首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 明确两例智力低下患儿8号染色体短臂异常性质和来源,分析其染色体改变与表型的相关性.方法 首先应用常规G显带分析2例患儿及父母外周血染色体改变,然后应用比较基因组杂交芯片(array comparative genomic hybridization,array CGH)对其中1例常规核型分析的结果进行精确定位.结果 例1母亲的染色体改变为8p和3q的平衡插入易位,该患儿继承了母亲的1条衍生3号染色体,核型为46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2)mat,导致8p部分三体.Array CGH分析显示重复区域为8p11.21-8p22,片段大小为26.9 Mb,该患儿主要表现为智力低下,未见其他8p三体的典型临床特征.例2父亲的核型为8p和11q的平衡易位,该患儿继承了父亲的1条衍生11号染色体,核型为46,XX,der(11)t(8;11)(p11.2;q25)pat,临床表现为智力低下,特殊面容,同时伴有先天性心脏病和骨骼异常,与典型8p三体表型相似,但面容特征不典型.结论 8p部分三体是2例患儿异常表型的主要原因,但与典型的8p三体相比,表型存在异质性;父母染色体分析可以帮助明确易位的性质从而有利于再发风险评估;与传统的细胞遗传学分析方法相比,arrayCGH在染色体异常分析中具有更高的分辨率和准确性.
Abstract:
Objective To determine the origin of aberrant chromosomes involving the short arm of chromosome 8 in two mentally retarded children, and to correlate the karyotype with abnormal phenotype. Methods Routine G-banding was performed to analyze the karyotypes of the two patients and their parents, and array comparative genomic hybridization (array CGH) was used for the first patient for fine mapping of the aberrant region. Results The first patient presented with only mental retardation. The father had normal karyotype. The mother had an apparent insertion translocation involving chromosomes 8 and 3 [46,XX, inv ins (3;8) (q25.3;p23.1p11.2)], the karyotype of the child was ascertained as 46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2). Array CGH finely mapped the duplication to 8p11.21-8p22, a 26.9Mb region. The other patient presented with mental retardation, craniofacial defects, congenital heart disease and minor skeletal abnormality. The mother had normal karyotype. The father had an apparently balanced translocation involving chromosome 8p and 11q, the karyotype was 46,XY, t(8;11)(p11.2;q25). The karyotype of the child was then ascertained as 46,XX,der(11)t(8;11)(p11.2;q25). Conclusion These results suggested that partial trisomy 8p was primary cause for the phenotypic abnormalities of the two patients, whereas a mild phenotypic effect was observed in patient 1. Parental karyotype analysis could help define the aberrant type and recurrent risk evaluation. In contract to routine karyotype analysis, aberrant regions could be mapped by array CGH with higher resolution and accuracy.  相似文献   

2.
A female newborn suffering from congenital arhinia with complete airway obstruction is reported. In addition, she had hypertelorism, microphthalmia, high-arched palate, and hypoplasia of the auditory canal and mastoid and facial bones, along with the absence of olfactory bulbs and tracts. She had a de novo reciprocal translocation between chromosomes 3q13.2 and 12p11.2. Certain gene(s) located at either of the breakpoints, 3q13.2 and 12p11.2, may be involved in the pathogenesis of her arhinia.  相似文献   

3.
Mental retardation (MR) is not a common feature observed in patients with classical ectodermal dysplasias (EDs). Several genes responsible for EDs and MR have been identified. However, the causation has yet to be identified in a significant number of patients with either ED or MR. Here, we have molecularly characterized a de novo balanced translocation t(1;6)(p22.1;p22.1) in a female patient who had mild features of ED with hypodontia, microcephaly, and cognitive impairment. Mapping of the translocation breakpoints in the patient revealed no obvious causative gene for either ED or MR. Whole genome array CGH analysis unveiled two novel submicroscopic deletions at 2q12.2 and 6q22.3, unrelated to the translocation in the patient. The 2q12.2 deletion contains a known ED gene, ectodysplasin-A receptor (EDAR), and the loss of one copy of this gene is considered to be responsible for the ectodermal phenotype in the patient. It is plausible that a potential autosomal MR gene deleted at 2q12.2 or 6q22.3 is likely the cause of the neurodevelopmental defects in the patient.  相似文献   

4.
Gilles de la Tourette syndrome is a complex neuropsychiatric disorder with a strong genetic basis. We identified a male patient with Tourette syndrome-like tics and an apparently balanced de novo translocation [46,XY,t(2;7)(p24.2;q31)]. Further analysis using array comparative genomic hybridisation (CGH) revealed a cryptic deletion at 7q31.1-7q31.2. Breakpoints disrupting this region have been reported in one isolated and one familial case of Tourette syndrome. In our case, IMMP2L, a gene coding for a human homologue of the yeast inner mitochondrial membrane peptidase subunit 2, was disrupted by the breakpoint on 7q31.1, with deletion of exons 1-3 of the gene. The IMMP2L gene has previously been proposed as a candidate gene for Tourette syndrome, and our case provides further evidence of its possible role in the pathogenesis. The deleted region (7q31.1-7q31.2) of 7.2 Mb of genomic DNA also encompasses numerous genes, including FOXP2, associated with verbal dyspraxia, and the CFTR gene.  相似文献   

5.
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to approximately 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.  相似文献   

6.
Maturity-onset diabetes of the young type 2 (MODY2) is a form of monogenic diabetes, characterized by mild fasting hyperglycemia. MODY2 is caused by heterozygous mutations in the GCK gene that encodes the glucokinase enzyme. We describe the clinical features and the underlying genetic defect of MODY2 in a patient with atypical Greig cephalopolysyndactyly syndrome (GCPS). The patient presented with the limb formation and the craniofacial developmental abnormalities typical to GCPS, in addition to mental retardation and epilepsy (assigned as atypical syndrome). Fasting hyperglycemia in the diabetic range, impaired glucose tolerance, and lack of diabetes autoantibodies were compatible with MODY2. In order to delineate the genetic aberrations relevant both to MODY2 and Greig syndrome in this patient, we performed cytogenetic analysis, real-time PCR of the GCK gene, and comparative genomic hybridization (CGH) array. Cytogenetic study has shown a microscopic detectable deletion in the 7p13-15 chromosomal region. Real-time PCR demonstrated a deletion of the GCK gene in the patient but not her parents, and CGH array revealed a deleted region of approximately 12 Mb in the 7p13-15 region. This deleted region included GLI3 and GCK genes (where heterozygous mutations cause GCPS and MODY2, respectively), and many other contiguous genes. Our patient manifests a unique form of MODY2, where GCK gene deletion is part of a large deleted segment in the 7p13-15 chromosomal region.  相似文献   

7.
Susceptibility of the chromosome 22q11.2 region to rearrangements has been recognized on the basis of common clinical disorders such as the DiGeorge/velocardiofacial syndrome (DG/VCFs). Recent evidence has implicated low-copy repeats (LCRs); also known as segmental duplications; on 22q as mediators of nonallelic homologous recombination (NAHR) that result in rearrangements of 22q11.2. It has been shown that both deletion and duplication events can occur as a result of NAHR caused by unequal crossover of LCRs. Here we report on the clinical, cytogenetic and array CGH studies of a 15-year-old Hispanic boy with history of learning and behavior problems. We suggest that he represents a previously unrecognized microdeletion syndrome on chromosome 22 band q11.2 just telomeric to the DG/VCFs typically deleted region and encompassing the BCR gene. Using a 32K BAC array CGH chip we were able to refine and precisely narrow the breakpoints of this microdeletion, which was estimated to be 1.55-1.92 Mb in size and to span approximately 20 genes. This microdeletion region is flanked by LCR clusters containing several modules with a very high degree of sequence homology (>95%), and therefore could play a causal role in its origin.  相似文献   

8.
Interstitial deletions of the long arm of chromosome 6 are relatively rare, with fewer than 100 cases reported. Phenotypic variation is in large part due to differences in size and location of the segmental aneuploidy. We report three new patients with interstitial deletions of chromosome 6q defined at the molecular level by array comparative genomic hybridization (array CGH). In two of three cases, the molecular breakpoints differed from those indicated by conventional karyotyping, demonstrating the enhanced resolution of array CGH. Two patients had minimal deletions of 6 and 8.8 Mb involving 6q16.2-->q21, and the third patient had a deletion of 11.3 Mb spanning 6q15-->q21. All three had developmental delay, craniofacial dysmorphology, and functional eye disorders, suggesting that genes affecting brain and craniofacial development are located in 6q16.2-->q21, the deleted region common to all three patients. Furthermore, gene(s) for discordant phenotypic features, such as central diabetes insipidus, may reside at 6q15, the monosomic region unique to patient 3. All three cases described here showed loss of paternal alleles within the deleted segment, providing further evidence of the predominantly paternal origin for 6q deletions and rearrangements.  相似文献   

9.
The t(3;9)(p14;p21) in the MCF10A human mammary gland epithelial cell line was the single cytogenetic event that accompanied the transition from primary culture to immortalized cell line, suggesting that it is related to the development of the immortalization phenotype. To study the molecular consequences of the breakpoints in this rearrangement, we used a combination of fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (CGH). The 3p14 translocation breakpoint occurs within BAC RP11-795e22, which accommodates only the TAFA1 gene, a novel cysteine-rich secreted protein thought to be involved in cytokine signaling. TAFA1 is expressed in normal breast tissue, not in MCF10A, and shows differential expression in a range of breast cancer cell lines. The 9p translocation breakpoint results in a deletion of approximately 4 megabases on the derivative chromosome 9, which includes the CDKN2A (p16) gene. Array CGH and FISH analysis demonstrated that BAC 149i22, which contains the CDKN2A/B genes, is also deleted specifically on the apparently normal copy of chromosome 9, making MCF10A null for the p16/p15 genes. The exact extent of gains and losses of chromosome regions resulting from rearrangements involving chromosomes 1q, 5q, and 8q have also been characterized using the BAC arrays.  相似文献   

10.
Smith–Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.  相似文献   

11.
Patients with an apparently balanced translocation and an abnormal phenotype may carry a cryptic deletion/duplication at their translocation breakpoints that may explain their abnormalities. Using microarray CGH (aCGH) and gene expression arrays we studied a child with t(15;22)(q26.1;q11.2), developmental delay and mild dysmorphic features. A high density aCGH study with 244,000 oligo probes demonstrated a 3.3 Mb deletion immediately adjacent to the 15q breakpoint. Gene expression studies with 44,000 oligos displayed an approximately 50% reduction of the expression of IGF1R gene that was translocated to the der(22). There are 18 known or hypothetical protein coding genes within the deleted region according to UniProt, RefSeq, and GenBank mRNA (UCSC HG17, May 2004). Although two of these genes, RGMA and ST8SIA2, play an important role in neural development, the mild phenotype of our patient indicates that loss of one copy of these genes may not be critical developmentally. The 50% reduction of IGF1R expression could be responsible for the growth deficiency in the patient. Reviewing the few 15q26 microdeletion cases that have been characterized by aCGH, we discovered that deletion of the segment including distal 15q26.2 to the proximal part of 15q26.3 is associated with severe phenotypes. Our experience demonstrates that high-density oligonucleotide-based aCGH is a quick and precise way to identify cryptic copy number changes in "balanced translocations." Expression studies can also add valuable information regarding gene expression changes due to a chromosomal rearrangement. Both approaches can assist in the elucidation of the etiology of unexplained phenotypic differences in cases such as this one.  相似文献   

12.
Dermatofibrosarcoma protuberans (DFSP) is an aggressive spindle cell neoplasm. It is associated with the chromosomal translocation, t(17:22), which fuses the COL1A1 and PDGFbeta genes. We determined the characteristic gene expression profile of DFSP and characterized DNA copy number changes in DFSP by array-based comparative genomic hybridization (array CGH). Fresh frozen and formalin-fixed, paraffin-embedded samples of DFSP were analyzed by array CGH (four cases) and DNA microarray analysis of global gene expression (nine cases). The nine DFSPs were readily distinguished from 27 other diverse soft tissue tumors based on their gene expression patterns. Genes characteristically expressed in the DFSPs included PDGF beta and its receptor, PDGFRB, APOD, MEOX1, PLA2R, and PRKCA. Array CGH of DNA extracted either from frozen tumor samples or from paraffin blocks yielded equivalent results. Large areas of chromosomes 17q and 22q, bounded by COL1A1 and PDGF beta, respectively, were amplified in DFSP. Expression of genes in the amplified regions was significantly elevated. Our data shows that: 1) DFSP has a distinctive gene expression profile; 2) array CGH can be applied successfully to frozen or formalin-fixed, paraffin-embedded tumor samples; 3) a characteristic amplification of sequences from chromosomes 17q and 22q, demarcated by the COL1A1 and PDGF beta genes, respectively, was associated with elevated expression of the amplified genes.  相似文献   

13.
We report on a patient with a de novo microdeletion 3q29 detected by molecular karyotyping using array CGH analysis. The girl displayed microphthalmia and cataract, hyperplastic pyloric stenosis, mild dysmorphic facial features, and developmental delay. Array CGH analysis uncovered a 1.6 Mb deletion within chromosome band 3q29, which overlaps with the commonly deleted region in 3q29 microdeletion syndrome. According to published data, none of the patients with deletion 3q29 showed either congenital cataract and microphthalmia, or other ocular features. Our report expands the phenotypic spectrum of the 3q29 microdeletion syndrome by adding structural eye malformations.  相似文献   

14.
We analysed six malignant peripheral nerve sheath tumors (MPNSTs) from four patients using metaphase preparations and compared the results with those obtained by using comparative genomic hybridization (CGH). All six tumors showed structural and numerical chromosomal aberrations, mostly of chromosomes 1, 5, 7-10, 14-17, 19, 21, and 22. The number of chromosomes per tumor cell ranged from 42 to 104. We could not find a recurrent specific pattern of structural changes after comparing the MPNSTs of different patients. However, aberrations of different tumors from the same patient were nearly identical. In the four patients, we found a total of 117 breakpoints, mostly in 21q11.2 (seven times), in 8q11.2 and 14q10 (six times each), in 5q11.2 and 15q26 (four times each), in 8p11.2, 10q11.2, 16q22, 19q13.3, and 22q10 (three times each). In three MPNSTs, double minute chromosomes (dmin) we detected with metaphase investigations and high-level amplifications by using CGH, respectively. C-MYC gene amplification and loss of the P53 gene could be ruled out by locus-specific probes for the common gain of 8q and for losses of 17p. When comparing the CGH results with those of karyotyping an overlap in the most frequent gains in 7q, 8q, 15q, and 17q was observed. However, we found more frequent losses in 19q in the metaphase investigations.  相似文献   

15.
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. The tumors characteristically harbor KIT or PDGFRA mutations, and mutant tumors respond to imatinib mesylate (Glivectrade mark). Chromosomal imbalances resulting in altered gene dosage are known to have a role in the molecular pathogenesis of these tumors, but the target genes remain to be identified. The present study aimed to identify some of these genes. In total, 35 GIST samples were screened for chromosomal imbalances by array-based comparative genomic hybridization. A cDNA array was used to define the minimal common overlapping areas of DNA copy number change. Eight confirmative, replicate hybridizations were performed using an oligonucleotide array. The most recurrent copy number losses were localized to 14q, 22q, and 1p. Gains were less common with 8q being the most recurrent. Two recurrent deleted regions of 14q were 14q11.2 harboring the PARP2, APEX1, and NDRG2 genes and 14q32.33 harboring SIVA. Additional target candidates were NF2 at chromosome 22, CDKN2A/2B at 9p, and ENO1 at 1p for copy number losses, and MYC at 8q for copy number gains. Array CGH proved to be an effective tool for the identification of chromosome regions involved in the development and progression of GISTs.  相似文献   

16.
Comparative genomic hybridization (CGH) analysis was used to identify chromosomal imbalances in 52 human primary hepatocellular carcinomas (HCCs). The most prominent changes were gains of part or all of chromosome arms 8q (83% of cases) and 1q (73%) and loss of 16q (63%). Other commonly overrepresented sites were 5p, 7q, and Xq. Recurrent sites of DNA sequence amplification included 8q23--24 (five cases) and 11q13--14 (four cases). Other frequently underrepresented sites were 4q, 8p, 16p, and 17p. Taken collectively, these findings and data from other CGH studies of HCCs define a subset of chromosome segments that are consistently over- or underrepresented and highlight sites of putative oncogenes and tumor suppressor genes, respectively, involved in hepatocellular oncogenesis. Loss of heterozygosity analysis with a panel of polymorphic microsatellite markers distributed along 16q defined a minimal region of chromosomal loss at 16q23.1--24.1, suggesting that this region harbors a tumor suppressor gene whose loss/inactivation may contribute to the pathogenesis of many HCCs.  相似文献   

17.
Somatic interstitial deletions of chromosome segment 7q22-q31 in uterine leiomyomas are a frequent event, thought to be indicative of a tumor suppressor gene in the region. Previous LOH and CGH studies have refined this region to 7q22.3-q31, although the target gene has not been identified. Here, we have used tiling-path resolution microarray CGH to further refine the region and to identify homozygous deletions in fibroids. Furthermore, we have screened all manually annotated genes in the region for mutations. We have refined the minimum deleted region at 7q22.3-q31 to 2.79 Mbp and identified a second region of deletion at 7q34. However, we identified no pathogenic coding variation.  相似文献   

18.
Several years ago, we presented a patient with true hermaphroditism and partial duplication of chromosome 22 and no evidence of SRY (Aleck et al. [1999: Am J Med Genet 85:2-4]). Recently a 46,XX male with velocardiofacial syndrome and a deletion of 22q11.2 and no evidence of Y chromosomal loci in blood DNA was reported (Phelan et al. [2003: Am J Med Genet 116A:77-79]). We have restudied this patient as he enters puberty. Because chromosomal deletions sometimes involve micro rearrangements of nearby material, we have extensively studied this individual's chromosome 22 looking for evidence of any gene duplication. We studied a number of variable number tandem repeat (VNTR) loci along chromosome 22 in the patient and both parents. Normal Mendelian inheritance of the VNTRs was found. We then used quantitative multiplex PCR of short fluorescent fragments (QMPSF) to delineate the 22q11.2 deletion in this patient (Jacquet et al. [2002: Hum Molec Genet 11:2243-2249]) and found a pattern of deletion typical of the velocardiofacial DiGeorge syndrome. Finally, the patient's DNA has been analyzed using a full coverage human chromosome 22 genomic microarray (array comparative genomic hybridization [CGH]) for evidence of rearrangements outside the classical velocardiofacial DiGeorge associated deletion (Buckley et al. [2002: Hum Molec Genet 11:3221-3229]). The array-CGH profile of this patient confirms the deletion encompassing the typically deleted region associated with the velocardiofacial DiGeorge syndrome and provides no support for additional gene copy number aberrations on 22q. Thus, there is no evidence of any chromosome 22 trisomic material. In this case, the rare events of sex reversal and 22q11.2 deletion may have occurred together by chance.  相似文献   

19.
Osteosarcoma (OS) is characterized by chromosomal instability and high-copy-number gene amplification. The breakage-fusion-bridge (BFB) cycle is a well-established mechanism of genomic instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. However, until now, there have been no high-resolution cytogenetic or genomic array studies of BFB events in OS. In the present study, multicolor banding (mBAND) FISH and submegabase resolution tiling set (SMRT) array comparative genomic hybridization (CGH) were used to identify and map genomic signatures of BFB events in four OS cell lines and one patient tumor. The expected intermediates associated with BFB-dicentric chromosomes, inverted duplications, and intra- and interchromosomal amplifications-were identified. mBAND analysis provided detailed mapping of rearrangements in 1p, 6p, and 8q and showed that translocation junctions were often in close proximity to fragile sites. More detailed mBAND studies of OS cell line MG-63 revealed ladderlike FISH signals of equally spaced interchromosomal coamplifications of 6p21, 8q24, and 9p21-p22 in a homogeneously staining region (hsr). Focal amplifications that concordantly mapped to the hsr were localized to discrete genomic intervals by SMRT array CGH. The complex amplicon structure in this hsr suggests focal amplifications immediately adjacent to microdeletions. Moreover, the genomic regions in which there was deletion/amplification had a preponderance of fragile sites. In summary, this study has provided further support for the role of the BFB mechanism and fragile sites in facilitating gene amplification and chromosomal rearrangement in OS.  相似文献   

20.
We report on a 42-year-old female patient with an interstitial 16 Mb deletion in 7q21.1-21.3 and a balanced reciprocal translocation between chromosomes 6 and 7 [karyotype 46,XX,t(6;7)(q23.3;q32.3)del(7)(q21.1q21.3)de novo]. We characterized the size and position of the deletion by tiling path array comparative genomic hybridization (CGH), and we mapped the translocation breakpoints on chromosomes 6 and 7 by FISH. The clinical features of this patient-severe mental retardation, short stature, microcephaly and deafness-are in accordance with previously reported patients with 7q21 deletions. Chromosome band 7q21.3 harbors a locus for split hand/split foot malformation (SHFM1), and part of this locus, including the SHFM1 candidate genes SHFM1, DLX5, and DLX6, is deleted. The absence of limb abnormalities in this patient suggests either a location of the SHFM1 causing factor distal to this deletion, or reduced penetrance of haploinsufficiency of a SHFM1 factor within the deleted interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号