, it appears that the same DNA methyltransferase maintains preexisting patterns of methylation during DNA replication and carries out de novo methylation to create new methylation patterns. There are several indications that inherent signals in DNA structure can act in vivo to initiate or block de novo methylation in adjacent DNA regions. To identify sequences capable of enhancing de novo methylation of DNA in vitro, we designed a series of oligodeoxyribonucleotide substrates with substrate cytosine residues in different sequence contexts. We obtained evidence that some 5-methylcytosine residues in these single-stranded DNAs can stimulate de novo methylation of adjacent sites by murine DNA 5-cytosine methyltransferase as effectively as 5-methylcytosine residues in double-stranded DNA stimulate maintenance methylation. This suggests that double-stranded DNA may not be the primary natural substrate for de novo methylation and that looped single-stranded structures formed during the normal course of DNA replication or repair serve as "nucleation" sites for de novo methylation of adjacent DNA regions.  相似文献   

18.
19.
T cell DNA methylation levels decline with age, activating genes such as KIR and TNFSF7 (CD70), implicated in lupus-like autoimmunity and acute coronary syndromes. The mechanisms causing age-dependent DNA demethylation are unclear. Maintenance of DNA methylation depends on DNA methyltransferase 1 (Dnmt1) and intracellular S-adenosylmethionine (SAM) levels, and is inhibited by S-adenosylhomocysteine (SAH). SAM levels depend on dietary micronutrients including folate and methionine. SAH levels depend on serum homocysteine concentrations. T cell Dnmt1 levels also decline with age. We hypothesized that age-dependent Dnmt1 decreases synergize with low folate, low methionine or high homocysteine levels to demethylate and activate methylation-sensitive genes. T cells from healthy adults ages 22–81, stimulated and cultured with low folate, low methionine, or high homocysteine concentrations showed demethylation and overexpression of KIR and CD70 beginning at age ∼50 and increased further with age. The effects were reproduced by Dnmt1 knockdowns in T cells from young subjects. These results indicate that maintenance of T cell DNA methylation patterns is more sensitive to low folate and methionine levels in older than younger individuals, due to low Dnmt1 levels, and that homocysteine further increases aberrant gene expression. Thus, attention to proper nutrition may be particularly important in the elderly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号